首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we propose a classification of the amphipathic helical repeats occurring in the plasma apolipoprotein sequences. It is based upon the calculation of the molecular hydrophobicity potential around the helical segments. The repeats were identified using a new autocorrelation matrix, based upon similarities of hydrophobic and hydrophilic properties of the amino acid residues within the apolipoprotein sequences. The helices were constructed by molecular modeling, the molecular hydrophobicity potential was calculated, and isopotential contour lines drawn around the helices yielded a three-dimensional visualization of the hydrophobicity potential. Two classes of apolipoproteins could be differentiated by comparing the hydrophobic angles obtained by projection of the isopotential contour lines on a plane perpendicular to the long axis of the helix. The isopotential contour lines around apo AI, AIV, and E are more hydrophilic than hydrophobic, whereas they are of similar intensity for apo AII, CI, and CIII. In both cases discoidal lipid-protein complexes are generated, with the amphipathic helices around the edge of the lipid core. The long axis of the helices is oriented parallel to the phospholipid acyl chains and the hydrophilic side of the helix toward the aqueous phase. As a result of the differences in hydrophobicity potential, the contact between the hydrophobic side of the helices and the phospholipid acyl chains is larger for apo AII, CI, and CIII than for the other apolipoproteins. This might account for the greater stability of the discoidal complexes generated between phospholipids and these apoproteins.  相似文献   

2.
We studied the substrate properties of the phospholipid-cholesterol-apolipoprotein complexes generated with apo A-I, apo A-I-CNBr fragments, apo A-II and apo A-IV for cholesterol esterification by the enzyme lecithin-cholesterol acyltransferase (LCAT). The kinetic parameters determined with the different complexes as substrates, showed that the complexes containing apo A-I and apo A-IV were about 40-times more efficient than those generated with the apo A-I fragments. In this system, the substrates containing apo A-II had the lowest efficiency. In spite of the differences in the kinetic parameters observed with the various apolipoprotein-lipid complexes, the cholesterol inserted in the complexes was esterified for more than 90% after 24 h in all systems studied. Based upon the results of the kinetic experiments, we followed the transformation of the discoidal complexes into spherical particles, due to the formation of a cholesteryl esters core, in the presence of low-density lipoproteins as an external source of cholesterol. We observed the formation of spherical particles by electron microscopy, after incubation of the discoidal complexes with LCAT for 24 h. The average percentage of cholesteryl esters in the converted particles was around 60% of the total cholesterol, varying between 40% for the apo A-I-CNBr-1-DPPC-cholesterol complex and up to 86% for the apo A-I-DPPC-cholesterol complex. The secondary structure of protein in the complexes was not significantly modified. However, the phospholipid phase transition disappeared, together with the parallel orientation of the phospholipid acyl chains with the helical segments of the apolipoproteins, as the phospholipids are organized in a monolayer at the surface of the spheres.  相似文献   

3.
The structure, composition, and physico-chemical properties of lipid-protein complexes generated between dimyristoylphosphatidylcholine (DPMC) and the CNBr fragments of human apoA-I were studied. The fragments were separated by high performance liquid chromatography and purified on a reversed-phase column. The complexes with DMPC were isolated on a Superose column; their dimensions were obtained by gradient gel electrophoresis and by electron microscopy. The secondary structure of the protein in the complexes was studied both by circular dichroism and by attenuated total reflection infrared spectroscopy. The fragments 1 and 4 of apoA-I, containing, respectively, two and three amphipathic helices, recombined with the phospholipid to generate discoidal particles with sizes similar to that of apoA-I- and apoA-II-DMPC complexes. The infrared measurements indicated that in all complexes the apolipoprotein helical segments were oriented parallel to the phospholipid acyl chains and that the protein was located around the edges of the discs. Computer modelling of the complexes based on energy minimization techniques proposed a model for these particles in agreement with the dimensions measured experimentally. In conclusion, we propose that apoA-I and its longest CNBr fragments are able to generate discoidal particles with DMPC, with apolipoprotein helical segments oriented parallel to the acyl chains of the phospholipids.  相似文献   

