首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
5-Formyluracil (fU) is a major oxidative thymine lesion produced by reactive oxygen species and exhibits genotoxic and cytotoxic effects via several mechanisms. In the present study, we have searched for and characterized mammalian fU-DNA glycosylase (FDG) using two approaches. In the first approach, the FDG activity was examined using purified base excision repair enzymes. Human and mouse endonuclease III homologues (NTH1) showed a very weak FDG activity, but the parameter analysis and NaBH(4) trapping assays of the Schiff base intermediate revealed that NTH1 was kinetically incompetent for repair of fU. In the second approach, FDG was partially purified (160-fold) from rat liver. The enzyme was a monofunctional DNA glycosylase and recognized fU in single-stranded (ss) and double-stranded (ds) DNA. The most purified FDG fraction also exhibited monofunctional DNA glycosylase activities for uracil (U), 5-hydroxyuracil (hoU), and 5-hydroxymethyluracil (hmU) in ssDNA and dsDNA. The fU-excising activity of FDG was competitively inhibited by dsDNA containing U.G, hoU.G, and hmU.A but not by intact dsDNA containing T.A. Furthermore, the activities of FDG for fU, hmU, hoU, and U in ssDNA and dsDNA were neutralized by the antibody raised against SMUG1 uracil-DNA glycosylase, showing that FDG is a rat homologue of SMUG1.  相似文献   

2.
5-Formyluracil (fU) is a major thymine lesion produced by reactive oxygen radicals and photosensitized oxidation. We have previously shown that fU is a potentially mutagenic lesion due to its elevated frequency to mispair with guanine. Therefore, fU can exist in DNA as a correctly paired fU:A form or an incorrectly paired fU:G form. In this work, fU was site-specifically incorporated opposite A in oligonucleotide substrates to delineate the cellular repair mechanism of fU paired with A. The repair activity for fU was induced in Escherichia coli upon exposure to N-methyl-N'-nitro-N-nitrosoguanidine, and the induction was dependent on the alkA gene, suggesting that AlkA (3-methyladenine DNA glycosylase II) was responsible for the observed activity. Activity assay and determination of kinetic parameters using purified AlkA and defined oligonucleotide substrates containing fU, 5-hydroxymethyluracil (hU), or 7-methylguanine (7mG) revealed that fU was recognized by AlkA with an efficiency comparable to that of 7mG, a good substrate for AlkA, whereas hU, another major thymine methyl oxidation products, was not a substrate. (1)H and (13)C NMR chemical shifts of 5-formyl-2'-deoxyuridine indicated that the 5-formyl group caused base C-6 and sugar C-1' to be electron deficient, which was shown to result in destabilization of the N-glycosidic bond. These features are common in other good substrates for AlkA and are suggested to play key roles in the differential recognition of fU, hU, and intact thymine. Three mammalian repair enzymes for alkylated and oxidized bases cloned so far (MPG, Nth1, and OGG1) did not recognize fU, implying that the mammalian repair activity for fU resided on a yet unidentified protein. In the accompanying paper (Terato, H., Masaoka, A., Kobayashi, M., Fukushima, S., Ohyama, Y., Yoshida, M., and Ide, H., J. Biol. Chem. 274, 25144-25150), possible repair mechanisms for fU mispaired with G are reported.  相似文献   

