首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(ADP-ribose) polymerase (PARP) is an intracellular enzyme involved in DNA repair and in building poly-ADP-ribose polymers on nuclear proteins using NAD+. While the majority of PARP resides in the nucleus, several studies indicated that PARP may also be located in the cytosol or in the mitochondrial matrix. In this study we found several poly-ADP-ribosylated proteins in isolated rat liver mitochondria following hydrogen peroxide (H2O2) or nitric oxide donor treatment. Protein poly-ADP-ribosylation was more intense in isolated mitochondria than in whole tissue homogenates and it was not associated with increased nuclear PARP activity. We identified five poly-ADP-ribose (PAR) positive mitochondrial bands by protein mass fingerprinting. All of the identified enzymes exhibited decreased activity or decreased levels following oxidative or nitrosative stress. One of the identified proteins is dihydrolipoamide dehydrogenase (DLDH), a component of the alpha-ketoglutarate dehydrogenase (KGDH) complex, which uses NAD+ as a substrate. This raised the possibility that KGDH may have a PARP-like enzymatic activity. The intrinsic PARP activity of KGDH and DLDH was confirmed using a colorimetric PARP assay kit and by the incubation of the recombinant enzymes with H2O2. The KGDH enzyme may, therefore, have a novel function as a PARP-like enzyme, which may play a role in regulating intramitochondrial NAD+ and poly(ADP-ribose) homeostasis, with possible roles in physiology and pathophysiology.  相似文献   

2.

Background  

The enzymes responsible for the synthesis of poly-ADP-ribose are named poly-ADP-ribose polymerases (PARP). PARP-2 is a nuclear protein, which regulates a variety of cellular functions that are mainly controlled by protein-protein interactions. A previously described non-conventional bipartite nuclear localization sequence (NLS) lies in the amino-terminal DNA binding domain of PARP-2 between amino acids 1–69; however, this targeting sequence has not been experimentally examined or validated.  相似文献   

3.
Hereditary retinal degeneration (RD) relates to a heterogeneous group of blinding human diseases in which the light sensitive neurons of the retina, the photoreceptors, die. RD is currently untreatable and the underlying cellular mechanisms remain poorly understood. However, the activity of the enzyme poly-ADP-ribose polymerase-1 (PARP1) and excessive generation of poly-ADP-ribose (PAR) polymers in photoreceptor nuclei have been shown to be causally involved in RD. The activity of PARP1 is to a large extent governed by its functional antagonist, poly-ADP-glycohydrolase (PARG), which thus also may have a role in RD. To investigate this, we analyzed PARG expression in the retina of wild-type (wt) mice and in the rd1 mouse model for human RD, and detected increased PARG protein in a subset of degenerating rd1 photoreceptors. Knockout (KO) animals lacking the 110 kDa nuclear PARG isoform were furthermore analyzed, and their retinal morphology and function were indistinguishable from wild-type animals. Organotypic wt retinal explants can be experimentally treated to induce rd1-like photoreceptor death, but PARG110 KO retinal explants were unexpectedly highly resistant to such treatment. The resistance was associated with decreased PAR accumulation and low PARP activity, indicating that PARG110 may positively regulate PARP1, an event that therefore is absent in PARG110 KO tissue. Our study demonstrates a causal involvement of PARG110 in the process of photoreceptor degeneration. Contrasting its anticipated role as a functional antagonist, absence of PARG110 correlated with low PARP activity, suggesting that PARG110 and PARP1 act in a positive feedback loop, which is especially active under pathologic conditions. This in turn highlights both PARG110 and PARP1 as potential targets for neuroprotective treatments for RD.  相似文献   

4.
5.
6.
7.
8.
Dachshund (Dac) is a highly conserved nuclear protein that is distantly related to the Ski/Sno family of corepressor proteins. In Drosophila, Dac is necessary and sufficient for eye development and, along with Eyeless (Ey), Sine oculis (So), and Eyes absent (Eya), forms the core of the retinal determination (RD) network. In vivo and in vitro experiments suggest that members of the RD network function together in one or more complexes to regulate the expression of downstream targets. For example, Dac and Eya synergize in vivo to induce ectopic eye formation and they physically interact through conserved domains. Dac contains two highly conserved domains, named DD1 and DD2, but no function has been assigned to either of them in an in vivo context. We performed structure-function studies to understand the relationship between the conserved domains of Dac and the rest of the protein and to determine the function of each domain during development. We show that only DD1 is essential for Dac function and while DD2 facilitates DD1, it is not absolutely essential in spite of more than 500 million years of conservation. Moreover, the physical interaction between Eya and DD2 is not required for the genetic synergy between the two proteins. Finally, we show that DD1 also plays a central role for nuclear localization of Dac.  相似文献   

