首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unique terminal arabinan motifs of mycobacterial lipoarabinomannan (LAM), which are mannose-capped to different extents, probably constitute the single most important structural entity engaged in receptor binding and subsequent immunopathogenesis. We have developed a concerted approach of endoarabinanase digestion coupled with chromatography and mass spectrometry analysis to rapidly identify and quantitatively map the complement of such terminal units among the clinical isolates of different virulence and drug resistance profiles. In comparison with LAM from laboratory strains of Mycobacterium tuberculosis, an ethambutol (Emb) resistant clinical isolate was shown to have a significantly higher proportion of nonmannose capped arabinan termini. More drastically, the mannose capping was completely inhibited when an Emb-susceptible strain was grown in the presence of subminimal inhibitory concentration of Emb. Both cases resulted in an increase of arabinose to mannose ratio in the overall glycosyl composition of LAM. Emb, therefore, not only could affect the complete elaboration of the arabinan as found previously for LAM from Mycobacterium smegmatis resistant mutant but also could inhibit the extent of mannose capping and hence its associated biological functions in M. tuberculosis. Unexpectedly, an intrinsically Emb-resistant Mycobacterium avium isolate of smooth transparent colony morphology was found to have most of its arabinan termini capped with a single mannose residue instead of the more common dimannoside as established for LAM from M. tuberculosis. This is the first report on the LAM structure from M. avium complex, an increasingly important opportunistic infectious agent afflicting AIDS patients.  相似文献   

2.
Previously we had demonstrated that the termini of the arabinan component of mycobacterial cell wall arabinogalactan, the site of mycolic acid location, consists mostly of clusters of a pentaarabinofuranoside, [beta-D-Araf-(1----2)-alpha-D-Araf-(1----]2----(3 and 5)-alpha-D-Araf. Subsequently, the same arrangement was shown to dominate the non-reducing ends of lipoarabinomannan (LAM), a key component in the interaction of mycobacteria with host cell. Accordingly, we had proposed that mycobacteria universally elaborate the same Araf-containing motifs in two settings for different pathophysiological purposes. However, we now report that the termini of LAM from the virulent, Erdman, strain of Mycobacterium tuberculosis, unlike those from the attenuated H37Ra strain, are extensively capped with mannosyl (Manp) residues, either a single alpha-D-Manp, a dimannoside (alpha-D-Manp-(1----2)-alpha-D-Manp), or a trimannoside (alpha-D-Manp-(1----2)-alpha-D-Manp-(1----2)-alpha-D-Manp ). The use of monoclonal antibodies demonstrates a clear difference in the antigenicity of the basic and mannose-capped LAM. The possibility that these structures are a factor in the virulence of some strains of M. tuberculosis and represent an example of carbohydrate mimicry in mycobacterial infections is discussed.  相似文献   

3.
Current knowledge on the structure of lipoarabinomannan (LAM) has resulted primarily from detailed studies on a few selected laboratory strains of Mycobacterium tuberculosis, Mycobacterium bovis BCG, and Mycobacterium smegmatis. Our previous work was the first to report on the salient structural features of M. tuberculosis clinical isolates and demonstrated significant structural variations. A prime effort is to correlate a particular structural characteristic with observed differences in eliciting an immunobiological response, especially in the context of CD1-restricted presentation of LAM to T cells. T cell clones derived from the cutaneous lesions of leprosy patients have been shown to recognize specifically LAM from Mycobacterium leprae and not from M. tuberculosis Erdman or H37Rv. Herein we provide further fine structural data on LAM from M. leprae (LepLAM) and a tuberculosis clinical isolate, CSU20 (CSU20LAM), which was unexpectedly recognized by the supposedly LepLAM-specific CD1-restricted T cell clones. In comparison with the de facto laboratory LAM standard from M. tuberculosis H37Rv (RvLAM), LepLAM derived from in vivo grown M. leprae is apparently simpler in its arabinan architecture with a high degree of exposed, non-mannose-capped termini. On the other hand, CSU20, an ethambutol-resistant clinical isolate, makes a vastly heterogeneous population of LAM ranging from rather small and non-mannose-capped to full-length and fully capped variants. LepLAM and CSU20LAM contain a higher level of succinylation than RvLAM, which, in the context of truncated or less elaborated arabinan, may contribute to selective recognition by T cells. LAM from all species could be resolved into discrete forms by isoelectric focusing based apparently on their arabinan heterogeneity. In the light of our current and more recent findings, we reason that all immunobiological data should be cautiously interpreted and that the actual LAM variants that may be present in vivo during infection and pathogenesis need to be taken into consideration.  相似文献   