3.
Base excision repair of oxidized pyrimidines in human DNA is initiated by the DNA N-glycosylase/apurinic/apyrimidinic (AP) lyase, human NTH1 (hNTH1), the homolog of Escherichia coli endonuclease III (Nth). In contrast to Nth, the DNA N-glycosylase activity of hNTH1 is 7-fold greater than its AP lyase activity when the DNA substrate contains a thymine glycol (Tg) opposite adenine (Tg:A) (Marenstein, D. R., Ocampo, M. T. A., Chan, M. K., Altamirano, A., Basu, A. K., Boorstein, R. J., Cunningham, R. P., and Teebor, G. W. (2001) J. Biol. Chem. 276, 21242-21249). When Tg is opposite guanine (Tg:G), the two activities are of the same specific activity as the AP lyase activity of hNTH1 against Tg:A (Ocampo, M. T. A., Chaung, W., Marenstein, D. R., Chan, M. K., Altamirano, A., Basu, A. K., Boorstein, R. J., Cunningham, R. P., and Teebor, G. W. (2002) Mol. Cell. Biol. 22, 6111-6121). We demonstrate here that hNTH1 was inhibited by the product of its DNA N-glycosylase activity directed against Tg:G, the AP:G site. In contrast, hNTH1 was not as inhibited by the AP:A site arising from release of Tg from Tg:A. Addition of human APE1 (AP endonuclease-1) increased dissociation of hNTH1 from the DNA N-glycosylase-generated AP:A site, resulting in abrogation of AP lyase activity and an increase in turnover of the DNA N-glycosylase activity of hNTH1. Addition of APE1 did not abrogate hNTH1 AP lyase activity against Tg:G. The stimulatory protein YB-1 (Marenstein et al.), added to APE1, resulted in an additive increase in both activities of hNTH1 regardless of base pairing. Tg:A is formed by oxidative attack on thymine opposite adenine. Tg:G is formed by oxidative attack on 5-methylcytosine opposite guanine (Zuo, S., Boorstein, R. J., and Teebor, G. W. (1995) Nucleic Acids Res. 23, 3239-3243). It is possible that the in vitro substrate selectivity of mammalian NTH1 and the concomitant selective stimulation of activity by APE1 are indicative of selective repair of oxidative damage in different regions of the genome.  相似文献   

4.
5-Hydroxymethylcytosine DNA glycosylase activity in mammalian tissue   总被引:3,自引:0,他引:3  
The enzymatic release of 5-hydroxymethylcytosine from T2 bacteriophage DNA was effected by an extract of calf thymus. Like the previously described 5-hydroxymethyluracil DNA glycosylase, 5-hydroxymethylcytosine DNA glycosylase was not detectable in bacterial extracts. The phylogenetic distribution of these activities indicates that their primary function is the maintenance of methylcytosine residues in differentiated tissue.  相似文献   

5.
Bacteria and eukaryotes possess redundant activities that recognize and remove oxidatively damaged bases from DNA through base excision repair. DNA glycosylases excise damaged bases to initiate the base excision repair pathway. hOgg1 and hNTH1, homologues of E. coli MutM and Nth, respectively, had been identified and characterized in human cells. Recent works revealed that human cells have three orthologues of E. coli Nei, hNEIL1, hNEIL2 and hNEIL3. In the present experiments, hNEIL1 protected the E. coli nth nei mutant from lethal effect of hydrogen peroxide and high frequency of spontaneous mutations under aerobic conditions. Furthermore, hNEIL1 efficiently cleaved double stranded oligonucleotides containing 5-formyluracil (5-foU) and 5-hydroxymethyluracil (5-hmU) in vitro via beta- and delta-elimination reactions. Similar activities were detected with hNTH1. These results indicate that hNEIL1 and hNTH1 are DNA glycosylases that excise 5-foU and 5-hmU as efficiently as Tg in human cells.  相似文献   

6.
In the accompanying paper [Matsubara, M., et al. (2003) Biochemistry 42, 4993-5002], we have partially purified and characterized rat 5-formyluracil (fU)-DNA glycosylase (FDG). Several lines of evidence have indicated that FDG is a rat homologue of single-strand-selective monofunctional uracil-DNA glycosylase (SMUG1). We report here that rat and human SMUG1 (rSMUG1 and hSMUG1) expressed from the corresponding cDNAs indeed excise fU in single-stranded (ss) and double-stranded (ds) DNA. The enzymes also excised uracil (U) and uracil derivatives bearing an oxidized group at C5 [5-hydroxyuracil (hoU) and 5-hydroxymethyluracil (hmU)] in ssDNA and dsDNA but not analogous cytosine derivatives (5-hydroxycytosine and 5-formylcytosine) and other oxidized damage. The damage specificity and the salt concentration dependence of rSMUG1 (and hSMUG1) agreed well with those of FDG, confirming that FDG is rSMUG1. Consistent with the damage specificity above, hSMUG1 removed damaged bases from Fenton-oxidized calf thymus DNA, generating abasic sites. The amount of resulting abasic sites was about 10% of that generated by endonuclease III or 8-oxoguanine glycosylase in the same substrate. The HeLa cell extract and hSMUG1 exhibited a similar damage preference (hoU.G > hmU.A, fU.A), and the activities for fU, hmU, and hoU in the cell extract were effectively neutralized with hSMUG1 antibodies. These data indicate a dual role of hSMUG1 as a backup enzyme for UNG and a primary repair enzyme for a subset of oxidized pyrimidines such as fU, hmU, and hoU.  相似文献   