9.
10.
The TALE homeodomain-containing PBC and MEIS proteins play multiple roles during metazoan development. Mutations in these proteins can cause various disorders, including cancer. In this study, we examined the roles of MEIS proteins in mesoderm development in C. elegans using the postembryonic mesodermal M lineage as a model system. We found that the MEIS protein UNC-62 plays essential roles in regulating cell fate specification and differentiation in the M lineage. Furthermore, UNC-62 appears to function together with the PBC protein CEH-20 in regulating these processes. Both unc-62 and ceh-20 have overlapping expression patterns within and outside of the M lineage, and they share physical and regulatory interactions. In particular, we found that ceh-20 is genetically required for the promoter activity of unc-62, providing evidence for another layer of regulatory interactions between MEIS and PBC proteins.  相似文献   

11.
12.
13.
Nutrient-sensitive pathways regulate both O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK), cooperatively connecting metabolic homeostasis to regulation of numerous intracellular processes essential for life. Similar to phosphorylation, catalyzed by kinases such as AMPK, O-GlcNAcylation is a highly dynamic Ser/Thr-specific post-translational modification of nuclear, cytoplasmic, and mitochondrial proteins catalyzed exclusively by OGT. OGT and AMPK target a multitude of intracellular proteins, with the net effect to protect cells from the damaging effects of metabolic stress. Despite hundreds of studies demonstrating significant overlap in upstream and downstream signaling processes, no study has investigated if OGT and AMPK can directly regulate each other. We show acute activation of AMPK alters the substrate selectivity of OGT in several cell lines and nuclear localization of OGT in C2C12 skeletal muscle myotubes. Nuclear localization of OGT affects O-GlcNAcylation of numerous nuclear proteins and acetylation of Lys-9 on histone 3 in myotubes. AMPK phosphorylates Thr-444 on OGT in vitro; phosphorylation of Thr-444 is tightly associated with AMPK activity and nuclear localization of OGT in myotubes, and phospho-mimetic T444E-OGT exhibits altered substrate selectivity. Conversely, the α- and γ-subunits of AMPK are O-GlcNAcylated, O-GlcNAcylation of the γ1-subunit increases with AMPK activity, and acute inhibition of O-GlcNAc cycling disrupts activation of AMPK. We have demonstrated significant cross-talk between the O-GlcNAc and AMPK systems, suggesting OGT and AMPK may cooperatively regulate nutrient-sensitive intracellular processes that mediate cellular metabolism, growth, proliferation, and/or tissue function.  相似文献   

14.
The superfamily of fibroblast growth factors (FGF), which counts 22 members in humans, exerts many functions during animal development and adult life. LET-756 is one of the two FGFs of the nematode C. elegans. Re-introduction of LET-756 in a null mutant strain restores viability, allowing the study of structural requirements for LET-756 trafficking and function. LET-756 protein has several regions and motifs, including a non-classical internal motif required for secretion. We show here that a main difference in the wild-type LET-756 molecule and a truncated molecule that mimics a partial loss-of-function mutant lies on subnuclear expression. Using Cos-1 cells and rescue activity we show that: (i) nuclear localization is due to various redundant NLS, one of them acting as a nucleolar localization signal; (ii) nuclear LET-756 is addressed to the speckles by a stretch of glutamine residues; (iii) nuclear LET-756 is trafficking between speckles and nucleoli; (iv) in the nucleolus, LET-756 is associated with proteins of the rRNA splicing compartment; (v) changing LET-756 secretion signal prevents its nuclear localization. We propose that LET-756 exerts its functions through a balance between secreted and nuclear forms due to two opposite addressing signals, (i) synergy of several NLS and (ii) attenuated secretion signal.  相似文献   

15.
The Drosophila crooked neck (crn) gene encodes an unusual TPR-containing protein whose function is essential for embryonic development. Homology with other TPR-proteins involved in cell cycle control, initially led to the proposal that Crn might play a critical role in regulation of embryonic cell divisions. Here, we show that Crn does not have a cell cycle function in the embryo. By using specific antibodies we also show that the Crn protein is a nuclear protein which localizes in "speckles" which could correspond to preferential localization of several other splicing factors. Fractionation of nuclear extracts on sucrose gradients revealed Crn in a 900 kDa multiproteic complex together with snRNPs, suggesting that Crn participates in the assembly of the splicing machinery in vivo.  相似文献   

