首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The choice of adeno-associated virus serotypes for clinical applications is influenced by the animal model and model system used to evaluate various serotypes. In the present study, we sought to compare the biologic properties of rAAV2/1, rAAV2/2, and rAAV2/5 transduction in polarized human airway epithelia using viruses purified by a newly developed common column chromatography method. Results demonstrated that apical transduction of human airway epithelia with rAAV2/1 was 100-fold more efficient than rAAV2/2 and rAAV2/5. This transduction profile in human airway epithelia (rAAV2/1 > rAAV2/2 = rAAV2/5) was significantly different from that seen following nasal administration of these vectors to mouse lung (rAAV2/5 > rAAV2/1 > rAAV2/2), emphasizing differences in transduction of these serotypes between these two species. In stark contrast to rAAV2/2 and rAAV2/5, rAAV2/1 transduced both the apical and basolateral membrane of human airway epithelia with similar efficiency. However, the overall level of transduction across serotypes did not correlate with vector internalization. We hypothesized that differences in post-entry processing of these serotypes might influence the efficiency of apical transduction. To this end, we tested the effectiveness of proteasome inhibitors to augment nuclear translocation and gene expression from the three serotypes. Augmentation of rAAV2/1 apical transduction of human polarized airway epithelia was 10-fold lower than that for rAAV2/2 and rAAV2/5. Cellular fractionation studies demonstrated that proteasome inhibitors more significantly enhanced rAAV2/2 and rAAV2/5 translocation to the nucleus than rAAV2/1. These results demonstrate that AAV1 transduction biology in human airway epithelia differs from that of AAV2 and AAV5 by virtue of altered ubiquitin/proteasome sensitivities that influence nuclear translocation.  相似文献   

3.
Epidemiological studies report that 80% of the population maintains antibodies (Ab) to wild-type (wt) adeno-associated virus type 2 (AAV2), with 30% expressing neutralizing Ab (NAb). The blood-brain barrier (BBB) provides limited immune privilege to brain parenchyma, and the immune response to recombinant AAV (rAAV) administration in the brain of a naive animal is minimal. However, central nervous system transduction in preimmunized animals remains unstudied. Vector administration may disrupt the BBB sufficiently to promote an immune response in a previously immunized animal. We tested the hypothesis that intracerebral rAAV administration and readministration would not be affected by the presence of circulating Ab to wt AAV2. Rats peripherally immunized with live wt AAV2 and naive controls were tested with single intrastriatal injections of rAAV2 encoding human glial cell line-derived neurotrophic factor (GDNF) or green fluorescent protein (GFP). Striatal readministration of rAAV2-GDNF was also tested in preimmunized and naive rats. Finally, serotype specificity of the immunization against wt AAV2 was examined by single injections of rAAV5-GFP. Preimmunization resulted in high levels of circulating NAb and prevented transduction by rAAV2 as assessed by striatal GDNF levels. rAAV2-GFP striatal transduction was also prevented by immunization, while rAAV5-GFP-mediated transduction, as assessed by stereological cell counting, was unaffected. Additionally, inflammatory markers were present in those animals that received repeated administrations of rAAV2, including markers of a cell-mediated immune response and cytotoxic damage. A live virus immunization protocol generated the circulating anti-wt-AAV Ab seen in this experiment, while human titers are commonly acquired via natural infection. Regardless, the data show that the presence of high levels of NAb against wt AAV can reduce rAAV-mediated transduction in the brain and should be accounted for in future experiments utilizing this vector.  相似文献   

4.
Accumulation of beta amyloid (Aβ) in the brain is a primary feature of Alzheimer’s disease (AD) but the exact molecular mechanisms by which Aβ exerts its toxic actions are not yet entirely clear. We documented pathological changes 3 and 6 months after localised injection of recombinant, bi-cistronic adeno-associated viral vectors (rAAV2) expressing human Aβ40-GFP, Aβ42-GFP, C100-GFP or C100V717F-GFP into the hippocampus and cerebellum of 8 week old male mice. Injection of all rAAV2 vectors resulted in wide-spread transduction within the hippocampus and cerebellum, as shown by expression of transgene mRNA and GFP protein. Despite the lack of accumulation of Aβ protein after injection with AAV vectors, injection of rAAV2-Aβ42-GFP and rAAV2- C100V717F-GFP into the hippocampus resulted in significantly increased microgliosis and altered permeability of the blood brain barrier, the latter revealed by high levels of immunoglobulin G (IgG) around the injection site and the presence of IgG positive cells. In comparison, injection of rAAV2-Aβ40-GFP and rAAV2-C100-GFP into the hippocampus resulted in substantially less neuropathology. Injection of rAAV2 vectors into the cerebellum resulted in similar types of pathological changes, but to a lesser degree. The use of viral vectors to express different types of Aβ and C100 is a powerful technique with which to examine the direct in vivo consequences of Aβ expression in different regions of the mature nervous system and will allow experimentation and analysis of pathological AD-like changes in a broader range of species other than mouse.  相似文献   