7.
8.
5-Formyluracil is a major oxidation product of thymine, formed in DNA in yields comparable to that of 8-oxo-7,8-dihydroguanine by exposure to gamma-irradiation. Whereas the repair pathways for removal and the biological effects of persisting 8-oxo-7,8-dihydroguanine are much elucidated, much less attention has been paid to the cellular implications of 5-formyluracil in DNA. Here we review the present state of knowledge in this important area within research on oxidative DNA damage.  相似文献   

9.
Oxanine (Oxa) is a deaminated base lesion derived from guanine in which the N(1)-nitrogen is substituted by oxygen. This work reports the mutagenicity of oxanine as well as oxanine DNA glycosylase (ODG) activities in mammalian systems. Using human DNA polymerase beta, deoxyoxanosine triphosphate is only incorporated opposite cytosine (Cyt). When an oxanine base is in a DNA template, Cyt is efficiently incorporated opposite the template oxanine; however, adenine and thymine are also incorporated opposite Oxa with an efficiency approximately 80% of a Cyt/Oxa (C/O) base pair. Guanine is incorporated opposite Oxa with the least efficiency, 16% compared with cytosine. ODG activity was detected in several mammalian cell extracts. Among the known human DNA glycosylases tested, human alkyladenine glycosylase (AAG) shows ODG activity, whereas hOGG1, hNEIL1, or hNEIL2 did not. ODG activity was detected in spleen cell extracts of wild type age-matched mice, but little activity was observed in that of Aag knock-out mice, confirming that the ODG activity is intrinsic to AAG. Human AAG can excise Oxa from all four Oxa-containing double-stranded base pairs, Cyt/Oxa, Thy/Oxa, Ade/Oxa, and Gua/Oxa, with no preference to base pairing. Surprisingly, AAG can remove Oxa from single-stranded Oxa-containing DNA as well. Indeed, AAG can also remove 1,N(6)-ethenoadenine from single-stranded DNA. This study extends the deaminated base glycosylase activities of AAG to oxanine; thus, AAG is a mammalian enzyme that can act on all three purine deamination bases, hypoxanthine, xanthine, and oxanine.  相似文献   

10.
Mokkapati SK  Wiederhold L  Hazra TK  Mitra S 《Biochemistry》2004,43(36):11596-11604
The eukaryotic 8-oxoguanine-DNA glycosylase 1 (OGG1) provides the major activity for repairing mutagenic 7,8-dihydro-8-oxoguanine (8-oxoG) induced in the genome due to oxidative stress. Earlier in vitro studies showed that, after excising the base lesion, the human OGG1 remains bound to the resulting abasic (AP) site in DNA and does not turn over efficiently. The human AP-endonuclease (APE1), which cleaves the phosphodiester bond 5' to the AP site, in the next step of repair, displaces the bound OGG1 and thus increases its turnover. Here we show that NEIL1, a DNA glycosylase/AP lyase specific for many oxidized bases but with weak 8-oxoG excision activity, stimulates turnover of OGG1 in a fashion similar to that of APE1 and carries out betadelta-elimination at the AP site. This novel collaboration of two DNA glycosylases, which do not stably interact with each other, in stimulating 8-oxoguanine repair is possible because of higher AP site affinity and stronger AP lyase activity of NEIL1 relative to OGG1. Comparable levels of NEIL1 and OGG1 in some human cells raise the possibility that NEIL1 serves as a backup enzyme to APE1 in stimulating 8-oxoG repair in vivo.  相似文献   

