首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Exposure of human Jurkat T cells to JNK inhibitor IX (JNKi), targeting JNK2 and JNK3, caused apoptotic DNA fragmentation along with G2/M arrest, phosphorylation of Bcl-2, Mcl-1, and Bim, Δψm loss, and activation of Bak and caspase cascade. These JNKi-induced apoptotic events were abrogated by Bcl-2 overexpression, whereas G2/M arrest, cyclin B1 up-regulation, Cdk1 activation, and phosphorylation of Bcl-2 family proteins were sustained. In the concomitant presence of the G1/S blocking agent aphidicolin and JNKi, the cells underwent G1/S arrest and failed to induce all apoptotic events. The JNKi-induced phosphorylation of Bcl-2 family proteins and mitochondrial apoptotic events were suppressed by the Cdk1 inhibitor. Immunofluorescence microscopic analysis revealed that mitotic spindle defect and prometaphase arrest were the underlying factors for the G2/M arrest. These results demonstrate that JNKi-induced mitochondrial apoptosis was caused by microtubule damage-mediated prometaphase arrest, prolonged Cdk1 activation, and phosphorylation of Bcl-2 family proteins in Jurkat T cells.  相似文献   

3.
The study of the ability of chemotherapeutic agents and/or ionizing radiation (IR) to induce cell death in tumor cells is essential for setting up new and more efficient therapies against human cancer. Since drug and ionizing radiation resistance is an impediment to successful chemotherapy against cancer, we wanted to check if etoposide/ionizing radiation combined treatment could have a synergic effect to improve cell death in K562, a well-known human erythroleukemia ionizing radiation resistant cell line. In this study, we examined the role played by JNK/SAPK, p53, and mitochondrial pathways in cell death response of K562 cells to etoposide and IR treatment. Our results let us suppose that the induction of cell death, already evident in 15 Gy exposed cells, mainly in 15 Gy plus etoposide, may be mediated by JNK/SAPK pathway. Moreover, p53 is a potential substrate for JNK and may act as a JNK target for etoposide and ionizing radiation. Thus further investigation on these and other molecular mechanisms underlying the cell death response following etoposide and ionizing radiation exposure could be useful to overcome resistance mechanisms in tumor cells.  相似文献   

4.
The mechanisms of sodium selenite-induced cell death in cervical carcinoma cells were studied during 24 h of exposure in the HeLa Hep-2 cell line. Selenite at the employed concentrations of 5 and 50 μmol/L produced time- and dose-dependent suppression of DNA synthesis and induced DNA damage which resulted in phosphorylation of histone H2A.X. These effects were influenced by pretreatment of cells with the SOD/catalase mimetic MnTMPyP or glutathione-depleting buthionine sulfoximine, suggesting the significant role of selenite-generated oxidative stress. Following the DNA damage, selenite activated p53-dependent pathway as evidenced by the appearance of phosphorylated p53 and accumulation of p21 in the treated cells. Concomitantly, selenite activated p38 pathway but its effect on JNK was very weak. p53- and p38-dependent signaling led to the accumulation of Bax protein, which was preventable by specific inhibitors of p38 (SB 203580) and p53 (Pifithrin-α). Mitochondria in selenite-treated cells changed their dynamics (shape and localization) and released AIF and Smac/Diablo, which initiated caspase-independent apoptosis as confirmed by the caspase-3 activity assay and the low effect of caspase inhibitors z-DEVD-fmk and z-VAD-fmk on cell death. We conclude that selenite induces caspase-independent apoptosis in cervical carcinoma cells mostly by oxidative stress-mediated activation of p53 and p38 pathways, but other selenite-mediated effects, in particular mitochondria-specific ones, are also involved.  相似文献   