4.
Interactions between dendritic cells (DCs) and Mycobacterium tuberculosis, the etiological agent of tuberculosis, most likely play a key role in anti-mycobacterial immunity. We have recently shown that M. tuberculosis binds to and infects DCs through ligation of the DC-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and that M. tuberculosis mannose-capped lipoarabinomannan (ManLAM) inhibits binding of the bacilli to the lectin, suggesting that ManLAM might be a key DC-SIGN ligand. In the present study, we investigated the molecular basis of DC-SIGN ligation by LAM. Contrary to what was found for slow growing mycobacteria, such as M. tuberculosis and the vaccine strain Mycobacterium bovis bacillus Calmette-Guérin, our data demonstrate that the fast growing saprophytic species Mycobacterium smegmatis hardly binds to DC-SIGN. Consistent with the former finding, we show that M. smegmatis-derived lipoarabinomannan, which is capped by phosphoinositide residues (PILAM), exhibits a limited ability to inhibit M. tuberculosis binding to DC-SIGN. Moreover, using enzymatically demannosylated and chemically deacylated ManLAM molecules, we demonstrate that both the acyl chains on the ManLAM mannosylphosphatidylinositol anchor and the mannooligosaccharide caps play a critical role in DC-SIGN-ManLAM interaction. Finally, we report that DC-SIGN binds poorly to the PILAM and uncapped AraLAM-containing species Mycobacterium fortuitum and Mycobacterium chelonae, respectively. Interestingly, smooth colony-forming Mycobacterium avium, in which ManLAM is capped with single mannose residues, was also poorly recognized by the lectin. Altogether, our results provide molecular insight into the mechanisms of mycobacteria-DC-SIGN interaction, and suggest that DC-SIGN may act as a pattern recognition receptor and discriminate between Mycobacterium species through selective recognition of the mannose caps on LAM molecules.  相似文献   

5.
The mycobacterial cell wall component lipoarabinomannan (LAM) has been described as one of the key virulence factors of Mycobacterium tuberculosis. Modification of the terminal arabinan residues of this lipoglycan with mannose caps in M. tuberculosis or with phosphoinositol caps in Mycobacterium smegmatis results in distinct host immune responses. Given that M. tuberculosis typically persists in the phagosomal vacuole after being phagocytosed by macrophages, we performed a proteomic analysis of that organelle after treatment of macrophages with LAMs purified from the two mycobacterial species. The quantitative changes in phagosomal proteins suggested a distinct role for mannose-capped LAM in modulating protein trafficking pathways that contribute to the arrest of phagosome maturation. Enlightened by our proteomic data, we performed further experiments to show that only the LAM from M. tuberculosis inhibits accumulation of autophagic vacuoles in the macrophage, suggesting a new function for this virulence-associated lipid.  相似文献   

