首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of all available liver cells in culture, only primary cultured hepatocytes are known to respond to glucagon in vitro. In the present study we investigated whether glucagon could stimulate amino acid transport and tyrosine aminotransferase (TAT;EC 2.6.1.5) activity (two well-characterized glucagon effects in the liver) in Fao cells, a highly differentiated rat hepatoma cell line. We found that glucagon had no effect on transport of alpha-aminoisobutyric acid (AIB; a non-metabolizable alanine analogue) nor on TAT activity, even though both activities could be fully induced by insulin [2-fold and 3-fold effects for AIB transport and TAT activity, respectively, after 6h; EC50 (median effective concentration) = 0.3 nM], or by dexamethasone (5-8-fold effects after 20 h; EC50 = 2 nM). Analysis of [125I]iodoglucagon binding revealed that Fao cells bind less than 1% as much glucagon as do hepatocytes, whereas insulin binding in Fao cells was 50% higher than in hepatocytes. The addition of dibutyryl cyclic AMP, which fully mimics the glucagon stimulation of both AIB transport and TAT activity in hepatocytes, induced TAT activity in Fao cells (a 2-fold effect at 0.1 mM-dibutyryl cyclic AMP) but had no effect on AIB transport. Cholera toxin stimulated TAT activity to the same extent as did dibutyryl cyclic AMP. These results indicate that the lack of glucagon responsiveness in cultured hepatoma cells results from both a receptor defect and, for amino acid transport, an additional post-receptor defect. Moreover, the results show that amino acid transport and TAT activity, which appeared to be co-induced by insulin or by dexamethasone in these cells, respond differently to cyclic AMP. This suggests that different mechanisms are involved in the induction of these activities by glucagon in liver.  相似文献   

2.
Glucagon and cAMP analogs stimulate amino acid transport in freshly isolated hepatocytes by inducing the synthesis of new transport proteins. The role of the cell nucleus in the glucagon regulation of amino acid transport has been studied in rat hepatocytes enucleated by centrifugation through a discontinuous Ficoll gradient in the presence of cytochalasin B. Enucleated hepatocytes take up alpha-aminoisobutyric acid (AIB) through a Na+-dependent transport component with kinetic properties similar to those found in intact hepatocytes. Cytoplasts prepared from glucagon-stimulated cells retain the increase AIB transport induced by the hormone in the intact cells. The direct addition of glucagon to cytoplasts has no effect on AIB transport, in spite of the fact that the cytoplasts exhibit a higher capacity to bind glucagon than their nucleated counterparts. These data indicate that the nucleus is required for the glucagon stimulation of amino acid transport in isolated hepatocytes.  相似文献   

3.
Insulin and glucagon stimulate amino acid transport in freshly prepared suspensions of isolated rat hepatocytes. The kinetic properties of alpha-amino[1-14C]isobutyric acid (AIB) transport were investigated in isolated hepatocytes following stimulation by either hormone in vitro. In nonhormonally treated cells (i.e. basal state), saturable transport occurred mainly through a low affinity (Km approximately equal to 40 mM) component. In insulin or glucagon-treated hepatocytes, saturable transport occurred through both a low affinity component (similar to that observed in the basal state) and a high affinity (Km approximately equal to 1 mM) component. At low AIB concentrations (less than 0.5 mM), insulin and glucagon at maximally stimulating doses increased AIB uptake about 2-fold and 5-fold, respectively. The high affinity component induced by either hormone exhibited the properties of the A (alanine preferring) mediation of amino acid transport. This component required 2 to 3 h for maximal expression, and its emergence was completely prevented by cycloheximide. Half-maximal stimulation was elicited by insulin at about 3 nM and by glucagon at about 1 nM. Dibutyryl cyclic AMP mimicked the glucagon effect and was not additive to it at maximal stimulation. Maximal effects of insulin and glucagon, or insulin and dibutyryl cyclic AMP, were additive. We conclude that insulin and glucagon can modulate amino acid entry in hepatocytes through the synthesis of a high affinity transport component.  相似文献   

