首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Swanson JA  Tu JK  Ogawa J  Sanga R  Fisher RF  Long SR 《Genetics》1987,117(2):181-189
Rhizobium meliloti Nod- mutant WL131, a derivative of wild-type strain 102F51, was complemented by a clone bank of wild-type R. meliloti 1021 DNA, and clone pRmJT5 was recovered. Transfer of pRmJT5 conferred alfalfa nodulation on other Rhizobium species, indicating a role in host range determination for pRmJT5. Mutagenesis of pRmJT5 revealed several segments in which transposon insertion causes delay in nodulation, and/or marked reduction of the number of nodules formed on host alfalfa plants. The set of mutants indicated five regions in which nod genes are located; one mutant, nod-216, is located in a region not previously reported to encode a nodulation gene. Other mutant phenotypes correlated with the positions of open reading frames for nodH, nodF and nodE , and with a 2.2-kb EcoRI fragment. A mutant in nodG had no altered phenotype in this strain. One nodulation mutant was shown to be a large deletion of the common nod gene region. We present a discussion comparing the various studies made on this extended nod gene region.  相似文献   

2.
3.
Transfer of an IncP plasmid carrying the Rhizobium meliloti nodFE, nodG, and nodH genes to Rhizobium trifolii enabled R. trifolii to nodulate alfalfa (Medicago sativa), the normal host of R. meliloti. Using transposon Tn5-linked mutations and in vitro-constructed deletions of the R. meliloti nodFE, nodG, and nodH genes, we showed that R. meliloti nodH was required for R. trifolii to elicit both root hair curling and nodule initiation on alfalfa and that nodH, nodFE, and nodG were required for R. trifolii to elicit infection threads in alfalfa root hairs. Interestingly, the transfer of the R. meliloti nodFE, nodG, and nodH genes to R. trifolii prevented R. trifolii from infecting and nodulating its normal host, white clover (Trifolium repens). Experiments with the mutated R. meliloti nodH, nodF, nodE, and nodG genes demonstrated that nodH, nodF, nodE, and possibly nodG have an additive effect in blocking infection and nodulation of clover.  相似文献   

4.
Nodulation of Medicago sativa (alfalfa) is known to be restricted to Sinorhizobium meliloti and a few other rhizobia that include the poorly characterized isolates related to Rhizobium sp. strain Or191. Distinctive features of the symbiosis between alfalfa and S. meliloti are the marked specificity from the plant to the bacteria and the strict requirement for the presence of sulfated lipochitooligosaccharides (Nod factors [NFs]) at its reducing end. Here, we present evidence of the presence of a functional nodH-encoded NF sulfotransferase in the Or191-like rhizobia. The nodH gene, present in single copy, maps to a high molecular weight megaplasmid. As in S. meliloti, a nodF homolog was identified immediately upstream of nodH that was transcribed in the opposite direction (local synteny). This novel nodH ortholog was cloned and shown to restore both NF sulfation and the Nif+Fix+ phenotypes when introduced into an S. meliloti nodH mutant. Unexpectedly, however, nodH disruption in the Or191-like bacteria did not abolish their ability to nodulate alfalfa, resulting instead in a severely delayed nodulation. In agreement with evidence from other authors, the nodH sequence analysis strongly supports the idea that the Or191-like rhizobia most likely represent a genetic mosaic resulting from the horizontal transfer of symbiotic genes from a sinorhizobial megaplasmid to a not yet clearly identified ancestor.  相似文献   

5.
The symbiosis between Rhizobium and legumes is highly specific. For example, R. meliloti elicits the formation of root nodules on alfalfa and not on vetch. We recently reported that R. meliloti nodulation (nod) genes determine the production of acylated and sulfated glucosamine oligosaccharide signals. We now show that the biochemical function of the major host-range genes, nodH and nodPQ, is to specify the 6-O-sulfation of the reducing terminal glucosamine. Purified Nod factors (sulfated or not) from nodH+ or nodH- strains exhibited the same plant specificity in a variety of bioassays (root hair deformations, nodulation, changes in root morphology) as the bacterial cells from which they were purified. These results provide strong evidence that the molecular mechanism by which the nodH and nodPQ genes mediate host specificity is by determining the sulfation of the extracellular Nod signals.  相似文献   