4.
Models for the binding of the 200-residue carboxy-terminal domain of two mutants of apolipoprotein A-I (apo A-I), apo A-I(R173C)(Milano) and apo A-I(R151C)(Paris), to lipid in discoidal high-density lipoprotein (HDL) particles are presented. In both models, two monomers of the mutant apo A-I molecule bind to lipid in an antiparallel manner, with the long axes of their helical repeats running perpendicular to the normal of the lipid bilayer to form a single disulfide-linked homodimer. The overall structures of the models of these two mutants are very similar, differing only in helix-helix registration. Thus these models are consistent with experimental observations that reconstituted HDL particles containing apo A-I(Milano) and apo A-I(Paris) are very similar in diameter to reconstituted HDL particles containing wild-type apo A-I, and they support the belief that apo A-I binds to lipid in discoidal HDL particles via the belt conformation.  相似文献   

5.
The ATP-binding cassette transporter A1 (ABCA1) plays a critical role in the biogenesis of high density lipoprotein (HDL) particles and in mediating cellular cholesterol efflux. The mechanism by which ABCA1 achieves these effects is not established, despite extensive investigation. Here, we present a model that explains the essential features, especially the effects of ABCA1 activity in inducing apolipoprotein (apo) A-I binding to cells and the compositions of the discoidal HDL particles that are produced. The apo A-I/ABCA1 reaction scheme involves three steps. First, there is binding of a small regulatory pool of apo A-I to ABCA1, thereby enhancing net phospholipid translocation to the plasma membrane exofacial leaflet; this leads to unequal lateral packing densities in the two leaflets of the phospholipid bilayer. Second, the resultant membrane strain is relieved by bending and by creation of exovesiculated lipid domains. The formation of highly curved membrane surface promotes high affinity binding of apo A-I to these domains. Third, this pool of bound apo A-I spontaneously solubilizes the exovesiculated domain to create discoidal nascent HDL particles. These particles contain two, three, or four molecules of apo A-I and a complement of membrane phospholipid classes together with some cholesterol. A key feature of this mechanism is that membrane bending induced by ABCA1 lipid translocase activity creates the conditions required for nascent HDL assembly by apo A-I. Overall, this mechanism is consistent with the known properties of ABCA1 and apo A-I and reconciles many of the apparently discrepant findings in the literature.  相似文献   