4.
Amino acid transport was studied in primary cultures of parenchymal cells isolated from adult rat liver by a collagenase perfusion technique and maintained as a monolayer in a serum-free culture medium. These cells carried out gluconeogenesis from three carbon precursors (alanine, pyruvate, and lactate) in response to glucagon addition. Amino acid transport was assayed by measuring the uptake of the nonmetabolizable amino acid, alpha-aminoisobutyric acid (AIB). Addition of insulin or glucagon to culture rat liver parenchymal cells resulted in an increased influx of AIB transport. The glucocorticoid, dexamethasone, when added alone to cultures did not affect AIB transport. However, prior or simultaneous addition of dexamethasone to glucagon-treated cells caused a strong potentiation of the glucagon induction of AIB transport. Kinetic analysis of the effects of insulin and glucagon demonstrated that insulin increased the Vmax for transport without changing the Km while glucagon primarily decreased the Km for AIB transport. The effect of dexamethasone was to increase the Vmax of the low Km system.  相似文献   

5.
The effects of insulin, glucagon or Dexamethasone (DEX) and of glucagon with insulin or DEX were examined on the uptake of 2-amino [1-14C]isobutyric acid (AIB) and N-Methyl-2-amino [1-14C]isobutyric acid (NMe AIB) in monolayer cultures of rat hepatocytes. Insulin and glucagon stimulated the uptake of both the amino acids and DEX inhibited it, showing that all three of these hormones regulate the A system (the sodium-dependent system that permits the transport of NMe AIB) for amino acid transport in these cultures. Experiments investigating the transport of aminocyclopentane-1-carboxylic acid, 1- [carboxyl-14C] in the presence of excess AIB or in the absence of sodium showed that insulin had no effect on the activity of the L system (the sodium-independent system that prefers leucine). Experiments on the uptake of AIB in the presence of excess NMe AIB showed insulin had no effect on the transport activity of the ASC system (the sodium-dependent system that does not transport NEe AIB). Insulin concentrations ranging from 0.1 nM to 100 nM did not antagonize the stimulatory effect of optimum or suboptimum concentrations of glucagon on the uptake of either AIB or NMe AIB. Similarly, glucagon did not antagonize the stimulatory effect of optimum or suboptimum concentrations of insulin on the uptake of both the amino acids. The combined effect of insulin and glucagon was additive on the rate as well as the cumulative uptake of both AIB and NMe AIB. DEX alone inhibited the transport of both AIB and NMe AIB by about 25%, while glucagon caused a 2–3-fold increase; however, the addition of glucagon to cultures containing DEX caused a 7–8-fold increase in the uptake of both AIB and NMe AIB when compared to cultures containing DEX alone. The effect of insulin on the levels of cAMP was also investigated. Insulin had no effect on the cAMP levels in cultures treated or untreated with optimum or suboptimum concentrations of glucagon.  相似文献   

6.
The effects of the microtubule inhibitor, colchicine, on insulin or glucagon stimulation of alpha-amino[1-14C]-isobutyric acid (AIB) transport were investigated in isolated hepatocytes from normal fed rats. Under all conditions tested, AIB uptake appeared to occur through two components of transport: a low affinity (Km approximately 50 mM) component and a high affinity (Km approximately 1 mM) component. Within 2 h of incubation, insulin and glucagon, at maximal concentrations, increase AIB (0.1 mM) uptake by 2- to 3-fold and 4- to 6-fold, respectively. Colchicine, at the low concentration of 5 X 10(-7) M, slightly reduces basal AIB transport, decreases by 80% the simulatory effect of insulin, and diminishes by 40% the stimulatory effect of either glucagon or dibutyryl cAMP. Kinetic analysis of AIB influx indicates that the drug inhibits the increase in Vmax of a high affinity (Km approximately 1 mM) component of transport stimulated by insulin or glucagon, without affecting the kinetic parameters of a low affinity component of transport (Km approximately 50 mM). Various short term hormonal effects of insulin and glucagon (changes in glucose, urea, and lactate production) were found not to be modified by the drug. Vinblastine elicits similar changes as colchicine on AIB uptake. Lumicolchicine, a colchicine analogue that does not bind to tubulin, has no effect. The concentration of colchicine (10(-7) M) required for half-maximal inhibition of hormone-stimulated AIB transport is in the appropriate range for specific microtubule disruption. These data suggest that microtubules are involved in the regulation of the insulin or glucagon stimulation of AIB transport in isolated rat hepatocytes.  相似文献   

