首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of prior heavy-intensity exercise on O(2) uptake (Vo(2)) kinetics of a second heavy exercise may be due to vasodilation (associated with metabolic acidosis) and improved muscle blood flow. This study examined the effect of prior heavy-intensity exercise on femoral artery blood flow (Qleg) and its relationship with Vo(2) kinetics. Five young subjects completed five to eight repeats of two 6-min bouts of heavy-intensity one-legged, knee-extension exercise separated by 6 min of loadless exercise. Vo(2) was measured breath by breath. Pulsed-wave Doppler ultrasound was used to measure Qleg. Vo(2) and blood flow velocity data were fit using a monoexponential model to identify phase II and phase III time periods and estimate the response amplitudes and time constants (tau). Phase II Vo(2) kinetics was speeded on the second heavy-intensity exercise [mean tau (SD), 29 (10) s to 24 (10) s, P < 0.05] with no change in the phase II (or phase III) amplitude. Qleg was elevated before the second exercise [1.55 (0.34) l/min to 1.90 (0.25) l/min, P < 0.05], but the amplitude and time course [tau, 25 (13) s to 35 (13) s] were not changed, such that throughout the transient the Qleg (and DeltaQleg/DeltaVo(2)) did not differ from the prior heavy exercise. Thus Vo(2) kinetics were accelerated on the second exercise, but the faster kinetics were not associated with changes in Qleg. Thus limb blood flow appears not to limit Vo(2) kinetics during single-leg heavy-intensity exercise nor to be the mechanism of the altered Vo(2) response after heavy-intensity prior exercise.  相似文献   

2.
The effect of prior exercise on pulmonary O(2) uptake (Vo(2)(p)), leg blood flow (LBF), and muscle deoxygenation at the onset of heavy-intensity alternate-leg knee-extension (KE) exercise was examined. Seven subjects [27 (5) yr; mean (SD)] performed step transitions (n = 3; 8 min) from passive KE following no warm-up (HVY 1) and heavy-intensity (Delta50%, 8 min; HVY 2) KE exercise. Vo(2)(p) was measured breath-by-breath; LBF was measured by Doppler ultrasound at the femoral artery; and oxy (O(2)Hb)-, deoxy (HHb)-, and total (Hb(tot)) hemoglobin/myoglobin of the vastus lateralis muscle were measured continuously by near-infrared spectroscopy (NIRS; Hamamatsu NIRO-300). Phase 2 Vo(2)(p), LBF, and HHb data were fit with a monoexponential model. The time delay (TD) from exercise onset to an increase in HHb was also determined and an HHb effective time constant (HHb - MRT = TD + tau) was calculated. Prior heavy-intensity exercise resulted in a speeding (P < 0.05) of phase 2 Vo(2)(p) kinetics [HVY 1: 42 s (6); HVY 2: 37 s (8)], with no change in the phase 2 amplitude [HVY 1: 1.43 l/min (0.21); HVY 2: 1.48 l/min (0.21)] or amplitude of the Vo(2)(p) slow component [HVY 1: 0.18 l/min (0.08); HVY 2: 0.18 l/min (0.09)]. O(2)Hb and Hb(tot) were elevated throughout the on-transient following prior heavy-intensity exercise. The tauLBF [HVY 1: 39 s (7); HVY 2: 47 s (21); P = 0.48] and HHb-MRT [HVY 1: 23 s (4); HVY 2: 21 s (7); P = 0.63] were unaffected by prior exercise. However, the increase in HHb [HVY 1: 21 microM (10); HVY 2: 25 microM (10); P < 0.001] and the HHb-to-Vo(2)(p) ratio [(HHb/Vo(2)(p)) HVY 1: 14 microM x l(-1) x min(-1) (6); HVY 2: 17 microM x l(-1) x min(-1) (5); P < 0.05] were greater following prior heavy-intensity exercise. These results suggest that the speeding of phase 2 tauVo(2)(p) was the result of both elevated local O(2) availability and greater O(2) extraction evidenced by the greater HHb amplitude and HHb/Vo(2)(p) ratio following prior heavy-intensity exercise.  相似文献   