6.
Effects of apolipoproteins on the kinetics of cholesterol exchange   总被引:1,自引:0,他引:1  
The effects of apolipoproteins on the kinetics of cholesterol exchange have been investigated by monitoring the transfer of [14C]cholesterol from donor phospholipid/cholesterol complexes containing human apolipoproteins A, B, or C. Negatively charged discoidal and vesicular particles containing purified apolipoproteins complexed with lipid (75 mol % egg PC, 15 mol % dicetyl phosphate, and 10 mol % cholesterol) and a trace of [14C]cholesterol were incubated with a 10-fold excess of neural, acceptor, small unilamellar vesicles (SUV; 90 mol % egg PC and 10 mol % cholesterol). The donor and acceptor particles were separated by chromatography on DEAE-Sepharose, and the rate of movement of labeled cholesterol was analyzed as a first-order exchange process. The kinetics of exchange of cholesterol from both vesicular and discoidal complexes that contain apoproteins are consistent with an aqueous diffusion mechanism, as has been established previously for PC/cholesterol SUV. The addition of 2-3 molecules of apo A-I to a donor SUV does not significantly alter the half-time (t1/2), which is 80 +/- 9 min at 37 degrees C. However, addition of 5-12 apo A-I molecules progressively decreases t1/2 from 65 +/- 2 to 45 +/- 4 min. This enhancement in the rate of desorption of cholesterol molecules is presumed to arise from the creation of packing defects at boundaries around the apoprotein molecules, which are intercalated among the phospholipid and cholesterol molecules in the surface of the donor SUV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The reversibility of the binding of human apolipoprotein A-I (apo A-I) to phospholipid has been monitored through the influence of guanidine hydrochloride (Gdn-HCl) on the isothermal denaturation and renaturation of apo A-1/dimyristoylphosphatidylcholine (DMPC) complexes at 24 degree C. Denaturation was studied by incubating discoidal 1:100 and vesicular 1:500 mol/mol apo A-I/DMPC complexes with up to 7 M Gdn-HCl for up to 72 h. Unfolding of apo A-I molecules was observed from circular dichroism spectra while the distribution of protein between free and lipid-associated states was monitored by density gradient ultracentrifugation. The ability of apo A-I to combine with DMPC in the presence of Gdn-HCl at 24 degrees C was also investigated by similar procedures. In both the denaturation and renaturation of 1:100 and 1:500 complexes, the final values of the molar ellipticity and the ratio of free to bound apo A-I at various concentrations of Gdn-HCl are dependent on the initial state of the lipid and protein; apo A-I is more resistant to denaturation when Gdn-HCl is added to existing complexes than to a mixture of apo A-I and DMPC. There is an intermediate state in the denaturation pathway of apo A-I/DMPC complexes which is not present in the renaturation; the intermediate comprises partially unfold apo A-I molecules still associated with the complex by some of their apolar residues. Complete unfolding of the alpha helix and subsequent desorption of the apo A-I molecules from the lipid/water interface involve cooperative exposure of these apolar residues to the aqueous phase. The energy barrier associated with this desorption step makes the binding of apo A-I to DMPC a thermodynamically irreversible process. Consequently, binding constants of apo A-I and PC cannot be calculated simply from equilibrium thermodynamic treatments of the partitioning of protein between free and bound states. Apo A-I molecules do not exchange freely between the lipid-free and lipid-bound states, and extra work is required to drive protein molecules off the surface. The required increased in surface pressure can be achieved by a net mass transfer of protein to the surface; in vivo, increases in the surface pressure of lipoproteins by lipolysis can cause protein desorption.  相似文献   

8.
Apolipoprotein (apo) A-I is the major protein constituent of human high-density lipoprotein (HDL) and is likely responsible for many of its anti-atherogenic properties. Since distinct HDL size subspecies may play different roles in interactions critical for these properties, a key question concerns how apoA-I can adjust its conformation in response to changes in HDL particle size. A prominent hypothesis states that apoA-I contains a flexible "hinge domain" that can associate/dissociate from the lipoprotein as its diameter fluctuates. Although flexible domains clearly exist within HDL-bound apoA-I, this hypothesis has not been directly tested by assessing the ability of such domains to modulate their contacts with the lipid surface. In this work, discoidal HDL particles of different size were reconstituted with a series of human apoA-I mutants containing a single reporter tryptophan residue within each of its 22 amino acid amphipathic helical repeats. The particles also contained nitroxide spin labels, potent quenchers of tryptophan fluorescence, attached to the phospholipid acyl chains. We then measured the relative exposure of each tryptophan probe with increasing quencher concentrations. We found that, although there were modest structural changes across much of apoA-I, only helices 5, 6, and 7 exhibited significant differences in terms of exposure to lipid between large (96 A) and small (78 A) HDL particles. From these results, we present a model for a putative hinge domain in the context of recent "belt" and "hairpin" models of apoA-I structure in discoidal HDL particles.  相似文献   

9.
Apolipoprotein A-I (apo A-I) is the major protein component of high-density lipoprotein (HDL) particles. Elevated levels of HDL in the bloodstream have been shown to correlate strongly with a reduced risk factor for atherosclerosis. Molecular dynamics simulations have been carried out on three separate model discoidal high-density lipoprotein particles (HDL) containing two monomers of apo A-I and 160 molecules of palmitoyloleoylphosphatidylcholine (POPC), to a time-scale of 1ns. The starting structures were on the basis of previously published molecular belt models of HDL consisting of the lipid-binding C-terminal domain (residues 44-243) wrapped around the circumference of a discoidal HDL particle. Subtle changes between two of the starting structures resulted in significantly different behavior during the course of the simulation. The results provide support for the hypothesis of Segrest et al. that helical registration in the molecular belt model of apo A-I is modulated by intermolecular salt bridges. In addition, we propose an explanation for the presence of proline punctuation in the molecular belt model, and for the presence of two 11-mer helical repeats interrupting the otherwise regular pattern of 22-mer helical repeats in the lipid-binding domain of apo A-I.  相似文献   