6.
7.
The causative agent of tuberculosis (TB), Mycobacterium tuberculosis, remains an important worldwide health threat. Although TB is one of the oldest infectious diseases of man, a detailed understanding of the mycobacterial mechanisms underlying pathogenesis remains elusive. Here, we studied the role of the α(1→2) mannosyltransferase MptC in mycobacterial virulence, using the Mycobacterium marinum zebrafish infection model. Like its M. tuberculosis orthologue, disruption of M. marinum mptC (mmar_3225) results in defective elongation of mannose caps of lipoarabinomannan (LAM) and absence of α(1→2)mannose branches on the lipomannan (LM) and LAM mannan core, as determined by biochemical analysis (NMR and GC‐MS) and immunoblotting. We found that the M. marinum mptC mutant is strongly attenuated in embryonic zebrafish, which rely solely on innate immunity, whereas minor virulence defects were observed in adult zebrafish. Strikingly, complementation with the Mycobacterium smegmatis mptC orthologue, which restored mannan core branching but not cap elongation, was sufficient to fully complement the virulence defect of the mptC mutant in embryos. Altogether our data demonstrate that not LAM capping, but mannan core branching of LM/LAM plays an important role in mycobacterial pathogenesis in the context of innate immunity.  相似文献   

8.
Mannose‐capped lipoarabinomannan (ManLAM) is considered an important virulence factor of Mycobacterium tuberculosis. However, while mannose caps have been reported to be responsible for various immunosuppressive activities of ManLAMobserved in vitro, there is conflicting evidence about their contribution to mycobacterial virulence in vivo. Therefore, we used Mycobacterium bovis BCG and M. tuberculosis mutants that lack the mannose cap of LAM to assess the role of ManLAM in the interaction of mycobacteria with the host cells, to evaluate vaccine‐induced protection and to determine its importance in M. tuberculosis virulence. Deletion of the mannose cap did not affect BCG survival and replication in macrophages, although the capless mutant induced a somewhat higher production of TNF. In dendritic cells, the capless mutant was able to induce the upregulation of co‐stimulatory molecules and the only difference we detected was the secretion of slightly higher amounts of IL‐10 as compared to the wild type strain. In mice, capless BCG survived equally well and induced an immune response similar to the parental strain. Furthermore, the efficacy of vaccination against a M. tuberculosis challenge in low‐dose aerosol infection models in mice and guinea pigs was not affected by the absence of the mannose caps in the BCG. Finally, the lack of the mannose cap in M. tuberculosis did not affect its virulence in mice nor its interaction with macrophages in vitro. Thus, these results do not support a major role for the mannose caps of LAM in determining mycobacterial virulence and immunogenicity in vivo in experimental animal models of infection, possibly because of redundancy of function.  相似文献   

9.
10.
11.
Rhodococcus equi is a major cause of foal morbidity and mortality. We have investigated the presence of lipoglycan in this organism as closely related bacteria, notably Mycobacterium tuberculosis, produce lipoarabinomannans (LAM) that may play multiple roles as virulence determinants. The lipoglycan was structurally characterized by gas chromatography-mass spectrometry following permethylation, capillary electrophoresis after chemical degradation, and (1)H and (31)P and two-dimensional heteronuclear nuclear magnetic resonance studies. Key structural features of the lipoglycan are a linear alpha-1,6-mannan with side chains containing one 2-linked alpha-d-Manp residue. This polysaccharidic backbone is linked to a phosphatidylinositol mannosyl anchor. In contrast to mycobacterial LAM, there are no extensive arabinan domains but single terminal alpha-d-Araf residue capping the 2-linked alpha-d-Manp. The lipoglycan binds concanavalin A and mannose-binding protein consistent with the presence of t-alpha-d-Manp residues. We studied the ability of the lipoglycans to induce cytokines from equine macrophages, in comparison to whole cells of R. equi. These data revealed patterns of cytokine mRNA induction that suggest that the lipoglycan is involved in much of the early macrophage cytokine response to R. equi infection. These studies identify a novel LAM variant that may contribute to the pathogenesis of disease caused by R. equi.  相似文献   