3.
We tested the hypothesis that heavy-exercise phase II oxygen uptake (VO(2)) kinetics could be speeded by prior heavy exercise. Ten subjects performed four protocols involving 6-min exercise bouts on a cycle ergometer separated by 6 min of recovery: 1) moderate followed by moderate exercise; 2) moderate followed by heavy exercise; 3) heavy followed by moderate exercise; and 4) heavy followed by heavy exercise. The VO(2) responses were modeled using two (moderate exercise) or three (heavy exercise) independent exponential terms. Neither moderate- nor heavy-intensity exercise had an effect on the VO(2) kinetic response to subsequent moderate exercise. Although heavy-intensity exercise significantly reduced the mean response time in the second heavy exercise bout (from 65.2 +/- 4.1 to 47.0 +/- 3.1 s; P < 0.05), it had no significant effect on either the amplitude or the time constant (from 23.9 +/- 1.9 to 25.3 +/- 2.9 s) of the VO(2) response in phase II. Instead, this "speeding" was due to a significant reduction in the amplitude of the VO(2) slow component. These results suggest phase II VO(2) kinetics are not speeded by prior heavy exercise.  相似文献   

4.
We hypothesized that the elevated primary O(2) uptake (VO(2)) amplitude during the second of two bouts of heavy cycle exercise would be accompanied by an increase in the integrated electromyogram (iEMG) measured from three leg muscles (gluteus maximus, vastus lateralis, and vastus medialis). Eight healthy men performed two 6-min bouts of heavy leg cycling (at 70% of the difference between the lactate threshold and peak VO(2)) separated by 12 min of recovery. The iEMG was measured throughout each exercise bout. The amplitude of the primary VO(2) response was increased after prior heavy leg exercise (from mean +/- SE 2.11 +/- 0.12 to 2.44 +/- 0.10 l/min, P < 0.05) with no change in the time constant of the primary response (from 21.7 +/- 2.3 to 25.2 +/- 3.3 s), and the amplitude of the VO(2) slow component was reduced (from 0.79 +/- 0.08 to 0.40 +/- 0.08 l/min, P < 0.05). The elevated primary VO(2) amplitude after leg cycling was accompanied by a 19% increase in the averaged iEMG of the three muscles in the first 2 min of exercise (491 +/- 108 vs. 604 +/- 151% increase above baseline values, P < 0.05), whereas mean power frequency was unchanged (80.1 +/- 0.9 vs. 80.6 +/- 1.0 Hz). The results of the present study indicate that the increased primary VO(2) amplitude observed during the second of two bouts of heavy exercise is related to a greater recruitment of motor units at the onset of exercise.  相似文献   

5.
Prior heavy exercise markedly alters the O2 uptake (VO2) response to subsequent heavy exercise. However, the time required for VO2 to return to its normal profile following prior heavy exercise is not known. Therefore, we examined the VO2 responses to repeated bouts of heavy exercise separated by five different recovery durations. On separate occasions, nine male subjects completed two 6-min bouts of heavy cycle exercise separated by 10, 20, 30, 45, or 60 min of passive recovery. The second-by-second VO2 responses were modeled using nonlinear regression. Prior heavy exercise had no effect on the primary VO2 time constant (from 25.9 +/- 4.7 s to 23.9 +/- 8.8 s after 10 min of recovery; P = 0.338), but it increased the primary VO2 amplitude (from 2.42 +/- 0.39 to 2.53 +/- 0.41 l/min after 10 min of recovery; P = 0.001) and reduced the VO2 slow component (from 0.44 +/- 0.13 to 0.21 +/- 0.12 l/min after 10 min of recovery; P < 0.001). The increased primary amplitude was also evident after 20-45 min, but not after 60 min, of recovery. The increase in the primary VO2 amplitude was accompanied by an increased baseline blood lactate concentration (to 5.1 +/- 1.0 mM after 10 min of recovery; P < 0.001). Baseline blood lactate concentration was still elevated after 20-60 min of recovery. The priming effect of prior heavy exercise on the VO2 response persists for at least 45 min, although the mechanism underpinning the effect remains obscure.  相似文献   

