首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
The mammalian circadian clock is a cell-autonomous system that drives oscillations in behavior and physiology in anticipation of daily environmental change. To assess the robustness of a human molecular clock, we systematically depleted known clock components and observed that circadian oscillations are maintained over a wide range of disruptions. We developed a novel strategy termed Gene Dosage Network Analysis (GDNA) in which small interfering RNA (siRNA)-induced dose-dependent changes in gene expression were used to build gene association networks consistent with known biochemical constraints. The use of multiple doses powered the analysis to uncover several novel network features of the circadian clock, including proportional responses and signal propagation through interacting genetic modules. We also observed several examples where a gene is up-regulated following knockdown of its paralog, suggesting the clock network utilizes active compensatory mechanisms rather than simple redundancy to confer robustness and maintain function. We propose that these network features act in concert as a genetic buffering system to maintain clock function in the face of genetic and environmental perturbation.  相似文献   

12.
13.
14.
15.
16.
《Current biology : CB》2014,24(16):1836-1844
  1. Download : Download high-res image (189KB)
  2. Download : Download full-size image
  相似文献   

17.
18.
19.
20.
众所周知,从单细胞生物到人,几乎所有生物体在生理和行为上都表现出昼夜节律。内源性生物钟是产生昼夜节律的物质基础,由母钟和子钟组成,母钟位于下丘脑视交叉上核(SCN),子钟位于各个外周组织(肝脏、心脏等)。随着机体的逐渐衰老,反应生物钟输出信号的生理昼夜节律在振荡幅度、振荡周期和表达时相等方面发生了相应的变化。另一方面,生物钟控制的生理昼夜节律影响衰老的进程,生物钟功能紊乱会严重加速机体的衰老。本文概述了衰老与生物钟之间的相关研究进展,为进一步认识衰老机制及其对机体的影响提供了线索。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号