6.
To analyse the regulation of the nodulation (nod) genes of Rhizobium meliloti RCR2011 we have isolated lacZ gene fusions to a number of common, host-range and regulatory nod genes, using the mini-Mu-lac bacteriophage transposon MudII1734. Common (nodA, nodC, nod region IIa) and host-range (nodE, nodG, nodH) genes were found to be regulated similarly. They were activated (i) by the regulatory nodD1 gene in the presence of flavones such as chrysoeriol, luteolin and 7,3',4'-trihydroxyflavone, (ii) by nodD2 in the presence of alfalfa root exudate but not with the NodD1-activating flavones, and (iii) by the regulatory genes syrM-nodD3 even in the absence of plant inducers. Thus common and host-range nod genes belong to the same regulon. In contrast to the nodD1 gene, the regulatory nodD3 gene was not expressed constitutively and exhibited a complex regulation. It required syrM for expression, was activated by nodD1 in the presence of luteolin and was positively autoregulated.  相似文献   

7.
A 6 kb DNA segment of the R. meliloti 2011 pSym megaplasmid, which contains genes controlling host specificity of root hair infection and of nodulation, was cloned and sequenced. The DNA sequence analysis, in conjunction with previous genetic data, allowed identification of four nod genes designated as E, F, G and H. nodH is divergently transcribed with respect to nodFE and nodG. A conserved nucleotide sequence was found around 200 bp upstream of the translation start of nodF, nodH and nodA. This sequence is also present upstream of common nodA and species specific nodF genes of other Rhizobium species. The predicted protein products of nodF and nodG show homology with acyl carrier protein and ribitol dehydrogenase, respectively. The nodH product contains a rare sequence of four contiguous proline residues. Comparison with the nod gene products of R. leguminosarum shows that species specific nodFE products are as well conserved as those of common nodABC and nodD genes.  相似文献   

8.
The Rhizobium meliloti nodH gene is involved in determining host range specificity. By comparison with the wild-type strain, NodH mutants exhibit a change in host specificity. That is, although NodH mutants lose the ability to elicit root hair curling (Hac-), infection threads (Inf-), and nodule meristem formation (Nod-) on the homologous host alfalfa, they gain the ability to be Hac+ Inf+ Nod+ on a nonhomologous host such as common vetch. Using root hair deformation (Had) bioassays on alfalfa and vetch, we have demonstrated that sterile supernatant solutions of R. meliloti cultures, in which the nod genes had been induced by the plant flavone luteolin, contained symbiotic extracellular signals. The wild-type strain produced at least one Had signal active on alfalfa (HadA). The NodH- mutants did not produce this signal but produced at least one factor active on vetch (HadV). Mutants altered in the common nodABC genes produced neither of the Had factors. This result suggests that the nodABC operon determines the production of a common symbiotic factor which is modified by the NodH product into an alfalfa-specific signal. An absolute correlation was observed between the specificity of the symbiotic behavior of rhizobial cells and the Had specificity of their sterile filtrates. This indicates that the R. meliloti nodH gene determines host range by helping to mediate the production of a specific extracellular signal.  相似文献   

9.
Infection of alfalfa by the soil bacterium Rhizobium meliloti proceeds by deformation of root hairs and bacterial invasion of host tissue by way of an infection thread. We studied an 8.7-kilobase (kb) segment of the R. meliloti megaplasmid, which contains genes required for infection. Site-directed Tn5 mutagenesis was used to examine this fragment for nodulation genes. A total of 81 R. meliloti strains with mapped Tn5 insertions in the 8.7-kb fragment were evaluated for nodulation phenotype on alfalfa plants; 39 of the insertions defined a 3.5-kb segment containing nodulation functions. Of these 39 mutants, 37 were completely nodulation deficient (Nod-), and 2 at the extreme nif-distal end were leaky Nod-. Complementation analysis was performed by inoculating plants with strains carrying a genomic Tn5 at one location and a plasmid-borne Tn5 at another location in the 3.5-kb nodulation segment. Mutations near the right border of the fragment behaved as two distinct complementation groups. The segment in which these mutations are located was analyzed by DNA sequencing. Several open reading frames were found in this region, but the one most likely to function is 1,206 bases long, reading from left to right (nif distal to proximal) and spanning both mutation groups. The genetic behavior of this segment may be due either to the gene product having two functional domains or to a recombinational hot spot between the apparent complementation groups.  相似文献   