6.
This study examined the effect of heavy-intensity warm-up exercise on O(2) uptake (VO(2)) kinetics at the onset of moderate-intensity (80% ventilation threshold), constant-work rate exercise in eight older (65 +/- 2 yr) and seven younger adults (26 +/- 1 yr). Step increases in work rate from loadless cycling to moderate exercise (Mod(1)), heavy exercise, and moderate exercise (Mod(2)) were performed. Each exercise bout was 6 min in duration and separated by 6 min of loadless cycling. VO(2) kinetics were modeled from the onset of exercise by use of a two-component exponential model. Heart rate (HR) kinetics were modeled from the onset of exercise using a single exponential model. During Mod(1), the time constant (tau) for the predominant rise in VO(2) (tau VO(2)) was slower (P < 0.05) in the older adults (50 +/- 10 s) than in young adults (19 +/- 5 s). The older adults demonstrated a speeding (P < 0.05) of VO(2) kinetics when moderate-intensity exercise (Mod(2)) was preceded by high-intensity warm-up exercise (tau VO(2), 27 +/- 3 s), whereas young adults showed no speeding of VO(2) kinetics (tau VO(2), 17 +/- 3 s). In the older and younger adults, baseline HR preceding Mod(2) was elevated compared with Mod(1), but the tau for HR kinetics was slowed (P < 0.05) in Mod(2) only for the older adults. Prior heavy-intensity exercise in old, but not young, adults speeded VO(2) kinetics during Mod(2). Despite slowed HR kinetics in Mod(2) in the older adults, an elevated baseline HR before the onset of Mod(2) may have led to sufficient muscle perfusion and O(2) delivery. These results suggest that, when muscle blood flow and O(2) delivery are adequate, muscle O(2) consumption in both old and young adults is limited by intracellular processes within the exercising muscle.  相似文献   

7.
We hypothesized that inhibition of nitric oxide synthase (NOS) by N(G)-nitro-L-arginine methyl ester (L-NAME) would alleviate the inhibition of mitochondrial oxygen uptake (Vo(2)) by nitric oxide and result in a speeding of phase II pulmonary Vo(2) kinetics at the onset of heavy-intensity exercise. Seven men performed square-wave transitions from unloaded cycling to a work rate requiring 40% of the difference between the gas exchange threshold and peak Vo(2) with and without prior intravenous infusion of L-NAME (4 mg/kg in 50 ml saline over 60 min). Pulmonary gas exchange was measured breath by breath, and Vo(2) kinetics were determined from the averaged response to two exercise bouts performed in each condition. There were no significant differences between the control (C) and L-NAME conditions (L) for baseline Vo(2), the duration of phase I, or the amplitude of the primary Vo(2) response. However, the time constant of the Vo(2) response in phase II was significantly smaller (mean +/- SE: C: 25.1 +/- 3.0 s; L: 21.8 +/- 3.3 s; P < 0.05), and the amplitude of the Vo(2) slow component was significantly greater (C: 240 +/- 47 ml/min; L: 363 +/- 24 ml/min; P < 0.05) after L-NAME infusion. These data indicate that inhibition of NOS by L-NAME results in a significant (13%) speeding of Vo(2) kinetics and a significant increase in the amplitude of the Vo(2) slow component in the transition to heavy-intensity cycle exercise in men. The speeding of the primary component Vo(2) kinetics after L-NAME infusion indicates that at least part of the intrinsic inertia to oxidative metabolism at the onset of heavy-intensity exercise may result from inhibition of mitochondrial Vo(2) by nitric oxide. The cause of the larger Vo(2) slow-component amplitude with L-NAME requires further investigation but may be related to differences in muscle blood flow early in the rest-to-exercise transition.  相似文献   