10.
The two main competing models for the structure of discoidal lipoprotein A-I complexes both presume that the protein component is helical and situated around the perimeter of a lipid bilayer disc. However, the more popular "picket fence" model orients the protein helices perpendicular to the surface of the lipid bilayer, while the alternative "belt" model orients them parallel to the bilayer surface. To distinguish between these models, we have investigated the structure of human lipoprotein A-I using a novel form of polarized internal reflection infrared spectroscopy that can characterize the relative orientation of protein and lipid components in the lipoprotein complexes under native conditions. Our results verify lipid bilayer structure in the complexes and point unambiguously to the belt model.  相似文献   

11.
Klon AE  Segrest JP  Harvey SC 《Biochemistry》2002,41(36):10895-10905
We have constructed a series of models for apolipoprotein A-I (apo A-I) bound to discoidal high-density lipoprotein (HDL) particles, based upon the molecular belt model [Segrest, J. P., et al. (1999) J. Biol. Chem. 274, 31755-31758] and helical hairpin models [Rogers, D. P., et al. (1998) Biochemistry 37, 11714-11725], and compared these with picket fence models [Phillips, J. C., et al. (1997) Biophys. J. 73, 2337-2346]. Molecular belt models for discoidal HDL particles with differing diameters are presented, illustrating that the belt model can explain the discrete changes in HDL particle size observed experimentally. Hairpin models are discussed for the binding of apo A-I to discoidal HDL particles with diameters identical to those for the molecular belt model. Two models are presented for the binding of three monomers of apo A-I to a 150 A diameter discoidal HDL particle. In one model, two monomers of apo A-I bind to the exterior of the HDL particle in an antiparallel belt, with a third monomer of apo A-I bound to the disk in a hairpin conformation. In the second model, all three monomers of apo A-I are bound to the discoidal HDL particle in a hairpin conformation. Previously published experimental data for each model are reviewed, with FRET favoring either the belt or hairpin models over the picket fence models for HDL particles with diameters of 105 A. Naturally occurring mutations appear to favor the belt model for the 105 A particles, while the 150 A HDL particles favor the presence of at least one hairpin.  相似文献   

12.
Complexes formed between apolipoprotein A-I (apo A-I) and dimyristoylphosphatidylcholine (DMPC) or egg phosphatidylcholine have been studied by high-field 1H NMR, nondenaturing gradient gel electrophoresis, electron microscopy, and gel filtration chromatography. Emphasis has been placed on an analysis of the particle size distribution within the micellar complexes produced at lipid/protein molar ratios of 40-700. As determined by electron microscopy and gel filtration of DMPC/apo A-I complexes, the size of the discoidal micelles produced appears to increase uniformly with an increasing lipid/protein ratio. By electron microscopy, the diameters of isolated DMPC/apo A-I discoidal micelles range from approximately 89 A at a 40 molar ratio to 205 A at a 700 molar ratio. Analysis of the micellar complexes by 1H NMR shows that concomitant with the increase in size is the progressive downfield shift of the choline N-methyl proton resonance of the complex which is observed from 3.245 to 3.267 ppm over the above molar ratio range. The relationship between chemical shift and micelle size is most simply interpreted as arising from a weighted averaging of two lipid environments--lipid-lipid and lipid-protein. In contrast to the above interpretation of the gel filtration experiments on DMPC/apo A-I complexes, nondenaturing gradient gel electrophoresis analysis of particle size distribution leads to an unexpected observation: as the DMPC/apo A-I ratio increases, discrete complexes of increasing size are formed in an apparently quantized manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
In this study we demonstrate that apolipoprotein A-I determined the common size classes of discoidal particles formed with numerous phosphatidylcholines, and with ether analogs of phosphatidylcholines. We show furthermore, that the nature of the lipids dictates the distribution of particles among the different size classes. These experiments were performed with discoidal complexes containing various phospholipids (phosphatidylcholines with saturated and unsaturated fatty acid chains of different lengths and the ether analog of 1-palmitoyl-2-oleoylphosphatidylcholine), cholesterol, and human apolipoprotein A-I, prepared by the sodium cholate dialysis method, and fractionated by Bio-Gel A-5m gel-filtration chromatography. The complex preparations were analyzed in terms of their average composition, spectral properties of the apolipoprotein, and the dynamic behavior of the lipid domains. Nondenaturing gradient gel electrophoresis was used to analyze the size classes of particles present in the complex preparations. Starting with reaction mixtures containing around 100:1, phospholipid/apolipoprotein A-I molar ratios, complexes were isolated with molar ratios from 40:1 to 100:1. In most complexes apolipoprotein A-I had high levels of alpha-helical structure (65-77% alpha-helix), and tryptophan residues in a nonpolar environment. The lipid domains of complexes exhibited the dynamic behavior expected of the main phospholipid components. In the average size range from 90 to 100 A diameters, discrete particle classes with 80, 87, 102, 108, or 112 A Stokes diameters were observed for all the complexes containing different phospholipids. These discrete, recurring particle sizes are attributed to distinct apolipoprotein A-I conformations and variable lipid content.  相似文献   

