首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y Sang  G H Liang 《Génome》2000,43(5):918-922
The physical locations of the 18S-5.8S-26S rDNA sequences were examined in three sorghum species by fluorescence in situ hybridization (FISH) using biotin-labeled heterologous 18S-5.8S-26S rDNA probe (pTa71). Each 18S-5.8S-26S rDNA locus occurred at two sites on the chromosomes in Sorghum bicolor (2n = 20) and S. versicolor (2n = 10), but at four sites on the chromosomes of S. halepense (2n = 40) and the tetraploid S. versicolor (2n = 20). Positions of the rDNA loci varied from the interstitial to terminal position among the four accessions of the three sorghum species. The rDNA data are useful for investigation of chromosome evolution and phylogeny. This study excluded S. versicolor as the possible progenitor of S. bicolor.  相似文献   

2.
All Aloe taxa (~400 species) share a conserved bimodal karyotype with a basic genome of four large and three small submetacentric/acrocentric chromosomes. We investigated the physical organization of 18S-5.8S-26S and 5S ribosomal DNA (rDNA) using fluorescent in situ hybridization (FISH) to 13 Aloe species. The organization was compared with a phylogenetic tree of 28 species (including the 13 used for FISH) constructed by sequence analysis of the internal transcribed spacer (ITS) of 18S-5.8S-26S rDNA. The phylogeny showed little divergence within Aloe, although distinct, well-supported clades were found. FISH analysis of 5S rDNA distribution showed a similar interstitial location on a large chromosome in all species examined. In contrast, the distribution of 18S-5.8S-26S rDNA was variable, with differences in number, location, and size of loci found between species. Nevertheless, within well-supported clades, all species had the same organizational patterns. Thus, despite the striking stability of karyotype structure and location of 5S rDNA, the distribution of 18S-5.8S-26S rDNA is not so constrained and has clearly changed during Aloe speciation.  相似文献   

3.
The genomic constitution of Aegilops cylindrica Host (2n = 4x = 28, DcDcCcCc) was analyzed by C-banding, genomic in situ hybridization (GISH), and fluorescence in situ hybridization (FISH) using the DNA clones pSc119, pAs1, pTa71, and pTA794. The C-banding patterns of the Dc- and Cc-genome chromosomes of Ae. cylindrica are similar to those of D-and C-genome chromosomes of the diploid progenitor species Ae. tauschii Coss. and Ae. caudata L., respectively. These similarities permitted the genome allocation and identification of the homoeologous relationships of the Ae. cylindrica chromosomes. FISH analysis detected one major 18S-5.8S-25S rDNA locus in the short arm of chromosome 1Cc. Minor 18S-5.8S-25S rDNA loci were mapped in the short arms of 5Dc and 5Cc. 5S rDNA loci were identified in the short arm of chromosomes 1Cc, 5Dc, 5Cc, and 1Dc. GISH analysis detected intergenomic translocation in three of the five Ae. cylindrica accessions. The breakpoints in all translocations were non-centromeric with similar-sized segment exchanges.  相似文献   

4.
A digoxigenin-labelled 5S rDNA probe (pTa-794) and a rhodamine-labelled 18S-5.8S-25S rDNA probe (pTa71) were used for double-target in-situ hybridization to root-tip metaphase, prophase and interphase chromosomes of cultivated beet,Beta vulgaris L. After in-situ hybridization with the 18S-5.8S-25S rDNA probe, one major pair of sites was detected which corresponded to the secondary constriction at the end of the short arm of chromosome 1. The two rDNA chromosomes were often associated and the loci only contracted in late metaphase. In the majority of the metaphase plates analyzed, we found a single additional minor hybridization site with pTa71. One pair of 5S rRNA gene clusters was localized near the centromere on the short arm of one of the three largest chromosomes which does not carry the 18S-5.8S-25S genes. Because of the difficulties in distinguishing the very similarly-sizedB. vulgaris chromosomes in metaphase preparations, the 5S and the 18S-5.8S-25S rRNA genes can be used as markers for chromosome identification. TwoXbaI fragments (pXV1 and pXV2), comprising the 5S ribosomal RNA gene and the adjacent intergenic spacer, were isolated. The two 5S rDNA repeats were 349 bp and 351 bp long, showing considerable sequence variation in the intergenic spacer. The use of fluorescent in-situ hybridization, complemented by molecular data, for gene mapping and for integrating genetic and physical maps of beet species is discussed.  相似文献   