7.
The effects of glucagon on amino acid transport in rat hepatocytes are not fully understood. We examined the effect of this hormone on alanine, serine and cysteine preferring system (system ASC)-mediated amino acid transport in rat hepatocyte monolayers using 2-aminoisobutyric acid (AIB) and L -cysteine. Glucagon induced a time and protein synthesis-dependent stimulation of Na+-dependent alanine preferring system (system A)-independent AIB transport. The glucagon-induced increase in transport activity was not modified by substrate starvation and not related to changes in the intracellular pool of amino acids. Glucagon did not modify system ASC activity measured by L -cysteine. Therefore the transport activity of AIB independent of system A stimulated by glucagon cannot be attributed to system ASC. This suggests a Na+-dependent transport system in rat hepatocytes not identified until now.  相似文献   

8.
Hepatocytes isolated from rat fetuses have been shown to contain Systems A, ASC, and N for the Na+-dependent transport of neutral amino acids and the activity of each of these systems is significantly higher in the fetal cells than those of an adult (J. Vadgama and H.N. Christensen, personal communication). In contrast to the hepatocytes isolated from adult or newborn animals, the fetal cells do not respond to insulin, glucagon, or dexamethasone with an increase in System A-mediated transport. The System A activity present in the fetal hepatocytes does undergo adaptive regulation in a manner similar to that seen for adult cells, however, the same is not true for System N. Like the cells isolated from the adult rats, the hepatocytes isolated from fetal liver tissue exhibit an increase in Na+-independent transport with time in culture.  相似文献   

9.
The transport of histidine and glutamine via system N in cultured hepatocytes was found to be subject to hormonal control. This long-term regulation showed the following characteristics. The transport capacity for histidine and glutamine (system N) increased slowly in response to the combination of dexamethasone and insulin to about 4-fold that of controls after 18-30 h. A similar time course was found for the stimulation of system N (2.5-fold) by dexamethasone and glucagon. In contrast the uptake of alpha-aminoisobutyric acid (system A) was rapidly stimulated 3-fold by dexamethasone and insulin and 5-fold by dexamethasone and glucagon within 3-6 h but decreased towards control rates after 24 h of cultivation in minimal essential medium. Dexamethasone, insulin and glucagon each stimulated glutamine uptake about 2-fold in cultures maintained in W/AB 77 medium, while the combination of dexamethasone with either glucagon or insulin resulted in a 3-4-fold increase. Dexamethasone was most effective at about 0.1 microM. Higher concentrations were less efficient. Insulin reached its optimal effect at concentrations above 1 microM. Kinetic analysis revealed that the increased capacity of glutamine transport in response to hormones was due to an increase in Vmax, while Km was essentially unchanged. The hormone-induced stimulation of system N was prevented by cycloheximide. The induced uptake of glutamine was inhibited by excess amounts of asparagine and histidine but not of alpha-methylaminoisobutyric acid or cysteine. These results clearly differentiate the hormonal regulation of system N from that of system A.  相似文献   

10.
The transport of alpha-aminoisobutyric acid (AIB) by rat hepatoma tissue culture (HTC) cells is rapidly and reversibly inhibited by dexamethasone and other glucocorticoids. To investigate the role of the nucleus in the regulation of transport and to determine whether steroid hormones or steroid-receptor complexes may have direct effects on cytoplasmic or membrane functions, we have examined the regulation of transport by dexamethasone in anucleate HTC cells. Cytoplasts prepared from suspension cultures of HTC cells fully retain active transport of AIB with the same kinetic properties as intact cells. However, the uptake of AIB is not inhibited by dexamethasone or other corticosteroids. Neither is the inhibited rate of transport, manifested by cytoplasts prepared from dexamethasone-treated cells, restored to normal upon removal of the hormone. Anucleate cells exhibit specific, saturable binding of [3H]dexamethasone; however, the binding is reduced compared with that of intact cells. The nucleus is thus required for the glucocorticoid regulation of amino acid transport in HTC cells.  相似文献   