14.
The modulation of substrate selectivity of human plasma LTP reaction is the subject of the present investigation. The moderate selectivity by a factor of 5 to 6 was observed in the LTP-catalyzed transfer of cholesteryl ester over triacylglycerol between plasma lipoproteins. On the other hand, the transfer of cholesteryl ester by LTP was highly selective over the negligible transfer of triacylglycerol, by a factor of 60 to 500, between the microemulsions with LDL size, regardless of the activators such as human and pig apolipoprotein (apo) A-I, human apo C-III and apo E that bound to the surface of the emulsion in equilibrium. The presence of free cholesterol in these microemulsions reduced slightly the rate of cholesteryl ester transfer but had no effect on triacylglycerol transfer. Other surface-active reagents such as cholic acid, Triton X-100 and Tween-20, did not have an effect on the triacylglycerol transfer either. Triacylglycerol transfer by LTP became measurable between such lipid particles as prepared by co-sonication of lipid with pig apo A-I and isolated as the mixed-microemulsions in the density of LDL and HDL. In these conditions, the substrate selectivity for cholesteryl ester over triacylglycerol was a factor of 6 to 16 mimicking the ratio in plasma lipoproteins. The conformation of pig apo A-I estimated by circular dichroism showed that its apparent helical content was further more induced when apo A-I was integrated into the mixed-microemulsion by co-sonication than the lipid-bound apo A-I in equilibrium. Apo A-I, thus integrated into lipid particles, was highly resistant to the denaturation by guanidine hydrochloride while the lipid-bound apo A-I in equilibrium was denatured as readily as the lipid-free protein. Thus, triacylglycerol transfer by LTP was induced by structural modulation of substrate-carrying lipid particles such as higher integration of apolipoproteins.  相似文献   

15.
Apolipoprotein A-I (apoA-I) is the major protein associated with high density lipoprotein (HDL), and its plasma levels have been correlated with protection against atherosclerosis. Unfortunately, the structural basis of this phenomenon is not fully understood. Over 25 years of study have produced two general models of apoA-I structure in discoidal HDL complexes. The "belt" model states that the amphipathic helices of apoA-I are aligned perpendicular to the acyl chains of the lipid bilayer, whereas the "picket fence" model argues that the helices are aligned parallel with the acyl chains. To distinguish between the two models, various single tryptophan mutants of apoA-I were analyzed in reconstituted, discoidal HDL particles composed of phospholipids containing nitroxide spin labels at various positions along the acyl chain. We have previously used this technique to show that the orientation of helix 4 of apoA-I is most consistent with the belt model. In this study, we performed additional control experiments on helix 4, and we extended the results by performing the same analysis on the remaining 22-mer helices (helices 1, 2, 5, 6, 7, 8, and 10) of human apoA-I. For each helix, two different mutants were produced that each contained a probe Trp occurring two helical turns apart. In the belt model, the two Trp residues in each helix should exhibit maximal quenching at the same nitroxide group position on the lipid acyl chains. For the picket fence model, maximal quenching should occur at two different levels in the bilayer. The results show that the majority of the helices are in an orientation that is consistent with a belt model, because most Trp residues localized to a position about 5 A from the center of the bilayer. This study corroborates a belt hypothesis for the majority of the helices of apoA-I in phospholipid discs.  相似文献   