5.
《Free radical research》2013,47(3):310-319
Silibinin is an active constituent extracted from blessed milk thistle (Silybum marianum). Our previous study demonstrated that silibinin induced autophagy and apoptosis via reactive oxygen species (ROS) generation in HeLa cells. In this study, we investigated whether the autophagy- and apoptosis-associated molecules also involved in ROS generation. Silibinin promoted the expression phosphorylated-p53 (p-p53) in a dose-dependent manner. Pifithrin-α (PFT-α), a specific inhibitor of p53, reduced ROS production and reversed silibinin's growth-inhibitory effect. The ROS scavenger N-acetyl cysteine (NAC) attenuated silibinin-induced up-regulation of p-p53 expression, suggesting that p53 might be regulated by ROS and forms a positive feedback loop with ROS. On the other hand, silibinin dose-dependently promoted the expression of phosphorylated-c-Jun N-terminal kinase (p-JNK). Inhibition of JNK by SP600125 decreased ROS generation. NAC down-regulated the expression of p-JNK, indicating that JNK could be activated by ROS. Activation of p53 was suppressed by SP600125 and expression of p-JNK was inhibited by PFT-α, therefore silibinin might activate a ROS-JNK-p53 cycle to induce cell death. Silibinin up-regulated the PUMA and Bax expressions and down-regulated the mitochondrial membrane potential (MMP) level. PFT-α reduced the expression of PUMA and Bax. These results showed that p53 could interfere with mitochondrial functions such as MMP via PUMA pathways, thus resulting in ROS generation. In order to elucidate the functions of p53 in silibinin induced ROS generation, we have chosen the A431 cells (human epithelial carcinoma) because they lack p53 activity (p53His273 mutation). Interestingly, silibinin did not up-regulate the ROS level in A431 cells but lower the ROS level. PFT-α had no influence on ROS level in A431 cells. p53 activation plays a crucial role in silibinin induced ROS generation.  相似文献   

6.
7.
Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, is associated with a broad range of biological properties including antitumor activity. However, the effect of DHA on gastric cancer has not been clearly clarified. The aim of this study was to investigate the role and mechanism of DHA in human gastric cancer cell line BGC-823. Cell viability was assessed by MTT assay. Cell apoptosis was analyzed with flow cytometry. The expressions of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38 MAPK) and their phosphorylated forms as well as apoptosis related proteins were examined by western blot analysis. The results demonstrated that DHA inhibited cell viability of BGC-823 cells in a dose- and time-dependent manner. DHA treatment upregulated the expression of Bax, cleaved caspase-3 and -9, and degraded form of PARP, and downregulated the Bcl-2 expression and Bcl-2/Bax ratio. Meanwhile, DHA increased the phosphorylation of ERK1/2, JNK1/2 and p38 MAPK. Synthetic inhibitors of JNK1/2 or p38 MAPK kinase activity, but not inhibitor of ERK1/2, significantly abolished the DHA-induced activation of caspase-3 and -9. In vivo tumor-suppression assay further indicated that DHA displayed significant inhibitory effect on BGC-823 xenografts in tumor growth. These results indicate that DHA induces apoptosis of BGC-823 cells through JNK1/2 and p38 MAPK signaling pathways and DHA could serve as a potential additional chemotherapeutic agent for treatment of gastric cancer.  相似文献   

8.
Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.  相似文献   

9.
Symmetric aromatic diselenides are potential anticancer agents with strong cytotoxic activity. In this study, the in vitro anticancer activities of a novel series of diarylseleno derivatives from the diphenyldiselenide (DPDS) scaffold were evaluated. Most of the compounds exhibited high efficacy for inducing cytotoxicity against different human cancer cell lines. DPDS 2 , the compound with the lowest mean GI50 value, induced both caspase‐dependent apoptosis and arrest at the G0/G1 phase in acute lymphoblastic leucemia CCRF‐CEM cells. Consistent with this, PARP cleavage; enhanced caspase‐2, ‐3, ‐8 and ‐9 activity; reduced CDK4 expression and increased levels of p53 were detected in these cells upon DPDS 2 treatment. Mutated p53 expressed in CCRF‐CEM cells retains its transactivating activity. Therefore, increased levels of p21CIP1 and BAX proteins were also detected. On the other hand, DPDS 6 , the compound with the highest selectivity index for cancer cells, resulted in G2/M cell cycle arrest and caspase‐independent cell death in p53 deficient HTB‐54 lung cancer cells. Autophagy inhibitors 3‐methyladenine, wortmannin and chloroquine inhibited DPDS 6 ‐induced cell death. Consistent with autophagy, increased LC3‐II and decreased SQSTM1/p62 levels were detected in HTB‐54 cells in response to DPDS 6 . Induction of JNK phosphorylation and a reduction in phospho‐p38 MAPK were also detected. Moreover, the JNK inhibitor SP600125‐protected HTB‐54 cells from DPDS 6 ‐induced cell death indicating that JNK activation is involved in DPDS 6 ‐induced autophagy. These results highlight the anticancer effects of these derivatives and warrant future studies examining their clinical potential.  相似文献   