8.
The work of breathing (W(b)) normally incurred during maximal exercise not only requires substantial cardiac output and O(2) consumption (VO(2)) but also causes vasoconstriction in locomotor muscles and compromises leg blood flow (Q(leg)). We wondered whether the W(b) normally incurred during submaximal exercise would also reduce Q(leg). Therefore, we investigated the effects of changing the W(b) on Q(leg) via thermodilution in 10 healthy trained male cyclists [maximal VO(2) (VO(2 max)) = 59 +/- 9 ml. kg(-1). min(-1)] during repeated bouts of cycle exercise at work rates corresponding to 50 and 75% of VO(2 max). Inspiratory muscle work was 1) reduced 40 +/- 6% via a proportional-assist ventilator, 2) not manipulated (control), or 3) increased 61 +/- 8% by addition of inspiratory resistive loads. Increasing the W(b) during submaximal exercise caused VO(2) to increase; decreasing the W(b) was associated with lower VO(2) (DeltaVO(2) = 0.12 and 0.21 l/min at 50 and 75% of VO(2 max), respectively, for approximately 100% change in W(b)). There were no significant changes in leg vascular resistance (LVR), norepinephrine spillover, arterial pressure, or Q(leg) when W(b) was reduced or increased. Why are LVR, norepinephrine spillover, and Q(leg) influenced by the W(b) at maximal but not submaximal exercise? We postulate that at submaximal work rates and ventilation rates the normal W(b) required makes insufficient demands for VO(2) and cardiac output to require any cardiovascular adjustment and is too small to activate sympathetic vasoconstrictor efferent output. Furthermore, even a 50-70% increase in W(b) during submaximal exercise, as might be encountered in conditions where ventilation rates and/or inspiratory flow resistive forces are higher than normal, also does not elicit changes in LVR or Q(leg).  相似文献   

9.
The normal respiratory muscle effort at maximal exercise requires a significant fraction of cardiac output and causes leg blood flow to fall. We questioned whether the high levels of respiratory muscle work experienced in heavy exercise would affect performance. Seven male cyclists [maximal O(2) consumption (VO(2)) 63 +/- 5 ml. kg(-1). min(-1)] each completed 11 randomized trials on a cycle ergometer at a workload requiring 90% maximal VO(2). Respiratory muscle work was either decreased (unloading), increased (loading), or unchanged (control). Time to exhaustion was increased with unloading in 76% of the trials by an average of 1.3 +/- 0.4 min or 14 +/- 5% and decreased with loading in 83% of the trials by an average of 1.0 +/- 0.6 min or 15 +/- 3% compared with control (P < 0.05). Respiratory muscle unloading during exercise reduced VO(2), caused hyperventilation, and reduced the rate of change in perceptions of respiratory and limb discomfort throughout the duration of exercise. These findings demonstrate that the work of breathing normally incurred during sustained, heavy-intensity exercise (90% VO(2)) has a significant influence on exercise performance. We speculate that this effect of the normal respiratory muscle load on performance in trained male cyclists is due to the associated reduction in leg blood flow, which enhances both the onset of leg fatigue and the intensity with which both leg and respiratory muscle efforts are perceived.  相似文献   

10.
Pulmonary O2 uptake (VO2p) and muscle deoxygenation kinetics were examined during moderate-intensity cycling (80% lactate threshold) without warm-up and after heavy-intensity warm-up exercise in young (n = 6; 25 +/- 3 yr) and older (n = 5; 68 +/- 3 yr) adults. We hypothesized that heavy warm-up would speed VO2p kinetics in older adults consequent to an improved intramuscular oxygenation. Subjects performed step transitions (n = 4; 6 min) from 20 W to moderate-intensity exercise preceded by either no warm-up or heavy-intensity warm-up (6 min). VO2p was measured breath by breath. Oxy-, deoxy-(HHb), and total hemoglobin and myoglobin (Hb(tot)) of the vastus lateralis muscle were measured continuously by near-infrared spectroscopy (NIRS). VO2p (phase 2; tau) and HHb data were fit with a monoexponential model. After heavy-intensity warm-up, oxyhemoglobin (older subjects: 13 +/- 9 microM; young subjects: 9 +/- 8 microM) and Hb(tot) (older subjects: 12 +/- 8 microM; young subjects: 14 +/- 10 microM) were elevated (P < 0.05) relative to the no warm-up pretransition baseline. In older adults, tauVO2p adapted at a faster rate (P < 0.05) after heavy warm-up (30 +/- 7 s) than no warm-up (38 +/- 5 s), whereas in young subjects, tauVO2p was similar in no warm-up (26 +/- 7 s) and heavy warm-up (25 +/- 5 s). HHb adapted at a similar rate in older and young adults after no warm-up; however, in older adults after heavy warm-up, the adaptation of HHb was slower (P < 0.01) compared with young and no warm-up. These data suggest that, in older adults, VO2p kinetics may be limited by a slow adaptation of muscle blood flow and O2 delivery.  相似文献   