5.
The AAV2.7m8 vector is an engineered capsid with a 10-amino acid insertion in adeno-associated virus (AAV) surface variable region VIII (VR-VIII) resulting in the alteration of an antigenic region of AAV2 and the ability to efficiently transduce retina cells following intravitreal administration. Directed evolution and in vivo screening in the mouse retina isolated this vector. In the present study, we sought to identify the structural differences between a recombinant AAV2.7m8 (rAAV2.7m8) vector packaging a GFP genome and its parental serotype, AAV2, by cryo-electron microscopy (cryo-EM) and image reconstruction. The structures of rAAV2.7m8 and AAV2 were determined to 2.91 and 3.02 Å resolution, respectively. The rAAV2.7m8 amino acid side-chains for residues 219–745 (the last C-terminal residue) were interpretable in the density map with the exception of the 10 inserted amino acids. While observable in a low sigma threshold density, side-chains were only resolved at the base of the insertion, likely due to flexibility at the top of the loop. A comparison to parental AAV2 (ordered from residues 217–735) showed the structures to be similar, except at some side-chains that had different orientations and, in VR-VIII containing the 10 amino acid insertion. VR-VIII is part of an AAV2 antigenic epitope, and the difference is consistent with rAAV2.7m8′s escape from a known AAV2 monoclonal antibody, C37-B. The observations provide valuable insight into the configuration of inserted surface peptides on the AAV capsid and structural differences to be leveraged for future AAV vector rational design, especially for retargeted tropism and antibody escape.  相似文献   

6.
Dong X  Tian W  Wang G  Dong Z  Shen W  Zheng G  Wu X  Xue J  Wang Y  Chen J 《PloS one》2010,5(10):e13479

Background

The development of a convenient high-throughput gene transduction approach is critical for biological screening. Adeno-associated virus (AAV) vectors are broadly used in gene therapy studies, yet their applications in in vitro high-throughput gene transduction are limited.

Principal Findings

We established an AAV reverse infection (RI)-based method in which cells were transduced by quantified recombinant AAVs (rAAVs) pre-coated onto 96-well plates. The number of pre-coated rAAV particles and number of cells loaded per well, as well as the temperature stability of the rAAVs on the plates, were evaluated. As the first application of this method, six serotypes or hybrid serotypes of rAAVs (AAV1, AAV2, AAV5/5, AAV8, AAV25 m, AAV28 m) were compared for their transduction efficiencies using various cell lines, including BHK21, HEK293, BEAS-2BS, HeLaS3, Huh7, Hepa1-6, and A549. AAV2 and AAV1 displayed high transduction efficiency; thus, they were deemed to be suitable candidate vectors for the RI-based array. We next evaluated the impact of sodium butyrate (NaB) treatment on rAAV vector-mediated reporter gene expression and found it was significantly enhanced, suggesting that our system reflected the biological response of target cells to specific treatments.

Conclusions/Significance

Our study provides a novel method for establishing a highly efficient gene transduction array that may be developed into a platform for cell biological assays.  相似文献   

7.
8.
Adeno-associated viruses (AAV)   总被引:1,自引:0,他引:1  
Recombinant adeno-associated virus derived vectors (rAAV) a thought to be a most promising candidates for gene therapy applications. Their nonpathogenic nature as well as the encouraging capability to infect both proliferating and non proliferating cells are advantages for gene therapy applications. Here, we summarize the potential mechanisms responsible for AAV maintenance and site-specific integration to human genome. The role of Rep proteins, inverted terminal repeats and p5 promotor sequences for chromosomal incorporation of AAV are discussed. Making the site-specific integrative recombinant AAV vectors for gene therapy seems to be closely dependent on the development of viral vectorology.  相似文献   