11.
Thymine DNA glycosylase (TDG) excises thymine from G.T mispairs and removes a variety of damaged bases (X) with a preference for lesions in a CpG.X context. We recently reported that human TDG rapidly excises 5-halogenated uracils, exhibiting much greater activity for CpG.FU, CpG.ClU, and CpG.BrU than for CpG.T. Here we examine the effects of altering the CpG context on the excision activity for U, T, FU, ClU, and BrU. We show that the maximal activity (k(max)) for G.X substrates depends significantly on the 5' base pair. For example, k(max) decreases by 6-, 11-, and 82-fold for TpG.ClU, GpG.ClU, and ApG.ClU, respectively, as compared with CpG.ClU. For the other G.X substrates, the 5'-neighbor effects have a similar trend but vary in magnitude. The activity for G.FU, G.ClU, and G.BrU, with any 5'-flanking pair, meets and in most cases significantly exceeds the CpG.T activity. Strikingly, human TDG activity is reduced 10(2.3)-10(4.3)-fold for A.X relative to G.X pairs and reduced further for A.X pairs with a 5' pair other than C.G. The effect of altering the 5' pair and/or the opposing base (G.X versus A.X) is greater for substrates that are larger (bromodeoxyuridine, dT) or have a more stable N-glycosidic bond (such as dT). The largest CpG context effects are observed for the excision of thymine. The potential role played by human TDG in the cytotoxic effects of ClU and BrU incorporation into DNA, which can occur under inflammatory conditions and in the cytotoxicity of FU, a widely used anticancer agent, are discussed.  相似文献   

12.
Liu P  Burdzy A  Sowers LC 《DNA Repair》2003,2(2):199-210
The oxidation of the thymine methyl group can generate 5-formyluracil (FoU). Template FoU residues are known to miscode, generating base substitution mutations. The repair of the FoU lesion is therefore important in minimizing mutations induced by DNA oxidation. We have studied the repair of FoU in synthetic oligonucleotides when paired with A and G. In E. coli cell extract, the repair of FoU is four orders of magnitude lower than the repair of U and is similar for both FoU:A and FoU:G base pairs. In HeLa nuclear extract, the repair of FoU:A is similarly four orders of magnitude lower than the repair of uracil, although the FoU:G lesion is repaired 10 times more efficiently than FoU:A. The FoU:G lesion is shown to be repaired by E. coli mismatch uracil DNA glycosylase (Mug), thermophile mismatch thymine DNA glycosylase (Tdg), mouse mismatch thymine DNA glycosylase (mTDG) and human methyl-CpG-binding thymine DNA glycosylase (MBD4), whereas the FoU:A lesion is repaired only by Mug and mTDG. The repair of FoU relative to the other pyrimidines examined here in human cell extract differs from the substrate preferences of the known glycosylases, suggesting that additional, and as yet unidentified glycosylases exist in human cells to repair the FoU lesion. Indeed, as observed in HeLa nuclear extract, the repair of mispaired FoU derived from misincorporation of dGMP across from template FoU could promote rather than minimize mutagenesis. The pathways by which this important lesion is repaired in human cells are as yet unexplained, and are likely to be complex.  相似文献   

13.
Human MRP14 (hMRP14) is a Ca(2+)-binding protein from the S100 family of proteins. This protein is co-expressed with human MRP8 (hMRP8), a homologue protein in myeloid cells, and plays an indispensable role in Ca(2+)-dependent functions during inflammation. This role includes the activation of Mac-1, the beta(2) integrin which is involved in neutrophil adhesion to endothelial cells. The crystal structure of the holo form of hMRP14 was analyzed at 2.1 A resolution. hMRP14 is distinguished from other S100 member proteins by its long C-terminal region, and its structure shows that the region is extensively flexible. In this crystal structure of hMRP14, Chaps molecules bind to the hinge region that connects two EF-hand motifs, which suggests that this region is a target-binding site of this protein. Based on a structural comparison of hMRP14 with hMRP8 and human S100A12 (hS100A12) that is another homologue protein, the character of MRP8/14 hetero-complex and the functional significance of the flexibility of the C-terminal region of hMRP14 are discussed.  相似文献   