11.
We examined the central hemodynamic (n = 5) and leg blood flow (n = 9) responses to one- and two-leg bicycle exercise in nine ambulatory patients with chronic heart failure due to left ventricular systolic dysfunction (ejection fraction 17 +/- 9%). During peak one- vs. two-leg exercise, leg blood flow (thermodilution) tended to be higher (1.99 +/- 0.91 vs. 1.67 +/- 0.91 l/min, P = 0.07), whereas femoral arteriovenous oxygen difference was lower (13.6 +/- 3.1 vs. 15.0 +/- 2.9 ml/dl, P less than 0.01). Comparison of data from exercise stages matched for single-leg work rate during one- vs. two-leg exercise demonstrated that cardiac output was similar while both oxygen consumption and central arteriovenous oxygen differences were lower, indicating relative improvement in the cardiac output response at a given single-leg work rate during one-leg exercise. This was accompanied by higher leg blood flow (1.56 +/- 0.76 vs. 1.83 +/- 0.72 l/min, P = 0.02) and a tendency for leg vascular resistance to be lower (92 +/- 54 vs. 80 +/- 48 Torr.l-1.min, P = 0.08) without any change in blood lactate. These data indicate that, in patients with chronic heart failure, leg vasomotor tone is dynamically regulated, independent of skeletal muscle metabolism, and is not determined solely by intrinsic abnormalities in skeletal muscle vasodilator capacity. Our results suggest that relative improvements in central cardiac function may lead to a reflex release of skeletal muscle vasoconstrictor tone in this disorder.  相似文献   

12.
13.
We hypothesized that the performance of prior heavy exercise would speed the phase 2 oxygen consumption (VO2) kinetics during subsequent heavy exercise in the supine position (where perfusion pressure might limit muscle O2 supply) but not in the upright position. Eight healthy men (mean +/- SD age 24 +/- 7 yr; body mass 75.0 +/- 5.8 kg) completed a double-step test protocol involving two bouts of 6 min of heavy cycle exercise, separated by a 10-min recovery period, on two occasions in each of the upright and supine positions. Pulmonary O2 uptake was measured breath by breath and muscle oxygenation was assessed using near-infrared spectroscopy (NIRS). The NIRS data indicated that the performance of prior exercise resulted in hyperemia in both body positions. In the upright position, prior exercise had no significant effect on the time constant tau of the VO2 response in phase 2 (bout 1: 29 +/- 10 vs. bout 2: 28 +/- 4 s; P = 0.91) but reduced the amplitude of the VO2 slow component (bout 1: 0.45 +/- 0.16 vs. bout 2: 0.22 +/- 0.14 l/min; P = 0.006) during subsequent heavy exercise. In contrast, in the supine position, prior exercise resulted in a significant reduction in the phase 2 tau (bout 1: 38 +/- 18 vs. bout 2: 24 +/- 9 s; P = 0.03) but did not alter the amplitude of the VO2 slow component (bout 1: 0.40 +/- 0.29 vs. bout 2: 0.41 +/- 0.20 l/min; P = 0.86). These results suggest that the performance of prior heavy exercise enables a speeding of phase 2 VO2 kinetics during heavy exercise in the supine position, presumably by negating an O2 delivery limitation that was extant in the control condition, but not during upright exercise, where muscle O2 supply was probably not limiting.  相似文献   

14.
It has been suggested that the slower O2 uptake (VO2) kinetics observed when exercise is initiated from an elevated baseline metabolic rate are linked to an impairment of muscle O2 delivery. We hypothesized that "priming" exercise would significantly reduce the phase II time constant (tau) during subsequent severe-intensity cycle exercise initiated from an elevated baseline metabolic rate. Seven healthy men completed exercise transitions to 70% of the difference between gas exchange threshold (GET) and peak VO2 from a moderate-intensity baseline (90% GET) on three occasions in each of the "unprimed" and "primed" conditions. Pulmonary gas exchange, heart rate, and the electromyogram of m. vastus lateralis were measured during all tests. The phase II VO2 kinetics were slower when severe exercise was initiated from a baseline of moderate exercise compared with unloaded pedaling (mean+/-SD tau, 42+/-15 vs. 33+/-8 s; P<0.05), but were not accelerated by priming exercise (42+/-17 s; P>0.05). The amplitude of the VO2 slow component and the change in electromyogram from minutes 2 to 6 were both significantly reduced following priming exercise (VO2 slow component: from 0.47+/-0.09 to 0.27+/-0.13 l/min; change in integrated electromyogram between 2 and 6 min: from 51+/-35 to 26+/-43% of baseline; P<0.05 for both comparisons). These results indicate that the slower phase II VO2 kinetics observed during transitions to severe exercise from an elevated baseline are not altered by priming exercise, but that the reduced VO2 slow component may be linked to changes in muscle fiber activation.  相似文献   