10.
11.
The role of the hsnD (nodH) gene in the determination of the host-specific nodulation ability of Rhizobium meliloti was studied by expressing the common nodulation genes (nodABC) with or without the hsnD gene in Escherichia coli and testing for biological activity on various leguminous plants. In this way, four categories of plants were established. Upon infection with E. coli carrying the nodABC construct, root hair deformation (Had) was detected on clovers while the hsnD gene was additionally needed for the elicitation of the same response on alfalfa and sweet clover. A weak root hair deformation was seen on siratro by inoculation with E. coli harbouring the nodABC genes and was highly increased when hsnD was also introduced. Cowpea and Desmodium did not respond to any of the E. coli strains constructed. Exudates or cytosolicfractions of the respective E. coli derivatives elicited the same root hair deformation as the intact bacteria. These data indicate that not only the nodABC gene products but also the hsnD product are involved in the synthesis of Had factors. Subclones expressing only the nodA, nodB, or nodC genes or the same genes in pairs (nodAB, nodBC, nodAC) did not provide a compound with activity comparable to the NodABC factor, suggesting that all three genes are required for the production of the Had factor which is active on clover. Coinoculation of alfalfa plants with two strains of E. coli, one carrying the nodABC genes and the other expressing only hsnD, or combining exudates or cytosolic fractions from these strains did not result in root hair deformation on alfalfa. These data indicate that the HsnD protein itself or its product is not an additional alfalfa-specific extracellular signal but more likely is enzymatically involved in the modification of the basic compound determined by the nodABC genes.  相似文献   

12.
In Rhizobium meliloti 2011 nodulation genes (nod) required to nodulate specifically alfalfa are located on a pSym megaplasmid. Nod- derivatives carrying large pSym deletions were isolated. By complementation of these strains with in vivo- and in vitro-constructed episomes containing pSym of sequences and introduction of these episomes into Agrobacterium tumefaciens, we show (i) that from a region of pSym of about 360 kilobases, genes required for specific alfalfa nodulation are clustered in a DNA fragment of less than 30 kilobases and (ii) that a nod region located between nifHDK and the common nod genes is absolutely required for alfalfa nodulation and controls the specificity of root hair curling and nodule organogenesis initiation.  相似文献   

13.
Summary Rhizobium nodulation genes can produce active extracellular signals for legume nodulation. The R. meliloti host-range nodH gene has been postulated to mediate the transfer of a sulfate to a modified lipo-oligosaccharide, which in its sulfated form is a specific nodulation factor for alfalfa (Medicago sativa L.). We found that alfalfa was capable of effective nodulation with signal-defective and non-nodulating nodH mutants (Nnr) defining a novel gene-for-gene interaction that conditions nodulation. Bacteria-free nodules that formed spontaneously at about a 3–5% rate in unselected seed populations of alfalfa cv Vernal in the total absence of Rhizobium (Nar) exhibited all the histological, regulatory and ontogenetic characteristics of alfalfa nodules. Inoculation of such populations with nodH mutants, but not with nodA or nodC mutants, produced a four- to five-fold increase in the percentage of nodulated plants. Some 10–25% of these nodulated plants formed normal pink nitrogen-fixing nodules instead of white empty nodules. About 70% of the S1 progeny of such Nnr+ plants retained the parental phenotype; these plants were also able to form nodules in the absence of Rhizobium. If selected Nar+ plants were self-pollinated almost the entire progeny exhibited the parental Nar+ phenotype. Segregation analysis of S1 and S2 progeny from selected Nar+ plants suggests that the Nar character is monogenic dominant and that the nodulation phenotype is controlled by a gene dose effect. The inoculation of different S1 Nar+ progeny with nodH mutant bacteria gave only empty non-fixing nodules. Our results indicate that certain alfalfa genotypes can be selected for suppression of the non-nodulation phenotype of nodH mutants. The fact that the Nnr plant phenotype behaved as a dominant genetic trait and that it directly correlated with the ability of the selected plants to form nodules in the absence of Rhizobium suggests that the interaction of plant and bacterial alleles occurs early during signal transduction through the alteration of a signal reception component of the plant so that it responds to putative signal precursors.Abbreviations Nara Nodulation in the absence of Rhizobium - Nara nodulation with non-nodulating Rhizobium  相似文献   