5.
Fluorescent in situ hybridization (FISH) was applied to diploid and tetraploid subspecies of alfalfa (Medicago sativa L.) to investigate the distribution of rRNA genes and to utilize the sites of 18S-5.8S-25S rDNA and 5S rDNA sequences as markers for studying the genome evolution within the species. Medicago glomerata Balb., the species considered to be the ancestor of alfalfa, was included in this study in order to obtain more information on the phylogenetics of alfalfa. Simultaneous in situ hybridization was performed with the probes pTa71 and pXVI labeled with digoxigenin and biotin, respectively. In the diploid taxa, M. glomerata, M. sativa ssp. coerulea Schmalh and ssp. falcata Arcangeli, the 18S-5.8S-25S rDNA sequences were mapped to two sites corresponding to the secondary constrictions of the nucleolar chromosome pair, while 5S rDNA appeared to be distributed in two pairs of sites. Chromosomes carrying 5S loci could be distinguished on the basis of their morphological characteristics. The number of rDNA sites detected in the tetraploid M. sativa ssp. falcata and ssp. sativa (L.) L. & L. were twice the number found in the respective diploid ssp. falcata and ssp. coerulea. The results of this study show that the distribution of ribosomal genes was maintained during the evolutionary steps from the primitive diploid to the cultivated alfalfa. Modifications of the number of rRNA loci were not observed. The importance of in situ hybridization for improving karyotype analysis in M. sativa L. is discussed.  相似文献   

6.
Hybridization sites of an rDNA probe coding for the 18S, 5.8S, and 26S genes were detected on lentil and chickpea somatic chromosomes using fluorescent in situ hybridization. One pair of hybridization sites was detected in cultivated lentil Lens culinaris L. and wild lentil L. orientalis (Boiss.) Hand.-Mazz., and in both the hybridization sites of the ribosomal probe correspond to the secondary constriction. In cultivated chickpea Cicer arietinum three pairs of rDNA sites were detected and in the wild C. reticulatum two pairs were detected. The karyotypic relationship between the cultivated C. arietinum and its wild progenitor C. reticulatum is discussed.  相似文献   

7.
Mapping of rDNA sites on the chromosomes of four diploid and two tetraploid species of Eleusine has provided valuable information on genome relationship between the species. Presence of 18S-5.8S-26S rDNA on the largest pair of the chromosomes, location of 5S rDNA at four sites on two pairs of chromosomes and presence of 18S-5.8S-26S and 5S rDNA at same location on one pair of chromosomes have clearly differentiated E. multiflora from rest of the species of Eleusine. The two tetraploid species, E. coracana and E. africana have the same number of 18S-5.8S-26S and 5S rDNA sites and located at similar position on the chromosomes. Diploid species, E. indica, E. floccifolia and E. tristachya have the same 18S-5.8S-26S sites and location on the chromosomes which also resembled with the two pairs of 18S-5.8S-26S rDNA locations in tetraploid species, E. coracana and E. africana. The 5S rDNA sites on chromosomes of E. indica and E. floccifolia were also comparable to the 5S rDNA sites of E. africana and E. coracana. The similarity of the rDNA sites and their location on chromosomes in the three diploid and two polyploid species also supports the view that genome donors to tetraploid species may be from these diploid species.  相似文献   

8.
The chromosomal locations of the 18S-5.8S-26S rDNA and 5S rDNA sequences were examined in four cytotypes of Ranunculus silerifolius (the Matsuyama, Mugi, Otaru, and Karatsu types) using fluorescence in situ hybridization (FISH). Using the 18S-5.8S-26S rDNA probe, one pair of probe hybridization sites was detected by FISH in the interstitial region corresponding to the secondary constriction on the short arm of a satellite chromosome (chromosome pair 6) in all four karyotypes. FISH using 5S rDNA identified one pair of sites. The 5S rDNA locus was on different chromosomes in the four karyotypes: in the interstitial region of the short arm of the largest metacentric chromosome (chromosome pair 1) in the Matsuyama type, in the interstitial region of the short arm of the subtelocentric chromosome (pair 2) in the Mugi and Otaru types, and in the interstitial region of the short arm of the metacentric chromosome (pair 2) in the Karatsu type. This physical mapping of the 5S rDNA provides valuable information about karyotype evolution in R. silerifolius. Possible mechanisms of chromosome evolution are discussed.  相似文献   