15.
We tested the hypothesis that the work of the heart was not a limiting factor in the attainment of maximal oxygen uptake (VO2 max). We measured cardiac output (Q) and blood pressures (BP) during exercise at two different rates of maximal work to estimate the work of the heart through calculation of the rate-pressure product, as a part of the ongoing discussion regarding factors limiting VO2 max. Eight well-trained men (age 24.4 +/- 2.8 yr, weight 81.3 +/- 7.8 kg, and VO2 max 59.1 +/- 2.0 ml x min(-1) x kg(-1)) performed two maximal combined arm and leg exercises, differing 10% in watts, with average duration of time to exhaustion of 4 min 50 s and 3 min 40 s, respectively. There were no differences between work rates in measured VO2 max, maximal Q, and peak heart rate between work rates (0.02 l/min, 0.3 l/min, and 0.8 beats/min, respectively), but the systolic, diastolic, and calculated mean BP were significantly higher (19, 5, and 10 mmHg, respectively) in the higher than in the lower maximal work rate. The products of heart rate times systolic or mean BP and Q times systolic or mean BP were significantly higher (3,715, 1,780, 569, and 1,780, respectively) during the higher than the lower work rate. Differences in these four products indicate a higher mechanical work of the heart on higher than lower maximal work rate. Therefore, this study does not support the theory, which states that the work of the heart, and consequently VO2 max, during maximal exercise is hindered by a command from the central nervous system aiming at protecting the heart from being ischemic.  相似文献   

16.
Computer simulation of blood flow and O2 consumption (QO2) of leg muscles and of blood flow through other vascular compartments was made to estimate the potential effects of circulatory adjustments to moderate leg exercise on pulmonary O2 uptake (VO2) kinetics in humans. The model revealed a biphasic rise in pulmonary VO2 after the onset of constant-load exercise. The length of the first phase represented a circulatory transit time from the contracting muscles to the lung. The duration and magnitude of rise in VO2 during phase 1 were determined solely by the rate of rise in venous return and by the venous volume separating the muscle from the lung gas exchange sites. The second phase of VO2 represented increased muscle metabolism (QO2) of exercise. With the use of a single-exponential model for muscle QO2 and physiological estimates of other model parameters, phase 2 VO2 could be well described as a first-order exponential whose time constant was within 2 s of that for muscle QO2. The use of unphysiological estimates for certain parameters led to responses for VO2 during phase 2 that were qualitatively different from QO2. It is concluded that 1) the normal response of VO2 in humans to step increases in muscle work contains two components or phases, the first determined by cardiovascular phenomena and the second primarily reflecting muscle metabolism and 2) the kinetics of VO2 during phase 2 can be used to estimate the kinetics of muscle QO2. The simulation results are consistent with previously published profiles of VO2 kinetics for square-wave transients.  相似文献   