11.
In primary cultures of rat hepatocytes, epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and foetal-calf serum (FCS) prevented the stimulation of amino acid transport by glucagon (cyclic AMP-dependent) and by catecholamines (cyclic AMP-independent), but not by insulin. The insulin effect, as well as the effect of other hormones, were totally inhibited by thrombin through a mechanism independent of its proteolytic activity. The inhibitory effect of growth factors, not found in freshly isolated hepatocytes, was expressed very early in culture (4h). Induction of tyrosine aminotransferase by glucagon or dexamethasone, which, like stimulation of transport, represents a late hormonal effect, was not affected by EGF, PDGF or FCS, but was inhibited by thrombin. In contrast, none of the rapid changes in protein phosphorylation caused by hormones was altered by growth factors. Thus the inhibition by growth factors of hormonal stimulation of transport presumably involves late step(s) in the cascade of events implicated in this hormonal effect.  相似文献   

12.
The effects of insulin and insulin-like growth factor-I (IGF-I) on amino acid transport and protein metabolism were compared in myotubes derived from chicken breast muscle satellite cells. Protein synthesis was assessed by continuous labelling with [3H]-tyrosine. Protein degradation was estimated by the release of trichloroacetic acid (TCA) soluble radioactivity by cells which had been previously labelled with [3H]-tyrosine for 3 days. Amino acid transport was measured in myotubes incubated in Dulbecco's modified Eagle's medium (DMEM) 0.5% bovine serum albumin (BSA) with or without insulin or IGF-I. Subsequent [3H]-aminoisobutyric acid (AIB) uptake was then measured in amino acid-free medium. IGF-I was more efficient than insulin at equimolar concentration (3.2 nmol/l) in stimulating protein synthesis (127 and 113% of basal, respectively) and inhibiting protein degradation (32% and 13% inhibition of protein degradation following 4 h incubation). Half maximal effective concentrations for stimulation of AIB uptake were 0.27 ± 0.03 nmol/l and 34.8 ± 3.1 nmol/l for IGF-I and insulin respectively, with maximal stimulation of about 340% of basal. Cycloheximide (3.6 μmol/l) diminished IGF-I-stimulated AIB uptake by 55%. Chicken growth hormone had no effect on basal AIB uptake in these cells and neither glucagon nor dexamethasone had an effect on basal or IGF-I-stimulated AIB uptake. This study demonstrates an anabolic effect for IGF-I in myotubes derived from primary chicken satellite cells which is mediated by the type I IGF receptor, since the cation-independent mannose 6-phosphate receptor does not bind IGF-II in chicken cells. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Plasma membrane vesicles prepared from intact rat liver or isolated hepatocytes retain transport activity by systems A, ASC, N, and Gly. Selective substrates for these systems showed a Na+-dependent overshoot indicative of energy-dependent transport, in this instance, driven by an artificially-imposed Na+ gradient. Greater than 85% of Na+-dependent 2-aminoisobutyric acid (AIB) uptake was blocked by an excess of 2-(methylamino)isobutyric acid (MeAIB) with an apparent Ki of 0.6 mM. Intact hepatocytes obtained from glucagon-treated rats exhibited a stimulation of system A activity and plasma membrane vesicles isolated from those same cells partially retained the elevated activity. Transport activity induced by substrate starvation of cultured hepatocytes was also evident in membrane vesicles prepared from those cells. The membrane-bound glucagon-stimulated system A activity decays rapidly during incubation of vesicles at 4 degrees C (t1/2 = 13 h), but not at -75 degrees C. Several different inhibitors of proteolysis were ineffective in blocking the decay of transport activity. Hepatic system N transport activity was also elevated in plasma membrane vesicles from glucagon-treated rats, whereas system ASC was essentially unchanged. The results indicate that both glucagon and adaptive regulation cause an induction of amino acid transport through a plasma membrane-associated protein.  相似文献   