14.
The mammalian DNA glycosylase, NEIL1, specific for repair of oxidatively damaged bases in the genome via the base excision repair pathway, is activated by reactive oxygen species and prevents toxicity due to radiation. We show here that the Werner syndrome protein (WRN), a member of the RecQ family of DNA helicases, associates with NEIL1 in the early damage-sensing step of base excision repair. WRN stimulates NEIL1 in excision of oxidative lesions from bubble DNA substrates. The binary interaction between NEIL1 and WRN (K(D) = 60 nM) involves C-terminal residues 288-349 of NEIL1 and the RecQ C-terminal (RQC) region of WRN, and is independent of the helicase activity WRN. Exposure to oxidative stress enhances the NEIL-WRN association concomitant with their strong nuclear co-localization. WRN-depleted cells accumulate some prototypical oxidized bases (e.g. 8-oxoguanine, FapyG, and FapyA) indicating a physiological function of WRN in oxidative damage repair in mammalian genomes. Interestingly, WRN deficiency does not have an additive effect on in vivo damage accumulation in NEIL1 knockdown cells suggesting that WRN participates in the same repair pathway as NEIL1.  相似文献   

15.
Thymine glycol (Tg) and 5-hydroxyuracil (5-OHU) are common oxidized products of pyrimidines, which are recognized and cleaved by two DNA glycosylases of the base excision repair pathway, endonuclease III (Nth) and endonuclease VIII (Nei). Although there are several structures of Nei enzymes unliganded or bound to an abasic (apurinic or apyrimidinic) site, until now there was no structure of an Nei bound to a DNA lesion. Mimivirus Nei1 (MvNei1) is an ortholog of human NEIL1, which was previously crystallized bound to DNA containing an apurinic site (Imamura, K., Wallace, S. S., and Doublié, S. (2009) J. Biol. Chem. 284, 26174-26183). Here, we present two crystal structures of MvNei1 bound to two oxidized pyrimidines, Tg and 5-OHU. Both lesions are flipped out from the DNA helix. Tg is in the anti conformation, whereas 5-OHU adopts both anti and syn conformations in the glycosylase active site. Only two protein side chains (Glu-6 and Tyr-253) are within hydrogen-bonding contact with either damaged base, and mutating these residues did not markedly affect the glycosylase activity. This finding suggests that lesion recognition by Nei occurs before the damaged base flips into the glycosylase active site.  相似文献   

16.
Zhang L  Lu X  Lu J  Liang H  Dai Q  Xu GL  Luo C  Jiang H  He C 《Nature chemical biology》2012,8(4):328-330
Human thymine DNA glycosylase (hTDG) efficiently excises 5-carboxylcytosine (5caC), a key oxidation product of 5-methylcytosine in genomic DNA, in a recently discovered cytosine demethylation pathway. We present here the crystal structures of the hTDG catalytic domain in complex with duplex DNA containing either 5caC or a fluorinated analog. These structures, together with biochemical and computational analyses, reveal that 5caC is specifically recognized in the active site of hTDG, supporting the role of TDG in mammalian 5-methylcytosine demethylation.  相似文献   

17.
BACKGROUND: Base excision repair initiated by human thymine-DNA glycosylase (TDG) results in the generation of abasic sites (AP sites) in DNA. TDG remains bound to this unstable repair intermediate, indicating that its transmission to the downstream-acting AP endonuclease is a coordinated process. Previously, we established that posttranslational modification of TDG with Small Ubiquitin-like MOdifiers (SUMOs) facilitates the dissociation of the DNA glycosylase from the product AP site, but the underlying molecular mechanism remained unclear. RESULTS: We now show that upon DNA interaction, TDG undergoes a dramatic conformational change, which involves its flexible N-terminal domain and accounts for the nonspecific DNA binding ability of the enzyme. This function is required for efficient processing of the G.T mismatch but then cooperates with the specific DNA contacts established in the active site pocket of TDG to prevent its dissociation from the product AP site after base release. SUMO1 conjugation to the C-terminal K330 of TDG modulates the DNA binding function of the N terminus to induce dissociation of the glycosylase from the AP site while it leaves the catalytic properties of base release in the active site pocket of the enzyme unaffected. CONCLUSION: Our data provide insight into the molecular mechanism of SUMO modification mediated modulation of enzymatic properties of TDG. A conformational change, involving the N-terminal domain of TDG, provides unspecific DNA interactions that facilitate processing of a wider spectrum of substrates at the expense of enzymatic turnover. SUMOylation then reverses this structural change in the product bound TDG.  相似文献   