10.
11.
Lysosomal regulation is a poorly understood mechanism that is central to degradation and recycling processes. Here we report that LAMTOR1 (late endosomal/lysosomal adaptor, MAPK and mTOR activator 1) downregulation affects lysosomal activation, through mechanisms that are not solely due to mTORC1 inhibition. LAMTOR1 depletion strongly increases lysosomal structures that display a scattered intracellular positioning. Despite their altered positioning, those dispersed structures remain overall functional: (i) the trafficking and maturation of the lysosomal enzyme cathepsin B is not altered; (ii) the autophagic flux, ending up in the degradation of autophagic substrate inside lysosomes, is stimulated. Consequently, LAMTOR1-depleted cells face an aberrant lysosomal catabolism that produces excessive reactive oxygen species (ROS). ROS accumulation in turn triggers p53-dependent cell cycle arrest and apoptosis. Both mTORC1 activity and the stimulated autophagy are not necessary to this lysosomal cell death pathway. Thus, LAMTOR1 expression affects the tuning of lysosomal activation that can lead to p53-dependent apoptosis through excessive catabolism.  相似文献   

12.
Treatment of pancreatic acinar cells by hydrogen sulphide has been shown to induce apoptosis. However, a potential role of mitogen-activated protein kinases (MAPKs) in this apoptotic pathway remains unknown. The present study examined the role of MAPKs in H2S-induced apoptosis in mouse pancreatic acinar cells. Pancreatic acinar cells were treated with 10 μM NaHS (a donor of H2S) for 3 hrs. For the evaluation of the role of MAPKs, PD98059, SP600125 and SB203580 were used as MAPKs inhibitors for ERK1/2, JNK1/2 and p38 MAPK, respectively. We observed activation of ERK1/2, JNK1/2 and p38 when pancreatic acini were exposed to H2S. Moreover, H2S-induced ERK1/2, JNK1/2 and p38 activation were blocked by pre-treatment with their corresponding inhibitor in a dose-dependent manner. H2S-induced apoptosis led to an increase in caspase 3 activity and this activity was attenuated when caspase 3 inhibitor were used. Also, the cleavage of caspase 3 correlated with that of poly-(ADP-ribose)-polymerase (PARP) cleavage. H2S treatment induced the release of cytochrome c , smac from mitochondria into the cytoplasm, translocation of Bax into mitochondria and decreased the protein level of Bcl-2. Inhibition of ERK1/2 using PD98059 caused further enhancement of apoptosis as evidenced by annexin V staining, while SP600125 and SB203580 abrogated H2S-induced apoptosis. Taken together, the data suggest that activation of ERKs promotes cell survival, whereas activation of JNKs and p38 MAP kinase leads to H2S-induced apoptosis.  相似文献   

13.
Though the activation of c-Jun NH2-terminal kinase (JNK) has been reported to be essential for autophagic cell death in response to various stressors, the molecular links between JNK activation and autophagic cell death signaling remain elusive. Here we report that, in the JNK-dependent autophagic cell death of HCT116 cells induced by an agonistic single chain variable fragment antibody, HW1, against human death receptor 5 (DR5), JNK activation upregulated Beclin-1 expression and induced Bcl-2 and p53 phosphorylation. Further, the p53-deficient HCT116 cells showed less susceptibility to the HW1-mediated autophagic cell death than the wild type cells, suggesting that JNK-mediated p53 phosphorylation promotes the autophagic cell death. Our results suggest that DR5-stimulated JNK activation and its consequent fluxes into the pro-autophagic signaling pathways contribute to the autophagic cell death in cancer cells.  相似文献   

14.
p53-dependent cell death signaling in neurons   总被引:15,自引:0,他引:15  
  相似文献   

15.
16.
The molecular events associated with apoptosis induced by two distinct triggers (1) serum withdrawal and (2) etoposide treatment were investigated in the human lung carcinoma cell line A549. Although both serum withdrawal and etoposide treatment resulted in internucleosomal DNA fragmentation, the morphologic features were distinct. Serum deprived apoptotic cells appeared small, round and refractile, with little evidence of nuclear fragmentation; etoposide-induced apoptotic cells appeared enlarged and flattened and displayed prominent nuclear fragmentation. p53 and p21/waf1 protein levels were elevated in etoposide-treated cells, but not in cells subjected to serum with-drawal. Apoptosis induced by both treatments was accompanied by a significant reduction in Rb protein levels. However, etoposide treatment led to hypo-phosphorylation of Rb, while serum withdrawal did not alter the Rb phosphorylation pattern. Serum withdrawal-induced apoptosis was correlated with activation of JNK and suppression of ERK activities, while both JNK and ERK activities were slightly elevated during etoposid- induced apoptosis. Together, these results support the hypothesis that apoptosis induced by serum withdrawal and etoposide treatment occurs through different pathways and involves distinct mediators.  相似文献   