9.
Fluorescent in situ hybridisation (FISH) was used to determine the number and distribution of the 18S-25S and 5S rDNA sites on mitotic chromosomes of 6 wild and 2 edible diploid (2n=22) accessions belonging to the two banana species, Musa acuminata and M. balbisiana. FISH with the 18S-25S probe resulted in signals on one pair of chromosomes, the position of signals corresponded to the secondary constriction at the end of a short arm. The intensity of labelling was different between the homologues and the larger site corresponded to a larger secondary constriction. This labelling pattern was observed consistently in all genotypes. On the other hand, differences in the number of 5S sites were observed between the accessions. While in some of the wild seeded species, the 5S rDNA was localised on two pairs of chromosomes, hybridisation signals appeared on three pairs of chromosomes in other wild accessions. Quite unexpectedly, only five sites of 5S rDNA were reproducibly observed in the two vegetatively propagated diploid edible cultivars, Pisang Mas and Niyarma Yik, evidence for structural heterozygosity. A dual colour FISH showed that in all accessions, the satellite chromosomes carrying the 18S-25S loci did not carry the 5S loci. The results demonstrate that molecular cytogenetics can be applied to Musa and that physical cytogenetic maps can be generated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
A Cuadrado  N Jouve  C Ceoloni 《Génome》1995,38(6):1061-1069
The molecular characterization of heterochromatin in six lines of rye has been performed using fluorescence in situ hybridization (FISH). The highly repetitive rye DNA sequences pSc 119.2, pSc74, and pSc34, and the probes pTa71 and pSc794 containing the 25S-5.8S-18S rDNA (NOR) and the 5S rDNA multigene families, respectively, were used. This allowed the individual identification of all seven rye chromosomes and most chromosome arms in all lines. All varieties showed similar but not identical patterns. A standard in situ hybridization map was constructed following the nomenclature system recommended for C-bands. All FISH sites observed appeared to correspond well with C-band locations, but not all C-banding sites coincided with hybridization sites of the repetitive DNA probes used. Quantitative and qualitative differences between different varieties were found for in situ hybridization response at corresponding sites. Variation between plants and even between homologous chromosomes of the same plant was found in open-pollinated lines. In inbred lines, the in situ pattern of the homologues was practically identical and no variation between plants was detected. The observed quantitative and qualitative differences are consistent with a corresponding variation for C-bands detected both within and between cultivars.  相似文献   

11.
De Carvalho R  Guerra M 《Hereditas》2002,136(2):159-168
Thirty-nine cultivars of cassava and eight related wild species of Manihot were analyzed in this work for number, morphology and size of chromosomes, prophase condensation pattern and the structure of the interphase nucleus. In four accessions, the chromosome size was measured and in some others, the number of secondary constrictions, meiotic behavior, C-band pattern, CMA/DAPI bands, nucleoli number and the location of 5S and 18S-5.8S-28S rDNA sites were also observed. All investigated accessions showed a similar karyotype with 2n = 36, small metacentric to submetacentric chromosomes. Two pairs of terminal secondary constrictions were observed in the chromosome complement of each accession except Manihot sp. 1, which presented two proximal secondary constrictions. The prophase chromosome condensation pattern was proximal and the interphase nuclei structure was areticulate to semi-reticulate. The meiosis, investigated in seven cultivars and four wild species, was regular, displaying 18 bivalents. C-banding revealed heterochromatin in 9 or 10 chromosomes. The analysis with fluorochromes frequently showed four chromosome pairs with a single CMA+ terminal or subterminal band and a few other chromosomes with DAPI+ unstable bands. Six 45S rDNA sites were revealed by FISH, which seemed to colocalize with six CMA+ bands. Only one chromosome pair presented a 5S rDNA site. The maximum nucleoli number observed per nucleus was also six. These data suggest that all Manihot species present a very similar chromosome complement.  相似文献   

12.
Ribosomal DNAs: an exception to the conservation of gene order in rice genomes   总被引:18,自引:0,他引:18  
rDNA (18S-5.8S-25S rDNA) and 5S rDNA loci were visualized on the chromosomes of six species of the genus Oryza by fluorescence in situ hybridization (FISH) and the labeled rice chromosomes were identified based on their condensation patterns. As a result, the chromosomes harboring rDNA and/or 5S rDNA loci were determined in the complement for all the known rice genomes. Variation in the location of the rDNA loci indicated the transpositional nature of the rDNAs in the genus Oryza, as also suggested in Triticeae and Allium. Comparative analysis of the locations of rDNA loci among rice, maize and wheat revealed that variability in the physical location of the rDNA loci was characteristic of the genus Oryza and also of the genera of Gramineae. This variability in the location of the rDNA loci between evolutionarily related species is in sharp contrast to the conservation of the general order of genes in their genomes.  相似文献   