17.
We hypothesized that impaired O2 transport plays a role in limiting exercise in patients with chronic renal failure (CRF). Six CRF patients (25 +/- 6 yr) and six controls (24 +/- 6 yr) were examined twice during incremental single-leg isolated quadriceps exercise. Leg O2 delivery (QO2(leg)) and leg O2 uptake (VO2(leg)) were obtained when subjects breathed gas of three inspired O2 fractions (FI(O2)) (0.13, 0.21, and 1.0). On a different day, myoglobin O2 saturation and muscle bioenergetics were measured by proton and phosphorus magnetic resonance spectroscopy. CRF patients, but not controls, showed O2 supply dependency of peak VO2 (VO2(peak)) by a proportional relationship between peak VO2(leg) at each inspired O2 fraction (0.59 +/- 0.20, 0.47 +/- 0.10, 0.43 +/- 0.10 l/min, respectively) and 1) work rate (933 +/- 372, 733 +/- 163, 667 +/- 207 g), 2) QO(2leg) (0.80 +/- 0.20, 0.64 +/- 0.10, 0.59 +/- 0.10 l/min), and 3) cell PO2 (6.3 +/- 5.4, 1.7 +/- 1.3, 1.2 +/- 0.7 mmHg). CRF patients breathing 100% O2 and controls breathing 21% O2 had similar peak QO2(leg) (0.80 +/- 0.20 vs. 0.79 +/- 0.10 l/min) and similar peak VO2(leg) (0.59 +/- 0.20 vs. 0.57 +/- 0.10 l/min). However, mean capillary PO2 (47.9 +/- 4.0 vs. 38.2 +/- 4.6 mmHg) and the capillary-to-myocite gradient (40.7 +/- 6.2 vs. 34.4 +/- 4.0 mmHg) were both higher in CRF patients than in controls (P < 0.03 each). We conclude that low muscle O2 conductance, but not limited mitochondrial oxidative capacity, plays a role in limiting exercise tolerance in these patients.  相似文献   

18.
It is presently unclear how the fast and slow components of pulmonary oxygen uptake (VO(2)) kinetics would be altered by body posture during heavy exercise [i.e., above the lactate threshold (LT)]. Nine subjects performed transitions from unloaded cycling to work rates representing moderate (below the estimated LT) and heavy exercise (VO(2) equal to 50% of the difference between LT and peak VO(2)) under conditions of upright and supine positions. During moderate exercise, the steady-state increase in VO(2) was similar in the two positions, but VO(2) kinetics were slower in the supine position. During heavy exercise, the rate of adjustment of VO(2) to the 6-min value was also slower in the supine position but was characterized by a significant reduction in the amplitude of the fast component of VO(2), without a significant slowing of the phase 2 time constant. However, the amplitude of the slow component was significantly increased, such that the end-exercise VO(2) was the same in the two positions. The changes in VO(2) kinetics for the supine vs. upright position were paralleled by a blunted response of heart rate at 2 min into exercise during supine compared with upright heavy exercise. Thus the supine position was associated with not only a greater amplitude of the slow component for VO(2) but also, concomitantly, with a reduced amplitude of the fast component; this latter effect may be due, at least in part, to an attenuated early rise in heart rate in the supine position.  相似文献   

19.
We tested the hypothesis that increases in forearm blood flow (FBF) during the adaptive phase at the onset of moderate exercise would allow a more rapid increase in muscle O2 uptake (VO2 mus). Fifteen subjects completed forearm exercise in control (Con) and leg occlusion (Occ) conditions. In Occ, exercise of ischemic calf muscles was performed before the onset of forearm exercise to activate the muscle chemoreflex evoking a 25-mmHg increase in mean arterial pressure that was sustained during forearm exercise. Eight subjects who increased FBF during Occ compared with Con in the adaptation phase by >30 ml/min were considered "responders." For the responders, a higher VO2 mus accompanied the higher FBF only during the adaptive phase of the Occ tests, whereas there was no difference in the baseline or steady-state FBF or VO2 mus between Occ and Con. Supplying more blood flow at the onset of exercise allowed a more rapid increase in VO2 mus supporting our hypothesis that, at least for this type of exercise, O2 supply might be limiting.  相似文献   

20.
The purpose of this study was to examine oxygen consumption (VO2) and heart rate kinetics during moderate and repeated bouts of heavy square-wave cycling from an exercising baseline. Eight healthy, male volunteers performed square-wave bouts of leg ergometry above and below the gas exchange threshold separated by recovery cycling at 35% VO2 peak. VO2 and heart rate kinetics were modeled, after removal of phase I data by use of a biphasic on-kinetics and monoexponential off-kinetics model. Fingertip capillary blood was sampled 45 s before each transition for base excess, HCO and lactate concentration, and pH. Base excess and HCO concentration were significantly lower, whereas lactate concentration and pH were not different before the second bout. The results confirm earlier reports of a smaller mean response time in the second heavy bout. This was the result of a significantly greater fast-component amplitude and smaller slow-component amplitude with invariant fast-component time constant. A role for local oxygen delivery limitation in heavy exercise transitions with unloaded but not moderate baselines is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号