14.
Sinorhizobium meliloti is a gram-negative soil bacterium, capable of establishing a nitrogen-fixing symbiosis with its legume host, alfalfa (Medicago sativa). Quorum sensing plays a crucial role in this symbiosis, where it influences the nodulation process and the synthesis of the symbiotically important exopolysaccharide II (EPS II). S. meliloti has three quorum-sensing systems (Sin, Tra, and Mel) that use N-acyl homoserine lactones as their quorum-sensing signal molecule. Increasing evidence indicates that certain eukaryotic hosts involved in symbiotic or pathogenic relationships with gram-negative bacteria produce quorum-sensing-interfering (QSI) compounds that can cross-communicate with the bacterial quorum-sensing system. Our studies of alfalfa seed exudates suggested the presence of multiple signal molecules capable of interfering with quorum-sensing-regulated gene expression in different bacterial strains. In this work, we choose one of these QSI molecules (SWI) for further characterization. SWI inhibited violacein production, a phenotype that is regulated by quorum sensing in Chromobacterium violaceum. In addition, this signal molecule also inhibits the expression of the S. meliloti exp genes, responsible for the production of EPS II, a quorum-sensing-regulated phenotype. We identified this molecule as l-canavanine, an arginine analog, produced in large quantities by alfalfa and other legumes.  相似文献   

15.
Medicago laciniata (cut-leaf medic) is an annual medic that is highly nodulation specific, nodulating only with a restricted range of Sinorhizobium meliloti. e.g., strain 102L4, but not with most strains that nodulate Medicago sativa (alfalfa), e.g., strains RCR2011 and Rm41. Our aim was to identify and clone the S. meliloti 102L4 gene implicated in the specific nodulation of M. laciniata and to characterize the adjacent nodulation (nod) region. An 11-kb EcoRI DNA fragment from S. meliloti 102L4 was shown to complement strain RCR2011 for nodulation of M. laciniata. Nucleotide sequencing revealed that this fragment contained nodABCIJ genes whose overall arrangement was similar to those found in strains RCR2011 and Rm41, which do not nodulate M. laciniata. Data for Tn5 mutagenesis of the nodABCIJ region of strain 102L4 suggested that the nodC gene was involved in the specific nodulation of M. laciniata. Tn5 insertions in the nodIJ genes gave mutants with nodulation delay phenotypes on both M. laciniata and M. sativa. Only subclones of the 11-kb DNA fragment containing a functional nodC gene from strain 102L4 were able to complement strain RCR2011 for nodulation of M. laciniata. The practical implications of these findings are discussed in the context of the development of a specific M. sativa - S. meliloti combination that excludes competition for nodulation by bacterial competitors resident in soil.  相似文献   

16.
A pLAFR1 cosmid clone (pPP346) carrying the nodulation region of the symbiotic plasmid pRme41b was isolated from a gene library of Rhizobium meliloti 41 by direct complementation of a Nod- deletion mutant of R. meliloti. Agrobacterium tumefaciens and Rhizobium species containing pPP346 were able to form ineffective nodules on alfalfa. The 24-kilobase insert in pPP346 carries both the common nodulation genes and genes involved in host specificity of nodulation. It was shown that these two regions are essential and sufficient to determine the early events in nodulation. A new DNA region influencing the kinetics and efficiency of nodulation was also localized on the symbiotic megaplasmid at the right side of the nif genes.  相似文献   