16.
Fluorescence lifetime and intensity quenching studies of human plasma apolipoprotein A-I (apo A-I) in aqueous solution and in recombinant lipoprotein complexes with dimyristoylphosphatidylcholine (DMPC) indicate differences in conformational dynamics. In aqueous solution, the bimolecular quenching constants (k*) for lipid-free apo A-I fluorescence quenching by oxygen and acrylamide are 2.4 X 10(9) and 0.38 X 10(9) M-1 s-1, respectively. These values are independent of the oligomeric form of the protein. There is no correlation between the relatively small k* for apo A-I, which reflects rapid, low-amplitude protein fluctuations, and the labile conformational changes of apo A-I folding reactions, like denaturation, which occur on a slower time scale. In recombinant DMPC/apo A-I complexes (100:1 molar ratio) the protein increases in amphiphilic alpha-helical structure as it blankets the lipid matrix. The apparent k* for oxygen quenching of apo A-I fluorescence in the complex is large and increases in a temperature-dependent manner. We have introduced a two-compartment model, which discriminates the source of quencher molecules as aqueous or lipid, to describe oxygen quenching of DMPC/apo A-I fluorescence. The magnitude and temperature dependence of the apparent k* predominantly reflect the partitioning of oxygen between the two phases rather than being a probe of the lipid physical state. Calculations of the helical hydrophobic moment in apo A-I indicate that tryptophan residues 8 and 72 occur at the lipid-protein interface of amphiphilic alpha-helices, whereas the other two tryptophan residues (50, 108) lie on the nonpolar faces of amphiphilic helices.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The preparation of discoidal, recombinant HDL (r-HDL) containing various phospholipids, apolipoproteins and a range of concentrations of unesterified cholesterol has been reported by several investigators. The present study describes the preparation of r-HDL containing both apolipoprotein (apo) A-I and apo A-II. r-HDL with 100:1 (mol:mol) egg PC.apo A-I and 0 (Series I), 5 (Series II) or 10 (Series III) mol% unesterified cholesterol were prepared by the cholate dialysis method. The resulting complexes had a Stokes' radius of 4.7 nm and contained two molecules of apo A-I per particle. When the r-HDL (2.0 mg apo A-I) were supplemented with 1.0 mg of apo A-II, one of the apo A-I molecules was replaced by two molecules of apo A-II. This modification was not accompanied by a loss of phospholipid, nor by major change in particle size. The addition of 2.5 or 4.0 mg of apo A-II resulted in the displacement of both apo A-I molecules from a proportion of the r-HDL and the formation of smaller particles (Stokes' radius 3.9 nm), which contained half the original number of egg PC molecules and three molecules of apo A-II. The amount of apo A-I displaced was dependent on the concentration of unesterified cholesterol in the r-HDL: when 2.5 mg of apo A-II was added to the Series I, II and III r-HDL, 44, 60 and 70%, respectively, of the apo A-I was displaced. Addition of 4.0 mg of apo A-II did not promote further displacement of apo A-I from any of the r-HDL. By contrast, the association of apo A-II with r-HDL was independent of the concentration of unesterified cholesterol and was a linear function of the amount of apo A-II which had been added. It is concluded that (1), the structural integrity of egg PC.unesterified cholesterol.apo A-I r-HDL, which contain two molecules of apo A-I, is not affected when one of the apo A-I molecules is replaced by two molecules of apo A-II; (2), when both apo A-I molecules are replaced by apo A-II, small particles which contain three molecules of apo A-II are formed; and (3), the displacement of apo A-I from r-HDL is facilitated by the presence of unesterified cholesterol in the particles.  相似文献   