14.
P J Snodgrass 《Enzyme》1991,45(1-2):30-38
Adrenalectomized and intact rats were given constant high-dose infusions of glucagon, 0.3 mg/kg per day for 7 days, with or without low-dose dexamethasone, 0.01 mg/kg daily, to test whether glucocorticoids potentiate glucagon induction of the 5 urea cycle enzymes as they do in cultured rat hepatocytes. Glucagon did not induce any of the urea cycle enzymes in adrenalectomized Sprague-Dawley rats and only induced argininosuccinate lyase (EC 4.3.2.1) in adrenalectomized inbred Wistar-Furth rats. Dexamethasone alone induced arginase in adrenalectomized and in intact Wistar-Furth rats and restored the other enzymes to normal levels in adrenalectomized rats. In intact Wistar-Furth rats, the combination of hormones gave synergistic increases of all 5 enzymes over the responses to each hormone alone, but in adrenalectomized rats the combination was only additive or less than additive compared with the sum of single hormone responses. The lack of synergism between the two hormones in adrenalectomized rats suggest that other factors play a role in glucagon induction of this cycle.  相似文献   

15.
The transport of 2-aminoisobutyric acid (AIB) into liver tissue was increased by both insulin and glucagon. We have now shown that these hormones do not stimulate the same transport system. Glucagon, possibly via cAMP, increased the hepatic uptake of AIB by a mechanism which resembled system A. This glucagon-sensitive system could be monitored by the use of the model amino acid MeAIB. In contrast, the insulin-stimulated system exhibited little or no affinity for MeAIB and will be referred to as system B. On the basis of other reports that the hepatic transport of AIB is almost entirely Na+ dependent and the present finding that the uptake of 2-aminobicyclo [2,2,1] heptane-2-carboxylic acid (BCH) was not stimulated by either hormone, we conclude that system B is Na+ dependent. Furthermore, insulin added to the perfusate of livers from glucagon-pretreated donors suppressed the increase in AIB or MeAIB uptake. Depending upon the specificities of systems A and B, both of which are unknown for liver tissue, the insulin/glucagon ratio may alter the composition of the intracellular pool of amino acids.  相似文献   

16.
Substrate regulation of System A transport activity in rat H4 hepatoma cells is described. The uptake of several amino acids was tested in the presence of system-specific inhibitors. System A activity was increased in a RNA- and protein synthesis-dependent manner by amino acid deprivation of the cells (adaptive regulation), whereas transport by Systems ASC, N, y+, and L was unaffected. Unlike human fibroblasts, the H4 cells did not require serum to exhibit the depression of System A. At cell densities between 88 X 10(3) and 180 X 10(3) cells/cm2, the degree of adaptive regulation was inversely related to cell density. Both transport of AIB and adaptive regulation of System A were nearly abolished if either K+ or Li+ was substituted for Na+ in the medium. The presence of cycloheximide or tunicamycin blocked further increases in starvation-induced activity within 1 hr of addition, suggesting the involvement of a plasma membrane glycoprotein. In contrast, if the medium was supplemented with actinomycin after the stimulation of System A had begun, the activity continued to increase for an additional 2 hr before being slowed by the inhibitor. The contributions of trans-inhibition and repression to the amino acid-induced decay of System A activity were estimated for several representative amino acids. In general, the System A activity in normal rat hepatocytes was much less sensitive to trans-inhibition than the corresponding activity in H4 hepatoma cells. The half-life values for the amino acid-dependent decay of System A ranged from 0.5 to 2.0 hr.  相似文献   

17.
Insulin and glucagon stimulate amino acid transport in isolated rat hepatocytes. Amiloride, a specific Na+-influx inhibitor, completely inhibited the hormonal (glucagon or insulin) stimulation of alpha-aminoisobutyric acid influx by preventing the emergence of a high-affinity transport component. The drug also inhibited [14C]valine incorporation into hepatocyte protein. The half-maximal concentration of amiloride for inhibition of protein synthesis was similar to that required for inhibition of hormone-stimulated amino acid transport (approx. 0.1 mM). In primary cultured rat hepatocytes, amiloride markedly depressed the stimulation of alpha-aminoisobutyric acid transport by glucagon, or a mixture of glucagon, insulin and epidermal growth factor. These results suggest that amiloride inhibits the hormonal stimulation of hepatocyte amino acid transport by preventing the synthesis of high-affinity transport proteins. They also suggest that the hormonal stimulation of hepatocyte amino acid transport is dependent, at least partly, on Na+ influx.  相似文献   