16.
The zinc finger antiviral protein (ZAP) is a broad inhibitor of virus replication. Its best-characterized function is to bind CpG dinucleotides present in viral RNAs and, through the recruitment of TRIM25, KHNYN and other cofactors, target them for degradation or prevent their translation. The long and short isoforms of ZAP (ZAP-L and ZAP-S) have different intracellular localization and it is unclear how this regulates their antiviral activity against viruses with different sites of replication. Using ZAP-sensitive and ZAP-insensitive human immunodeficiency virus type I (HIV-1), which transcribe the viral RNA in the nucleus and assemble virions at the plasma membrane, we show that the catalytically inactive poly-ADP-ribose polymerase (PARP) domain in ZAP-L is essential for CpG-specific viral restriction. Mutation of a crucial cysteine in the C-terminal CaaX box that mediates S-farnesylation and, to a lesser extent, the residues in place of the catalytic site triad within the PARP domain, disrupted the activity of ZAP-L. Addition of the CaaX box to ZAP-S partly restored antiviral activity, explaining why ZAP-S lacks antiviral activity for CpG-enriched HIV-1 despite conservation of the RNA-binding domain. Confocal microscopy confirmed the CaaX motif mediated localization of ZAP-L to vesicular structures and enhanced physical association with intracellular membranes. Importantly, the PARP domain and CaaX box together jointly modulate the interaction between ZAP-L and its cofactors TRIM25 and KHNYN, implying that its proper subcellular localisation is required to establish an antiviral complex. The essential contribution of the PARP domain and CaaX box to ZAP-L antiviral activity was further confirmed by inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, which replicates in double-membrane vesicles derived from the endoplasmic reticulum. Thus, compartmentalization of ZAP-L on intracellular membranes provides an essential effector function in ZAP-L-mediated antiviral activity against divergent viruses with different subcellular replication sites.  相似文献   

17.
Curcuma phaeocaulis Valeton is a commonly prescribed Chinese medical herb for tumor therapy. In this study, an extract of Curcuma phaeocaulis Valeton referred as Cpv was prepared and its anti-tumor effect was evaluated with MCF-7 and MDA-MB-231 cells. Curcuma phaeocaulis Valeton power was extracted with ethanol and the main components of the extract (Cpv) were analyzed with HPLC. The effect of Cpv on MCF-7 cells proliferation, intracellular reactive oxygen species (ROS) formation, mitochondrial membrane potential (ΔΨm), apoptosis, apoptotic related proteins, MDA-MB-231 cell migration, and integrins expression were determined. Furthermore, the effect of Cpv on some key signal transduction molecules was also investigated. Furanodienone, germacrone and furanodiene were identified as the main components of Cpv. Cpv treatment significantly inhibited cell proliferation, increased LDH release, induced intracellular ROS formation, and decreased ΔΨm in a dose-dependent manner in MCF-7 cells. Cpv induced apoptosis without affecting cell migration. Cpv increased protein expression of Bax, PARP, cleaved PARP, caspase-3, 7, JNK1, p-p42/44MAPK, NF-κB, IKKα, IKKβ, decreased protein expression of Bcl-2, Bcl-xL, Bim, Bik, Bad, integrin β5, p42/44MAPK without affecting integrin α5, β1, and p38MAPK protein expression. We concluded that Cpv inhibited MCF-7 cells proliferation by inducing apoptosis mediated by increasing ROS formation, decreasing ΔΨm, regulating Bcl-2 family proteins expression, and activating caspases. Cpv treatment also modulated several signaling transduction pathways. These results might provide some molecular basis for the anti-tumor activity of Curcuma phaeocaulis Valeton.  相似文献   

18.
The evolutionarily conserved factor eIF5A is the only protein known to undergo hypusination, a unique posttranslational modification triggered by deoxyhypusine synthase (Dys1). Although eIF5A is essential for cell viability, the function of this putative translation initiation factor is still obscure. To identify eIF5A-binding proteins that could clarify its function, we screened a two-hybrid library and identified two eIF-5A partners in S. cerevisiae: Dys1 and the protein encoded by the gene YJR070C, named Lia1 (Ligand of eIF5A). The interactions were confirmed by GST pulldown. Mapping binding sites for these proteins revealed that both eIF5A domains can bind to Dys1, whereas the C-terminal domain is sufficient to bind Lia1. We demonstrate for the first time in vivo that the N-terminal alpha-helix of Dys1 can modulate enzyme activity by inhibiting eIF5A interaction. We suggest that this inhibition be abrogated in the cell when hypusinated and functional eIF5A is required.  相似文献   

19.
20.
Inhibitors of poly-ADP-ribose polymerase (PARP) family proteins are currently in clinical trials as cancer therapeutics, yet the specificity of many of these compounds is unknown. Here we evaluated a series of 185 small-molecule inhibitors, including research reagents and compounds being tested clinically, for the ability to bind to the catalytic domains of 13 of the 17 human PARP family members including the tankyrases, TNKS1 and TNKS2. Many of the best-known inhibitors, including TIQ-A, 6(5H)-phenanthridinone, olaparib, ABT-888 and rucaparib, bound to several PARP family members, suggesting that these molecules lack specificity and have promiscuous inhibitory activity. We also determined X-ray crystal structures for five TNKS2 ligand complexes and four PARP14 ligand complexes. In addition to showing that the majority of PARP inhibitors bind multiple targets, these results provide insight into the design of new inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号