18.
Human apolipoprotein (apo) A-I has been the subject of intense investigation because of its well-documented anti-atherogenic properties. About 70% of the protein found in high density lipoprotein complexes is apo A-I, a molecule that contains a series of highly homologous amphipathic alpha-helices. A number of significant experimental observations have allowed increasing sophisticated structural models for both the lipid-bound and the lipid-free forms of the apo A-I molecule to be tested critically. It seems clear, for example, that interactions between amphipathic domains in apo A-I may be crucial to understanding the dynamic nature of the molecule and the pathways by which the lipid-free molecule binds to lipid, both in a discoidal and a spherical particle. The state of the art of these structural studies is discussed and placed in context with current models and concepts of the physiological role of apo A-I and high-density lipoprotein in atherosclerosis and lipid metabolism.  相似文献   

19.
The folding and organization of apolipoprotein A-I (apoA-I) in discoidal, high-density lipoprotein (HDL) complexes with phospholipids are not yet completely resolved. For about 20 years, it was generally accepted that the amphipathic helices of apoA-I lie parallel to the acyl chains of the phospholipids ("picket fence" model). However, based on the X-ray crystal structure of a large, lipid-free fragment of apoA-I, a "belt model" was recently proposed. In this model, the helices of two antiparallel apoA-I molecules are extended in a circular arrangement and lie perpendicular to the phospholipid acyl chains. To obtain conclusive information on the spatial organization of apoA-I in discoidal HDL, we engineered three separate cysteine mutants of apoA-I (D9C, A124C, A232C) for specific labeling with the fluorescence probes ALEXA-488 or ALEXA-546 (fluorescein and rhodamine derivatives). The labeled apoA-I was reconstituted into well-defined HDL complexes containing two molecules of protein and dipalmitoylphosphatidylcholine, and the complexes were used in three quantitative fluorescence resonance energy transfer (FRET) experiments to determine the distances between two specific sites in an HDL particle. Comparison of the distances measured by FRET (4.7-7.8 nm) with those predicted from the existing models indicated that neither the picket fence nor the belt model can account for the experimental results; rather, a hairpin folding of each apoA-I monomer with most helices perpendicular to the phospholipid acyl chains and a random head-to-tail and head-to-head arrangement of the two apoA-I molecules in the HDL particles are strongly suggested by the distance and lifetime data.  相似文献   

20.
The mechanism of the association of human plasma apolipoprotein A-I (apo A-I) with the acidic phospholipids, dimyristoylphosphatidylglycerol (DMPG), egg yolk phosphatidylglycerol, and dioleoylphosphatidylserine as well as with the zwitterionic dimyristoylphosphatidylcholine (DMPC) has been studied using turbidimetry, circular dichroism, high-sensitivity differential scanning calorimetry, and electron microscopy. The association of apo A-I with multilamellar liposomes of acidic phospholipids is rapid over a broad temperature range at and above the temperature of the lipid gel to liquid crystalline transition, Tc. This is in contrast to zwitterionic phosphatidylcholine which recombines with apo A-I only over a narrow temperature range around Tc. The complex of apo A-I with DMPC denatures at elevated temperatures giving rise to a calorimetrically detectable transition. The temperature range and width of this transition is shown to be markedly dependent on the heating rate. This is again in contrast to apo A-I recombinants with DMPG which show no calorimetrically detectable thermal denaturation, at least in a temperature range up to 100 degrees C. Also circular dichroism data indicate high resistance of apo A-I to thermal unfolding in the presence of DMPG. It is concluded that the complexes of apo A-I with DMPC are thermodynamically stable only at temperatures near Tc, whereas above and below this temperature range the stability of these recombinants is determined by kinetic factors. In contrast, complexes of apo A-I with DMPG and other acidic phospholipids may be thermodynamically stable over a wide temperature range greater than or equal to Tc. In spite of these fundamental differences between zwitterionic and acidic phospholipids in their mode of association with apo A-I, the binding affinity and the morphology of the recombinants are similar. Both apo A-I X DMPC and apo A-I X DMPG complexes form lipoprotein particles having a discoidal shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号