9.
Adeno-associated viral vectors (AAV) have been shown to be safe in the treatment of retinal degenerations in clinical trials. Thus, improving the efficiency of viral gene delivery has become increasingly important to increase the success of clinical trials. In this study, structural domains of different rAAV serotypes isolated from primate brain were combined to create novel hybrid recombinant AAV serotypes, rAAV2/rec2 and rAAV2/rec3. The efficacy of these novel serotypes were assessed in wild type mice and in two models of retinal degeneration (the Abca4−/− mouse which is a model for Stargardt disease and in the Pde6brd1/rd1 mouse) in vivo, in primate tissue ex-vivo, and in the human-derived SH-SY5Y cell line, using an identical AAV2 expression cassette. We show that these novel hybrid serotypes can transduce retinal tissue in mice and primates efficiently, although no more than AAV2/2 and rAAV2/5 serotypes. Transduction efficiency appeared lower in the Abca4−/− mouse compared to wild type with all vectors tested, suggesting an effect of specific retinal diseases on the efficiency of gene delivery. Shuffling of AAV capsid domains may have clinical applications for patients who develop T-cell immune responses following AAV gene therapy, as specific peptide antigen sequences could be substituted using this technique prior to vector re-treatments.  相似文献   

10.
The discovery of the involvement of alpha-synuclein (α-syn) in Parkinson’s disease (PD) pathogenesis has resulted in the development and use of viral vector-mediated α-syn overexpression rodent models. The goal of these series of experiments was to characterize the neurodegeneration and functional deficits resulting from injection of recombinant adeno-associated virus (rAAV) serotype 2/5-expressing human wildtype α-syn in the rat substantia nigra (SN). Rats were unilaterally injected into two sites in the SN with either rAAV2/5-expressing green fluorescent protein (GFP, 1.2 x 1013) or varying titers (2.2 x 1012, 1.0 x 1013, 5.9 x 1013, or 1.0 x 1014) of rAAV2/5-α-syn. Cohorts of rats were euthanized 4, 8, or 12 weeks following vector injection. The severity of tyrosine hydroxylase immunoreactive (THir) neuron death in the SN pars compacta (SNpc) was dependent on vector titer. An identical magnitude of nigrostriatal degeneration (60-70% SNpc THir neuron degeneration and 40-50% loss of striatal TH expression) was observed four weeks following 1.0 x 1014 titer rAAV2/5-α-syn injection and 8 weeks following 1.0 x 1013 titer rAAV2/5-α-syn injection. THir neuron degeneration was relatively uniform throughout the rostral-caudal axis of the SNpc. Despite equivalent nigrostriatal degeneration between the 1.0 x 1013 and 1.0 x 1014 rAAV2/5-α-syn groups, functional impairment in the cylinder test and the adjusting steps task was only observed in rats with the longer 8 week duration of α-syn expression. Motor impairment in the cylinder task was highly correlated to striatal TH loss. Further, 8 weeks following 5.9 x 1013 rAAV2/5-α-syn injection deficits in ultrasonic vocalizations were observed. In conclusion, our rAAV2/5-α-syn overexpression model demonstrates robust nigrostriatal α-syn overexpression, induces significant nigrostriatal degeneration that is both vector and duration dependent and under specific parameters can result in motor impairment that directly relates to the level of striatal TH denervation.  相似文献   

11.
Recombinant adeno-associated virus (rAAV) is a promising vector for gene therapy. Recent isolations of novel AAV serotypes have led to significant advances by broadening the tropism and increasing the efficiency of gene transfer to the desired target cell. However, a major concern that remains is the strong preexisting immune responses to several vectors. In this paper, we describe the isolation and characterization of AAV12, an AAV serotype with unique biological and immunological properties. In contrast to those of all other reported AAVs, AAV12 cell attachment and transduction do not require cell surface sialic acids or heparan sulfate proteoglycans. Furthermore, rAAV12 is resistant to neutralization by circulating antibodies from human serum. The feasibility of rAAV12 as a vector was demonstrated in a mouse model in which muscle and salivary glands were transduced. These characteristics make rAAV12 an interesting candidate for gene transfer applications.  相似文献   