12.
Although Mycobacterium kansasii has emerged as an important pathogen frequently encountered in immunocompromised patients, little is known about the mechanisms of M. kansasii pathogenicity. Lipoarabinomannan (LAM), a major mycobacterial cell wall lipoglycan, is an important virulence factor for many mycobacteria, as it modulates the host immune response. Therefore, the detailed structures of the of M. kansasii LAM (KanLAM), as well as of its biosynthetic precursor lipomannan (KanLM), were determined in a clinical strain isolated from a human immunodeficiency virus-positive patient. Structural analyses revealed that these lipoglycans possess important differences as compared with those from other mycobacterial species. KanLAM carries a mannooligosaccharide cap but is devoid of the inositol phosphate cap present in Mycobacterium smegmatis. Characterization of the mannan core of KanLM and KanLAM demonstrated the following occurrences: 1) alpha1,2-oligo-mannopyranosyl side chains, contrasting with the single mannopyranosyl residues substituting the mannan core in all the other structures reported so far; and 2) 5-methylthiopentose residues that were described to substitute the arabinan moiety from Mycobacterium tuberculosis LAM. With respect to the arabinan domain of KanLAM, succinyl groups were found to substitute the C-3 position on 5-arabinofuranosyl residues, reported to be linked to the C-2 of the 3,5-arabinofuranose in Mycobacterium bovis bacillus calmette-guerin LAM. Because M. kansasii has been reported to induce apoptosis, we examined the possibility of the M. kansasii lipoglycans to induce apoptosis of THP-1 cells. Our results indicate that, in contrast to KanLAM, KanLM was a potent apoptosis-inducing factor. This work underlines the diversity of LAM structures among various pathogenic mycobacterial species and also provides evidence of LM being a potential virulence factor in M. kansasii infections by inducing apoptosis.  相似文献   

13.
Chatterjee  D; Khoo  KH 《Glycobiology》1998,8(2):113-120
Detailed structural and functional studies over the last decade have led to current recognition of the mycobacterial lipoarabinomannan (LAM) as a phosphatidylinositol anchored lipoglycan with diverse biological activities. Fatty acylation has been demonstrated to be essential for LAM to maintain its functional integrity although the focus has largely been on the arabinan motifs and the terminal capping function. It has recently been shown that the mannose caps may be involved not only in attenuating host immune response, but also in mediating the binding of mycobacteria to and subsequent entry into macrophages. This may further be linked to an intracellular trafficking pathway through which LAM is thought to be presented by CD1 to subsets of T-cells. The implication of LAM as major histocompatibility complex (MHC)-independent T-cell epitope and the ensuing immune response is an area of intensive studies. Another recent focus of research is the biosynthesis of arabinan which has been shown to be inhibitable by the anti- tuberculosis drug, ethambutol. The phenomenon of truncated LAM as synthesized by ethambutol resistant strains provides an invaluable handle for dissecting the array of arabinosyltransferases involved, as well as generating much needed structural variants for further structural and functional studies. It is hoped that with more systematic investigations based on clinical isolates and human cell lines, the true significance of LAM in the immunopathogenesis of tuberculosis and leprosy can eventually be explained.   相似文献   

14.
The cell walls of the Corynebacterineae, which includes the important human pathogen Mycobacterium tuberculosis, contain two major lipopolysaccharides, lipoarabinomannan (LAM) and lipomannan (LM). LAM is assembled on a subpool of phosphatidylinositol mannosides (PIMs), whereas the identity of the LM lipid anchor is less well characterized. In this study we have identified a new gene (Rv2188c in M. tuberculosis and NCgl2106 in Corynebacterium glutamicum) that encodes a mannosyltransferase involved in the synthesis of the early dimannosylated PIM species, acyl-PIM2, and LAM. Disruption of the C. glutamicum NCgl2106 gene resulted in loss of synthesis of AcPIM2 and accumulation of the monomannosylated precursor, AcPIM1. The synthesis of a structurally unrelated mannolipid, Gl-X, was unaffected. The synthesis of AcPIM2 in C. glutamicum DeltaNCgl2106 was restored by complementation with M. tuberculosis Rv2188c. In vivo labeling of the mutant with [3H]Man and in vitro labeling of membranes with GDP-[3H]Man confirmed that NCgl2106/Rv2188c catalyzed the second mannose addition in PIM biosynthesis, a function previously ascribed to PimB/Rv0557. The C. glutamicum Delta NCgl2106 mutant lacked mature LAM but unexpectedly still synthesized the major pool of LM. Biochemical analyses of the LM core indicated that this lipopolysaccharide was assembled on Gl-X. These data suggest that NCgl2106/Rv2188c and the previously studied PimB/Rv0557 transfer mannose residues to distinct mannoglycolipids that act as precursors for LAM and LM, respectively.  相似文献   