13.
Nkongolo KK  Kim NS  Michael P 《Hereditas》2004,140(1):70-78
Sequences homologous to the pKFJ660 probe, a fragment of DNA derived from the rice blast fungus (Magnaporthe grisea) carrying TC/AG repeat microsatellite sequences and 30 bp direct repeats were identified in the genome of Picea (spruce) and Pinus (pine) species by fluorescence in situ hybridization (FISH) and slot blot analyses. Slot blot analysis using the pKFJ660 probe revealed hybridization signals with genomic DNAs from various pine and spruce species. Further analyses indicated that the copy number of the (AG)30 motif was higher than 5 x 10(4) per plant genome for all plant samples tested, but the copy number of the sequences homologous to the whole pKFJ660 probe varies considerably among the 25 plant species tested. In situ hybridization of metaphase chromosomes from Pinus resinosa, P. banksiana and P. strobus showed the presence of sequences homologous to this probe on several chromosomes in a dispersed pattern. Major signals were observed on a few chromosomes indicating that some of these sequences are clustered in specific genomic locations. The locations of these repeats were compared to those of 18S-5.8S-26S rDNA in pine species. Chromosomal distribution of 18S-5.8S-26S rDNA varied among the three pine species (P. resinosa, P. banksiana and P. strobus) studied. Ribosomal DNA (rDNA) sites were identified on 14 to 20 chromosomes in these pine species.  相似文献   

14.
The tetraploid species Avena agadiriana that was first described in 1985 is distributed on the Atlantic coastal strip south of Casablanca in Morocco. Five accessions of this species (M55, M59, M60, M71 and M74) were compared by using FISH and RFLP analysis of 18S-5.8S-26S rDNA. The FISH data indicated that three pairs of major hybridization sites of the rDNA were located on satellite chromosomes in accessions M55, M59, M60 and M71. Accession M74, however, had only two pairs of major sites of hybridization. A pair of the major rDNA sites in M71 was very small and closely located at the terminal region of Nor-ST (Nucleolar organizing region of subtelocentrics) chromosomes. RFLP analysis of the rDNA sequence fragments identified differences among M55, M71 and M74, whilst M59 and M60 were the same with regard to the four restriction enzyme fragments utilized. M74 always lost single rDNA fragments in four restriction enzyme digests. The RFLP data made it possible to distinguish M55 from M59 and M60 in the northern Haut-Atlas Mountains group. A unique 20 kb EcoRI fragment characterized M71. Thus, a combination of FISH and RFLP analysis of rDNA was a good tool for inferring intraspecific evolutionary relationship of A. agadiriana.  相似文献   

15.
Karyotype analysis provides insights into genome organization at the chromosome level and into chromosome evolution. Chromosomes were marked for comparative karyotype analysis using FISH localization of rDNA genes for the first time in Apioideae species including taxa of economic importance and several wild Daucus relatives. Interestingly, Daucus species did not vary in number of rDNA loci despite variation in chromosome number (2n = 18, 20, 22, and 44) and previous publications suggesting multiple loci. All had single loci for both 5S and 18S-25S (nucleolar organizing region) rDNA, located on two different chromosome pairs. The 5S rDNA was on the short arm of a metacentric chromosome pair in D. crinitus (2n = 22) and D. glochidiatus (2n = 44) and on the long arm of a metacentric pair in other Daucus species, suggesting possible rearrangement of this chromosome. For other Apiaceae, from two (Apium graveolens), to three (Orlaya grandiflora), to four (Cuminum cyminum) chromosomes had 18S-25S rDNA sites. Variability for number and position of the 5S rDNA was also observed. FISH signals enabled us to identify 20-40% of the chromosome complement among species examined. Comparative karyotype analysis provides insights into the fundamental aspects of chromosome evolution in Daucus.  相似文献   

16.
A Cuadrado  N Jouve 《Génome》1994,37(4):709-712
An analysis of the presence and distribution of the rye and wheat repeated sequences in rye B chromosomes was carried out by fluorescent in situ hybridization. Probes used consisted of three highly repetitive sequences from rye (pSc119.2, pSc74, and pSc34) and the multigene families for the 25S-5.8S-18S and 5S rDNA from wheat (pTa71 and pTa794, respectively). pSc74 and pSc119.2 showed hybridization signals in the telomeric regions of rye B chromosomes. The remaining DNA clones did not hybridize to the B chromosomes.  相似文献   