12.
Enhanced delivery and expression of genes in specific neuronal systems is critical for the development of genetic models of neurodegenerative disease and potential gene therapy. Recent discovery of new recombinant adeno-associated viral (rAAV) capsid serotypes has resulted in improved transduction efficiency, but expression levels, spread of transgene, and potential toxicity can differ depending on brain region and among species. We compared the transduction efficiency of titer-matched rAAV 2/1, 2/5, and 2/8 to the commonly used rAAV2/2 in the rat nigrostriatal system via expression of the reporter transgene, enhanced green fluorescent protein. Newer rAAV serotypes 2/1, 2/5, and 2/8 demonstrated marked increase in transduction and spread of enhanced green fluorescent protein expression in dopaminergic nigrostriatal neurons and projections to the striatum and globus pallidus compared to rAAV2/2 at 2 weeks post-injection. The number of nigral cells transduced was greatest for rAAV2/1, but for serotypes 2/5 and 2/8 was still two- to threefold higher than that for 2/2. Enhanced transduction did not cause an increase in glial cell response or toxicity. New rAAV serotypes thus promise improved gene delivery to nigrostriatal system with the potential for better models and therapeutics for Parkinson disease and other neurodegenerative disorders.  相似文献   

13.
Adeno-associated virus type 2 (AAV2) provokes a DNA damage response that mimics a stalled replication fork. We have previously shown that this response is dependent on ataxia telangiectasia-mutated and Rad3-related kinase and involves recruitment of DNA repair proteins into foci associated with AAV2 DNA. Here, we investigated whether recombinant AAV2 (rAAV2) vectors are able to produce a similar response. Surprisingly, the results show that both single-stranded and double-stranded green fluorescent protein-expressing rAAV2 vectors are defective in producing such a response. We show that the DNA damage signaling initiated by AAV2 was not due to the virus-encoded Rep or viral capsid proteins. UV-inactivated AAV2 induced a response similar to that of untreated AAV2. This type of DNA damage response was not provoked by other DNA molecules, such as single-stranded bacteriophage M13 or plasmid DNAs. Rather, the results indicate that the ability of AAV2 to produce a DNA damage response can be attributed to the presence of cis-acting AAV2 DNA sequences, which are absent in rAAV2 vectors and could function as origins of replication creating stalled replication complexes. This hypothesis was tested by using a single-stranded rAAV2 vector containing the p5 AAV2 sequence that has previously been shown to enhance AAV2 replication. This vector was indeed able to trigger DNA damage signaling. These findings support the conclusion that efficient formation of AAV2 replication complexes is required for this AAV2-induced DNA damage response and provide an explanation for the poor response in rAAV2-infected cells.  相似文献   

14.
Recent studies have demonstrated the utility of recombinant adeno-associated viral (rAAV) vectors in the generation of human knockout cell lines. The efficiency with which such cell lines can be generated using rAAV, in comparison with more extensively described plasmid-based approaches, has not been directly tested. In this report, we demonstrate that targeting constructs delivered by rAAV vectors were nearly 25-fold more efficient than transfected plasmids that target the same exon. In addition, we describe a novel vector configuration which we term the synthetic exon promoter trap (SEPT). This targeting element further improved the efficiency of knockout generation and uniquely facilitated the generation of knockin alterations. An rAAV-based SEPT targeting construct was used to transfer a mutant CTNNB1 allele, encoding an oncogenic form of β-catenin, from one cell line to another. This versatile method was thus shown to facilitate the efficient integration of small, defined sequence alterations into the chromosomes of cultured human cells.  相似文献   

15.
16.
Production of recombinant adeno-associated virus (rAAV) requires helper functions that have routinely been provided by infection of the producer cells with adenovirus. Complete removal and/or inactivation of progeny adenovirus, present in such rAAV preparations, presents significant difficulty. Here, we report that an adenovirus type 5 (Ad5) mutant with the preterminal protein (pTP) gene deleted can provide helper function for the growth of rAAV. At high multiplicity, Ad5dl308ΔpTP was as efficient as the phenotypically wild-type Ad5dl309 in permitting growth of rAAV. Use of Ad5dl308ΔpTP, which is incapable of replication in the absence of complementation for pTP, as a helper avoids the need to remove contaminating adenovirus infectious activity by heat inactivation or by purification. Comparison of the transducing ability of rAAV generated with either Ad5dl308ΔpTP or Ad5dl309 as a helper demonstrated that the heat inactivation protocol generally used does not remove all of the helper Ad5dl309 function.  相似文献   