15.
Mycobacterium tuberculosis strains CDC1551 and Erdman were used to assess cytotoxicity in infected A549 human alveolar epithelial cell monolayers. Strain CDC1551 was found to induce qualitatively greater disruption of A549 monolayers than was strain Erdman, although total intracellular and cell-associated bacterial growth rates over the course of the infections were not significantly different. Cell-free culture supernatants from human monocytic cells infected with either of the 2 M. tuberculosis strains produced a cytotoxic effect on A549 cells, correlating with the amount of tumor necrosis factor alpha (TNF-α) released by the infected monocytes. The addition of TNF-α-neutralizing antibodies to the supernatants from infected monocyte cultures did prevent the induction of a cytotoxic effect on A549 cells overlaid with this mixture but did not prevent the death of epithelial cells when added prior to infection with M. tuberculosis bacilli. Thus, these data agree with previous observations that lung epithelial cells infected with M. tuberculosis bacilli are rapidly killed in vitro. In addition, the data indicate that some of the observed epithelial cell killing may be collateral damage; the result of TNF-α released from M. tuberculosis-infected monocytes.  相似文献   

16.
Bahk YY  Kim SA  Kim JS  Euh HJ  Bai GH  Cho SN  Kim YS 《Proteomics》2004,4(11):3299-3307
Tuberculosis caused by mycobacteria, mainly Mycobacterium tuberculosis, is a major infectious disease of the respiratory system. An early diagnosis followed by chemotherapy is the major control strategy. In an effort to identify the antigens suitable for immunodiagnosis and vaccines, the proteins secreted in a culture medium from the M. tuberculosis K-strain, which is the most prevalent among the clinical isolates in Korea and belongs to the Beijing family, were analyzed by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and compared with those from the M. tuberculosis H37Rv and CDC1551 strains. Eight proteins, Rv0652, Rv1636, Rv2818c, Rv3369, Rv3865, Rv0566c, MT3304, and Rv3160, were identified by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) or liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) and found to be relatively abundant in the culture medium from the M. tuberculosis K-strain but less so from the CDC1551 or H37Rv strains. In addition, Rv3874 (CFP-10), Rv-0560c and Rv3648c, which were expressed increasingly in the K and CDC1551 strains, were also identified using the same proteomics technology. All proteins were prepared by molecular cloning, expression in Escherichia coli followed by affinity purification. Among them, three proteins, rRv3369, rRv0566c, and rRv3874, were selected by prescreening and examined for their potential as serodiagnostic antigens using an enzyme-linked immunosorbent assay. When 100 sera from tuberculosis patients and 100 sera from the healthy controls were analyzed, rRV3369, rRv3874, and rRv0566c showed a sensitivity of 60%, 74%, and 43%, and a specificity of 96%, 97%, and 84%, respectively. These results suggest that the rRv3369 and rRv3874 proteins, which were expressed more abundantly in the more recently obtained clinical isolates of M. tuberculosis than in the laboratory-adapted H37Rv strain, are promising for use in the serodiagnosis of tuberculosis.  相似文献   

17.
Zubrzycki IZ 《Proteins》2004,54(3):563-568
Sequencing of the genomes of Mycobacterium tuberculosis and Mycobacterium bovis provides a unique opportunity to study the biology of these pathogens on the genomic level. The computational detection of anomalous gene clusters such as those encompassed by pathogenicity islands allows for a narrowing of the study into well-defined groups of genes. Pathogenicity islands of M. tuberculosis (strains H37Rv and CDC1551) as well as M. bovis genomes comprise a group of genes encoding proteins that have been shown to be of immunological importance. The cross-genomic comparison (M. tuberculosis vs M. bovis) resulted in the elucidation of unique proteins in M. tuberculosis. These proteins may play a significant role in the host recognition process.  相似文献   