18.
The effects of adrenalectomy on glucagon activation of liver glycogen phosphorylase and glycogenolysis were studied in isolated hepatocytes. Adrenalectomy resulted in reduced responsiveness of glycogenolysis and phosphorylase to glucagon activation. Stimulation of cAMP accumulation and cAMP-dependent protein kinase activity by glucagon was unaltered in cells from adrenalectomized rats. Adrenalectomy did not alter the proportion of type I and type II protein kinase isozymes in liver, whereas this was changed by fasting. Activation of phosphorylase kinase by glucagon was reduced in hepatocytes from adrenalectomized rats, although the half-maximal effective concentration of glucagon was unchanged. No difference in phosphorylase phosphatase activity between liver cells from control and adrenalectomized rats was detected. Glucagon-activated phosphorylase declined rapidly in hepatocytes from adrenalectomized rats, whereas the time course of cAMP increase in response to glucagon was normal. Addition of glucose (15 mM) rapidly inactivated glucagon-stimulated phosphorylase in both adrenalectomized and control rat hepatocytes. The inactivation by glucose was reversed by increasing glucagon concentration in cells from control rats, but was accelerated in cells from adrenalectomized rats. It is concluded that impaired activation of phosphorylase kinase contributes to the reduced glucagon stimulation of hepatic glycogenolysis in adrenalectomized rats. The possible role of changes in phosphorylase phosphatase is discussed.  相似文献   

19.
Hormonal regulation of L-serine dehydratase [L-serine hydro-lyase (deaminating), EC 4.2.1.13] was studied in primary cultures of adult-rat hepatocytes. The hepatocytes were isolated by collagenase perfusion and maintained in culture on collagen-gel/nylon-mesh substrata. L-Serine dehydratase activity was measured with [14C]threonine as substrate. The enzyme activity in hepatocytes of normal adult rats was low and declined rapidly in culture in L-15 medium containing 0.1 micro M-insulin and even more in the presence of glucose. L-Serine dehydratase activity in hepatocytes of rats with streptozotocin-induced diabetes was initially 20-fold higher than that of normal rats, but fell rapidly to a low value by 4 days in culture. Hormonal regulation of the enzyme activity was manifested by treatment of the cultured hepatocytes with insulin (0.1 micro M), glucagon (0.3 micro M), dexamethasone (10 micro M) and combinations of these hormones. Either glucagon or dexamethasone in the absence of insulin enhanced the activity of L-serine dehydratase, but failed to do so in the presence of insulin. Treatment with both hormones resulted in a 2-3-fold increase in enzyme activity in culture on days 3 and 4. Under conditions in which the enzyme activity was enhanced, glucose production by the cultured hepatocytes was concomitantly increased. Glucose production resulted in part from gluconeogenesis from pyruvate and not entirely from glycogenolysis. The gluconeogenic conditions of culture resulted in a decrease in cellular lipids in the cultured hepatocytes, as evidenced by ultrastructural studies.  相似文献   

20.
To determine the relative contributions of glucose, insulin, dexamethasone, and triiodothyronine to the induction of hepatic glucose-6-phosphate dehydrogenase, hepatocytes isolated from normal or adrenalectomized rats, either fasted or fed, were examined in culture. Addition of insulin (42 milliunits/ml, 0.9 microM) and dexamethasone (1 microM) to hepatocytes obtained from 3-day-fasted rats and cultured for 48 h in serum-free Dulbecco's medium resulted in a 7- to 11-fold increase in Glc-6-P dehydrogenase specific activity compared with a 2- to 3-fold increase in activity in control cultures incubated without added hormones. The effects of insulin and dexamethasone were independent of DNA synthesis, dose-dependent, and additive; each contributing about one-half of the total response. Medium glucose was neither sufficient nor necessary for the insulin- or dexamethasone-stimulated increase in Glc-6-P dehydrogenase specific activity. Addition of triiodothyronine (10 microM) preferentially blocked the dexamethasone-stimulated increase in Glc-6-P dehydrogenase specific activity. Insulin failed to stimulate the induction of Glc-6-P dehydrogenase in hepatocytes obtained from normal fed rats or from fasted and fed adrenalectomized rats. However, insulin caused a significant increase in the Glc-6-P dehydrogenase specific activity of these cells when dexamethasone was concurrently added to the culture medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号