17.
Neuroblastoma (NB) is a common pediatric cancer and contributes to more than 15% of all pediatric cancer-related deaths. Unlike adult tumors, recurrent somatic mutations in NB, such as tumor protein 53 (p53) mutations, occur with relative paucity. In addition, p53 downstream function is intact in NB cells with wild-type p53, suggesting that reactivation of p53 may be a viable therapeutic strategy for NB treatment. Herein, we report that the ubiquitin-specific protease 7 (USP7) inhibitor, P22077, potently induces apoptosis in NB cells with an intact USP7-HDM2-p53 axis but not in NB cells with mutant p53 or without human homolog of MDM2 (HDM2) expression. In this study, we found that P22077 stabilized p53 by inducing HDM2 protein degradation in NB cells. P22077 also significantly augmented the cytotoxic effects of doxorubicin (Dox) and etoposide (VP-16) in NB cells with an intact USP7-HDM2-p53 axis. Moreover, P22077 was found to be able to sensitize chemoresistant LA-N-6 NB cells to chemotherapy. In an in vivo orthotopic NB mouse model, P22077 significantly inhibited the xenograft growth of three NB cell lines. Database analysis of NB patients shows that high expression of USP7 significantly predicts poor outcomes. Together, our data strongly suggest that targeting USP7 is a novel concept in the treatment of NB. USP7-specific inhibitors like P22077 may serve not only as a stand-alone therapy but also as an effective adjunct to current chemotherapeutic regimens for treating NB with an intact USP7-HDM2-p53 axis.  相似文献   

18.
Previously, we demonstrated that the extracellular signal‐regulated kinase (ERK)‐mediated pathway contributes to the terbinafine (TB)‐induced increases of p21 and p53 protein level as well as decrease of DNA synthesis in human umbilical venous endothelial cells (HUVEC). The aim of this study is to examine the involvement of c‐Jun NH2‐terminal kinase (JNK) in the TB‐induced increase of p21 protein level and DNA synthesis inhibition. Western blot analysis and kinase assay demonstrated that TB treatment increased both the protein level and the kinase activity of JNK1/2 in HUVEC. Transfection of HUVEC with JNK1 dominant negative (DN‐JNK1) prevented the TB‐induced increases of p21 and p53 protein level and decrease of DNA synthesis, suggesting that JNK1/2 activation is involved in the TB‐induced cell cycle arrest in HUVEC. Moreover, over‐expression of mitogen‐activated protein kinase (MEK)‐1 prevented the TB‐induced increase of JNK1/2 protein levels, suggesting that MEK‐1 is an upstream inhibitor of JNK. Transfection of HUVEC with DN‐JNK1 prevented the TB‐induced inhibition of ERK phosphorylation, suggesting that JNK1/2 might serve as a negative regulator of ERK. Taken together, our results suggest that JNK activation is involved in the TB‐induced inhibition of ERK phosphorylation, p53 and p21 up‐regulation and DNA synthesis inhibition in HUVEC. J. Cell. Biochem. 108: 860–866, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Glioblastoma (GBM) is a highly vascularized malignant tumor that depends on new blood vessel formation. Small molecules targeting the angiogenic process may be an effective anti-GBM therapeutic strategy. We previously demonstrated that RhoJ promoted the progression and invasion of GBM. RhoJ has also been shown to be expressed in endothelial cells and plays an important role in regulating endothelial cell migration and tumor angiogenesis. Therefore, we aimed to evaluate the role and mechanism of actions of RhoJ in GBM angiogenesis. We analyzed the expression of RhoJ in different grade gliomas and investigated its role in GBM angiogenesis in vivo and in vitro. Furtherly, RNA sequencing (RNA-seq), Western blotting and immunofluorescence were performed to identify the molecular mechanism of RhoJ in regulating endothelial cell behavior and GBM angiogenesis. Here, we found that silencing RhoJ resulted in inhibition of HUVEC cell migration and blood vessel formation. Overexpression of RhoJ promoted the expression of CD31, EpCAM and moesin, suggesting RhoJ facilitated angiogenesis and the malignant progression of GBM. RNA-seq data showed that VEGF/TNF signaling pathway positively regulated RhoJ. The expression levels of RhoJ was upregulated with the stimulation of VEGF, and reduced by the treatment of JNK inhibitor SP600125. It was also found that the activity of PAK-BRAF-ERK was down-regulated upon RhoJ and JNK knockdown. In conclusion, these results suggested that RhoJ plays an essential role in regulating GBM angiogenesis through the JNK/VEGFR2-PAK-ERK signaling pathway and there might exist a VEGF-JNK/ERK-VEGF circuitry. Thus, RhoJ may be a candidate therapeutic target for anti-angiogenesis treatment in GBM.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号