17.
BACKGROUND AND AIMS: The Brassicaceae family encompasses numerous species of great agronomic importance, belonging to such genera, as Brassica, Raphanus, Sinapis and Armoracia. Many of them are characterized by extensive intraspecific diversity of phenotypes. The present study focuses on the polymorphism of number, appearance and chromosomal localization of ribosomal DNA (rDNA) sites and, when possible, in relation to polyploidy, in 42 accessions of Brassica species and ten accessions of Diplotaxis, Eruca, Raphanus and Sinapis species. METHODS: Chromosomal localization of ribosomal DNA was carried out using dual colour fluorescence in situ hybridization (FISH) with 5S rDNA and 25S rDNA sequences as probes on enzymatically digested root-tip meristematic cells. KEY RESULTS: Loci for 5S and 18S-5.8S-25S rDNA were determined for the first time in six taxa, and previously unreported rDNA constellations were described in an additional 12 accessions. FISH revealed frequent polymorphism in number, appearance and chromosomal localization of both 5S and 25S rDNA sites. This phenomenon was most commonly observed in the A genome of Brassica, where it involves exclusively pericentromeric sites of 5S and 25S rRNA genes. The intraspecific polymorphism was between subspecies/varieties or within a variety or cultivar (i.e. interindividual). CONCLUSIONS: The number of rDNA sites can differ up to 5-fold in species with the same chromosome number. In addition to the eight previously reported chromosomal types with ribosomal genes, three new variant types are described. The extent of polymorphism is genome dependent. Comparing the A, B and C genomes revealed the highest rDNA polymorphism in the A genome. The loci carrying presumably inactive ribosomal RNA genes are particularly prone to polymorphism. It can also be concluded that there is no obvious polyploidization-related tendency to reduce the number of ribosomal DNA loci in the allotetraploid species, when compared with their putative diploid progenitors. The observed differences are rather caused by the prevailing polymorphism within the diploids and allotetraploids. This would make it difficult to predict expected numbers of rDNA loci in natural polyploids.  相似文献   

18.
Salix viminalis L. (2n?=?38) is a diploid dicot species belonging to the Salix genus of the Salicaceae family. This short-rotation woody crop is one of the most important renewable bioenergy resources worldwide. In breeding for high biomass productivity, limited knowledge is available on the molecular cytogenetics of willow, which could be combined with genetic linkage mapping. The present paper describes the adaptation of a fluorescence in situ hybridisation (FISH) protocol as a new approach to analyse the genomic constitution of Salix viminalis using the heterologous DNA clones pSc119.2, pTa71, pTa794, pAs1, Afa-family, pAl1, HT100.3, ZCF1 and the GAA microsatellite marker. Three of the nine probes showed unambiguous signals on the metaphase chromosomes. FISH analysis with the pTa71 probe detected one major 18S-5.8S-26S rDNA locus on the short arm of one chromosome pair; however, the pTa794 rDNA site was not visible. One chromosome pair showed a distinct signal around the centromeric region after FISH with the telomere-specific DNA clone HT100.3. Two chromosome pairs were found to have pAs1 FISH signals, which represent a D-genome-specific insert from Aegilops tauschii. Based on the FISH study, a set of chromosomes with characteristic patterns is presented, which could be used to establish the karyotype of willow species.  相似文献   

19.
Identification of individual chromosomes in Lupinus is not possible due to gradient in size and similar morphology. To overcome this problem, molecular cytogenetics was developed for Lupinus. As an initial step in karyotype analysis, fluorescent in situ hybridization (FISH) was performed to determine genomic distribution of rRNA genes in L. hispanicus, L. luteus and L. × hispanicoluteus. It was found that all three diploid species posses two chromosome pairs carrying 18S-5.8S-25S rDNA and one chromosome pair carrying 5S rDNA. The use of probes for rDNA permitted unambiguous identification of three different pairs of chromosomes and revealed conservation of the number of rDNA loci among the three species. The study represents the first step in physical mapping of Lupinus genome through FISH by providing distinct chromosome landmarks. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Three repeated DNA sequences (rDNA 5S, 18S-5.8S-26S and telomeric repeats) were localised in the genomes ofLobelia brasiliensis andL. imperialis var.kanitzii (subg.Tupa), both with 2n = 28, by fluorescence in situ hybridization (FISH). The results were used to analyse the genomic relationship between the species. With probe pTa71, the karyotypes of these species showed only one NOR site. Probe pTa794, which contains 5S rDNA, demonstrated differences between the species. Telomeric sequences, studied with probe pLT11, were not detected in ectopic sites, but different telomeres showed signals of varying intensity. Based on the results obtained, considerations are made on karyotype evolution inLobelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号