17.
The study of melanocyte biology is important to understand their role in health and disease. However, current methods of gene transfer into melanocytes are limited by safety or efficacy. Recombinant adeno-associated virus (rAAV) has been extensively investigated as a gene therapy vector, is safe and is associated with persistent transgene expression without genome integration. There are twelve serotypes and many capsid variants of rAAV. However, a comparative study to determine which rAAV is most efficient at transducing primary human melanocytes has not been conducted. We therefore sought to determine the optimum rAAV variant for use in the in vitro transduction of primary human melanocytes, which could also be informative to future in vivo studies. We have screened eight variants of rAAV for their ability to transduce primary human melanocytes and identified rAAV6 as the optimal serotype, transducing 7–78% of cells. No increase in transduction was seen with rAAV6 tyrosine capsid mutants. The number of cells expressing the transgene peaked at 6–12 days post-infection, and transduced cells were still detectable at day 28. Therefore rAAV6 should be considered as a non-integrating vector for the transduction of primary human melanocytes.  相似文献   

18.
A recent clinical trial has suggested that recombinant adeno-associated virus (rAAV) vector transduction in humans induces a cytotoxic T-lymphocyte (CTL) response against the AAV2 capsid. To directly address the ability of AAV capsid-specific CTLs to eliminate rAAV-transduced cells in vitro and in vivo in mice, we first demonstrated that AAV2 capsid-specific CTLs could be induced by dendritic cells with endogenous AAV2 capsid expression or pulsed with AAV2 vectors. These CTLs were able to kill a cell line stable for capsid expression in vitro and also in a mouse tumor xenograft model in vivo. Parent colon carcinoma (CT26) cells transduced with a large amount of AAV2 vectors in vitro were also destroyed by these CTLs. To determine the effect of CTLs on the elimination of target cells transduced by AAV2 vectors in vivo, we carried out adoptive transfer experiments. CTLs eliminated liver cells with endogenous AAV2 capsid expression but not liver cells transduced by AAV2 vectors, regardless of the reporter genes. Similar results were obtained for rAAV2 transduction in muscle. Our data strongly suggest that AAV vector-transduced cells are rarely eliminated by AAV2 capsid-specific CTLs in vivo, even though the AAV capsid can induce a CTL response. In conclusion, AAV capsid-specific CTLs do not appear to play a role in elimination of rAAV-transduced cells in a mouse model. In addition, our data suggest that the mouse model may not mimic the immune response noted in humans and additional modification to AAV vectors may be required for further study in order to elicit a similar cellular immune response.  相似文献   

19.
Recombinant adeno-associated virus (AAV) type 2 (rAAV) vectors have recently been shown to have great utility as gene transfer agents both in vitro and in vivo. One of the problems associated with the use of rAAV vectors has been the difficulty of large-scale vector production. Low-efficiency plasmid transfection of the rAAV vector and complementing AAV type 2 (AAV-2) functions (rep and cap) followed by superinfection with adenovirus has been the standard approach to rAAV production. The objectives of this study were to demonstrate the ability of a recombinant herpes simplex virus type 1 (HSV-1) amplicon expressing AAV-2 Rep and Cap to support replication and packaging of rAAV vectors. HSV-1 amplicon vectors were constructed which contain the AAV-2 rep and cap genes under control of their native promoters (p5, p19, and p40). An HSV-1 amplicon vector, HSV-RC/KOS or HSV-RC/d27, was generated by supplying helper functions with either wild-type HSV-1 (KOS strain) or the ICP27-deleted mutant of HSV-1, d27-1, respectively. Replication of the amplicon stocks is not inhibited by the presence of AAV-2 Rep proteins, which highlights important differences between HSV-1 and adenovirus replication and the mechanism of providing helper function for productive AAV infection. Coinfection of rAAV and HSV-RC/KOS resulted in the replication and amplification of rAAV genomes. Similarly, rescue and replication of rAAV genomes occurred when rAAV vector plasmids were transfected into cells followed by HSV-RC/KOS infection and when two rAAV proviral cell lines were infected with HSV-RC/KOS or HSV-RC/d27. Production of infectious rAAV by rescue from two rAAV proviral cell lines has also been achieved with HSV-RC/KOS and HSV-RC/d27. The particle titer of rAAV produced with HSV-RC/d27 is equal to that achieved by supplying rep and cap by transfection followed by adenovirus superinfection. Importantly, no detectable wild-type AAV-2 is generated with this approach. These results demonstrate that an HSV-1 amplicon expressing the AAV-2 genes rep and cap along with HSV-1 helper functions supports the replication and packaging of rAAV vectors in a scaleable process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号