18.
Elevated cellular oxidative stress and oxidative DNA damage are key contributors to impaired cardiac function in diabetes. During chronic inflammation, reactive oxygen species (ROS)-induced lipid peroxidation results in the formation of reactive aldehydes, foremost of which is 4-hydroxy-2-nonenal (4HNE). 4HNE forms covalent adducts with proteins, negatively impacting cellular protein function. During conditions of elevated oxidative stress, oxidative DNA damage such as modification by 8-hydroxydeoxyguanosine (8OHdG) is repaired by 8-oxoguanine glycosylase-1 (OGG-1). Based on these facts, we hypothesized that 4HNE forms adducts with OGG-1 inhibiting its activity, and thus, increases the levels of 8OHG in diabetic heart tissues. To test our hypothesis, we evaluated OGG-1 activity, 8OHG and 4HNE in the hearts of leptin receptor deficient db/db mice, a type-2 diabetic model. We also treated the recombinant OGG-1 with 4HNE to measure direct adduction. We found decreased OGG-1 activity (P > .05), increased 8OHG (P > .05) and increased 4HNE adducts (P > .05) along with low aldehyde dehydrogenase-2 activity (P > .05). The increased colocalization of OGG-1 and 4HNE in cardiomyocytes suggest 4HNE adduction on OGG-1. Furthermore, colocalization of 8OHG and OGG-1 with mitochondrial markers TOM 20 and aconitase, respectively, indicated significant levels of oxidatively-induced mtDNA damage and implicated a role for mitochondrial OGG-1 function. In vitro exposure of recombinant OGG-1 (rOGG-1) with increasing concentrations of 4HNE resulted in a concentration-dependent decrease in OGG-1 activity. Mass spectral analysis of trypsin digests of 4HNE-treated rOGG-1 identified 4HNE adducts on C28, C75, C163, H179, H237, C241, K249, H270, and H282. In silico molecular modeling of 4HNE-K249 OGG-1 and 4HNE-H270 OGG-1 mechanistically supported 4HNE-mediated enzymatic inhibition of OGG-1. In conclusion, these data support the hypothesis that inhibition of OGG-1 by direct modification by 4HNE contributes to decreased OGG-1 activity and increased 8OHG-modified DNA that are present in the diabetic heart.  相似文献   

19.
20.
The human Ogg1 glycosylase is responsible for repairing 8-oxo-7,8-dihydroguanine (8-oxoG) in both nuclear and mitochondrial DNA. Two distinct Ogg1 isoforms are present; α-Ogg1, which mainly localizes to the nucleus and β-Ogg1, which localizes only to mitochondria. We recently showed that mitochondria from ρ0 cells, which lack mitochondrial DNA, have similar 8-oxoG DNA glycosylase activity to that of wild-type cells. Here, we show that β-Ogg1 protein levels are ~80% reduced in ρ0 cells, suggesting β-Ogg1 is not responsible for 8-oxoG incision in mitochondria. Thus, we characterized the biochemical properties of recombinant β-Ogg1. Surprisingly, recombinant β-Ogg1 did not show any significant 8-oxoG DNA glycosylase activity in vitro. Since β-Ogg1 lacks the C-terminal αO helix present in α-Ogg1, we generated mutant proteins with various amino acid substitutions in this domain. Of the seven amino acid positions substituted (317–323), we identified Val-317 as a novel critical residue for 8-oxoG binding and incision. Our results suggest that the αO helix is absolutely necessary for 8-oxoG DNA glycosylase activity, and thus its absence may explain why β-Ogg1 does not catalyze 8-oxoG incision in vitro. Western blot analysis revealed the presence of significant amounts of α-Ogg1 in human mitochondria. Together with previous localization studies in vivo, this suggests that α-Ogg1 protein may provide the 8-oxoG DNA glycosylase activity for the repair of these lesions in human mitochondrial DNA. β-Ogg1 may play a novel role in human mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号