17.
18.
Tn5-induced mutants of Rhizobium meliloti that require the amino acids isoleucine and valine for growth on minimal medium were studied. In one mutant, 1028, the defect is associated with an inability to induce nodules on alfalfa. The Tn5 mutation in 1028 is located in a chromosomal 5.5-kb EcoRI fragment. Complementation analysis with cloned DNA indicated that 2.0 kb of DNA from the 5.5-kb EcoRI fragment restored the wild-type phenotype in the Ilv- Nod- mutant. This region was further characterized by DNA sequence analysis and was shown to contain a coding sequence homologous to those for Escherichia coli IlvC and Saccharomyces cerevisiae Ilv5. Genes ilvC and ilv5 code for the enzyme acetohydroxy acid isomeroreductase (isomeroreductase), the second enzyme in the parallel pathways for the biosynthesis of isoleucine and valine. Enzymatic assays confirmed that strain 1028 was a mutant defective in isomeroreductase activity. In addition, it was shown that the ilvC genes of Rhizobium meliloti and E. coli are functionally equivalent. We demonstrated that in ilvC mutant 1028 the common nodulation genes nodABC are not activated by the inducer luteolin. E. coli ilvC complemented both defective properties (Ilv- and Nod-) found in mutant 1028. These findings demonstrate that R. meliloti requires an active isomeroreductase enzyme for successful nodulation of alfalfa.  相似文献   

19.
The soil bacterium Sinorhizobium meliloti establishes nitrogen-fixing symbiosis with its leguminous host plant, alfalfa, following a series of continuous signal exchanges. The complexity of the changes of alfalfa root structures during symbiosis and the amount of S. meliloti genes with unknown functions raised the possibility that more S. meliloti genes may be required for early stages of the symbiosis. A positive functional screen of the entire S. meliloti genome for symbiotic genes was carried out using a modified in vivo expression technology. A group of genes and putative genes were found to be expressed in early stages of the symbiosis, and 23 of them were alfalfa root exudate inducible. These 23 genes were further separated into two groups based on their responses to apigenin, a known nodulation (nod) gene inducer. The group of six genes not inducible by apigenin included the lsrA gene, which is essential for the symbiosis, and the dgkA gene, which is involved in the synthesis of cyclic beta-1,2-glucan required for the S. meliloti-alfalfa symbiosis. In the group of 17 apigenin-inducible genes, most have not been previously characterized in S. meliloti, and none of them belongs to the nod gene family. The identification of this large group of alfalfa root exudate-inducible S. meliloti genes suggests that the interactions in the early stages of the S. meliloti and alfalfa symbiosis could be complex and that further characterization of these genes will lead to a better understanding of the symbiosis.  相似文献   

20.
In Rhizobium meliloti , the genes required for nodulation of legume hosts are under the control of DNA regulatory sequences called nod boxes. In this paper, we have characterized three host-specific nodulation genes, which form a flavonoid-inducible operon down-stream of the nod box n5. The first gene of this operon is identical to the nodL gene identified by Baev and Kondorosi (1992) in R. meliloti strain AK631. The product of the second gene, NoeA, presents some homology with a methyl transferase. nodL mutants synthesize Nod factors lacking the O -acetate substituent. In contrast, in strains carrying a mutation in either noeA or noeB , no modification in Nod-factor structure or production could be detected. On particular hosts, such as Medicago littoralis , mutants of the n5 operon showed a very weak nodule-forming ability, associated with a drastic decrease in the number of infection threads, while nodulation of Medicago truncatula or Melilotus alba was not affected. Thus, nodL , noeA and noeB are host-specific nodulation genes. By using a gain-of-function approach, we showed that the presence of nodL , and hence of O -acetylated Nod factors, is a major prerequisite for confering the ability to nodulate alfalfa upon the heterologous bacterium Rhizobium tropici .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号