18.
Mycobacterium tuberculosis CDC1551, a clinical isolate reported to be hypervirulent and to grow faster than other isolates, was compared with two other clinical isolates (HN60 and HN878) and two laboratory strains (H37Rv and Erdman). The initial (1-14 days) growth of CDC1551, HN60, HN878, and H37Rv was similar in the lungs of aerosol-infected mice, but growth of Erdman was slower. Thereafter, the growth rate of CDC1551 decreased relative to the other strains which continued to grow at comparable rates up to day 21. In the lungs of CDC1551-infected mice, small well-organized granulomas with high levels of TNF-alpha, IL-6, IL-10, IL-12, and IFN-gamma mRNA were apparent sooner than in lungs of mice infected with the other strains. CDC1551-infected mice survived significantly longer. These findings were confirmed in vitro. The growth rates of H37Rv and CDC1551 in human monocytes were the same, but higher levels of TNF-alpha, IL-10, IL-6, and IL-12 were induced in monocytes after infection with CDC1551 or by exposure of monocytes to lipid fractions from CDC1551. CD14 expression on the surface of the monocytes was up-regulated to a greater extent by exposure to the lipids of CDC1551. Thus, CDC1551 is not more virulent than other M. tuberculosis isolates in terms of growth in vivo and in vitro, but it induces a more rapid and robust host response.  相似文献   

19.
The modfied version of the method of subtracting hybridization for full-genome comparison of M. tuberculosis strain HN878, capable of inducing a nonpulmonary form of tuberculosis, with strain CDC1551 causing tuberculosis--with classical pulmonary symptoms. The clone library of differential fragments, responsible for differences between genome HN878 and genome CDC1551, was created. As the result of the structural analysis carried out in this study, the set of differential fragments was divided into. three main groups: new places of the integration of transposon IS6110; fragments resulting from the transformations of other repeating sequences of the genome; long unique nucleotide sequences, absent in genome CDC1551. Genome transformations may be a highly important factor of the modulation of the phenotypical properties of the pathogen, including those which jointly determined its virulence, and also served as valuable molecular genetic markers for diagnostic purposes.  相似文献   

20.
Lipoarabinomannan (LAM) is composed of a phosphatidylinositol anchor followed by a mannan followed by an arabinan that may be capped with various motifs including oligosaccharides of mannose. A related polymer, lipomannan (LM), is composed of only the phosphatidylinositol and mannan core. Both the structure and the biosynthesis of LAM have been studied extensively. However, fundamental questions about the branching structure of LM and the number of arabinan chains on the mannan backbone in LAM remain. LM and LAM molecules produced by three different glycosyltransferase mutants of Mycobacterium smegmatis were used here to investigate these questions. Using an MSMEG_4241 mutant that lacks the α-(1,6)-mannosyltransferase used late in LM elongation, we showed that the reducing end region of the mannan that is attached to inositol has 5–7 unbranched α-6-linked-mannosyl residues followed by two or three α-6-linked mannosyl residues branched with single α-mannopyranose residues at O-2. After these branched mannosyl residues, the α-6-linked mannan chain is terminated with an α-mannopyranose at O-2 rather than O-6 of the penultimate residue. Analysis of the number of arabinans attached to the mannan core of LM in two other mutants (ΔembC and ΔMSMEG_4247) demonstrated exactly one arabinosyl substitution of the mannan core suggestive of the arabinosylation of a linear LM precursor with ∼10–12 mannosyl residues followed by additional mannosylation of the core and arabinosylation of a single arabinosyl “primer.” Thus, these studies suggest that only a single arabinan chain attached near the middle of the mannan core is present in mature LAM and allow for an updated working model of the biosynthetic pathway of LAM and LM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号