首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plesiomonas shigelloides is a gram-negative pathogen which can utilize heme as an iron source. In previous work, P. shigelloides genes which permitted heme iron utilization in a laboratory strain of Escherichia coli were isolated. In the present study, the cloned P. shigelloides sequences were found to encode ten potential heme utilization proteins: HugA, the putative heme receptor; TonB and ExbBD; HugB, the putative periplasmic binding protein; HugCD, the putative inner membrane permease; and the proteins HugW, HugX, and HugZ. Three of the genes, hugA, hugZ, and tonB, contain a Fur box in their putative promoters, indicating that the genes may be iron regulated. When the P. shigelloides genes were tested in E. coli K-12 or in a heme iron utilization mutant of P. shigelloides, hugA, the TonB system genes, and hugW, hugX, or hugZ were required for heme iron utilization. When the genes were tested in a hemA entB mutant of E. coli, hugWXZ were not required for utilization of heme as a porphyrin source, but their absence resulted in heme toxicity when the strains were grown in media containing heme as an iron source. hugA could replace the Vibrio cholerae hutA in a heme iron utilization assay, and V. cholerae hutA could complement a P. shigelloides heme utilization mutant, suggesting that HugA is the heme receptor. Our analyses of the TonB system of P. shigelloides indicated that it could function in tonB mutants of both E. coli and V. cholerae and that it was similar to the V. cholerae TonB1 system in the amino acid sequence of the proteins and in the ability of the system to function in high-salt medium.  相似文献   

2.
血红素氧合酶HugZ是幽门螺旋杆菌(Helicobacter pylori)利用宿主血红素作为铁源的关键蛋白.HugZ的His245残基侧链咪唑基与血红素中心铁配位结合,是酶活中心的重要组成部分.用定点突变的方法构建HugZ突变体H245A、H249A和H245A/H249A基因,并将突变体蛋白表达纯化.通过X射线晶体学途径解析了突变体H245A与血红素复合物的2.55Å分辨率晶体结构.结构解析表明,HugZ的His249残基侧链咪唑基团与血红素的铁原子结合,从而补偿了His245侧链缺失.这种结构特征在已知血红素氧合酶中未曾发现.Val238 ψ平面的可翻转和Gly239的柔性是His249能与血红素配位结合的关键原因,二者的共同作用改变了C端肽链的走向,使Val238与His249之间的柔性回折与α1螺旋的相互作用发生解离,并向远离血红素的方向伸展.HugZ蛋白与血红素结合的光谱实验证明HugZ柔性C端上的组氨酸残基有利于HugZ与血红素的结合.研究结果表明,含多个组氨酸残基柔性C端的存在有利于血红素氧合酶HugZ结合和分解血红素.  相似文献   

3.

Background

Iron is recognized as an important trace element, essential for most organisms including pathogenic bacteria. HugZ, a protein related to heme iron utilization, is involved in bacterial acquisition of iron from the host. We previously observed that a hugZ homologue is correlated with the adaptive colonization of Helicobacter pylori (H. pylori), a major gastro-enteric pathogen. However, its exact physiological role remains unclear.

Results

A gene homologous to hugZ, designated hp0318, identified in H. pylori ATCC 26695, exhibits 66% similarity to cj1613c of Campylobacter jejuni NCTC 11168. Soluble 6 × His fused-HugZ protein was expressed in vitro. Hemin-agrose affinity analysis indicated that the recombinant HugZ protein can bind to hemin. Absorption spectroscopy at 411 nm further revealed a heme:HugZ binding ratio of 1:1. Enzymatic assays showed that purified recombinant HugZ protein can degrade hemin into biliverdin and carbon monoxide in the presence of either ascorbic acid or NADPH and cytochrome P450 reductase. The biochemical and enzymatic characteristics agreed closely with those of Campylobacter jejuni Cj1613c protein, implying that hp0318 is a functional member of the HugZ family. A hugZ deletion mutant was obtained by homologous recombination. This mutant strain showed poor growth when hemoglobin was provided as the source of iron, partly because of its failure to utilize hemoglobin efficiently. Real-time quantitative PCR also confirmed that the expression of hugZ was regulated by iron levels.

Conclusion

These findings provide biochemical and genetic evidence that hugZ (hp0318) encodes a heme oxygenase involved in iron release/uptake in H. pylori.  相似文献   

4.
Vibrio cholerae, the causative agent of cholera, requires iron for growth. One mechanism by which it acquires iron is the uptake of heme, and several heme utilization genes have been identified in V. cholerae. These include three distinct outer membrane receptors, two TonB systems, and an apparent ABC transporter to transfer heme across the inner membrane. However, little is known about the fate of the heme after it enters the cell. In this report we show that a novel heme utilization protein, HutZ, is required for optimal heme utilization. hutZ (open reading frame [ORF] VCA0907) is encoded with two other genes, hutW (ORF VCA0909) and hutX (ORF VCA0908), in an operon divergently transcribed from the tonB1 operon. A hutZ mutant grew poorly when heme was provided as the sole source of iron, and the poor growth was likely due to the failure to use heme efficiently as a source of iron, rather than to heme toxicity. Heme oxygenase mutants of both Corynebacterium diphtheriae and C. ulcerans fail to use heme as an iron source. When the hutWXZ genes were expressed in the heme oxygenase mutants, growth on heme was restored, and hutZ was required for this effect. Biochemical characterization indicated that HutZ binds heme with high efficiency; however, no heme oxygenase activity was detected for this protein. HutZ may act as a heme storage protein, and it may also function as a shuttle protein that increases the efficiency of heme trafficking from the membrane to heme-containing proteins.  相似文献   

5.
The crystal structure of a heme oxygenase (HO) HugZ from Helicobacter pylori complexed with heme has been solved and refined at 1.8 Å resolution. HugZ is part of the iron acquisition mechanism of H. pylori, a major pathogen of human gastroenteric diseases. It is required for the adaptive colonization of H. pylori in hosts. Here, we report that HugZ is distinct from all other characterized HOs. It exists as a dimer in solution and in crystals, and the dimer adopts a split-barrel fold that is often found in FMN-binding proteins but has not been observed in hemoproteins. The heme is located at the intermonomer interface and is bound by both monomers. The heme iron is coordinated by the side chain of His245 and an azide molecule when it is present in crystallization conditions. Experiments show that Arg166, which is involved in azide binding, is essential for HugZ enzymatic activity, whereas His245, surprisingly, is not, implying that HugZ has an enzymatic mechanism distinct from other HOs. The placement of the azide corroborates the observed γ-meso specificity for the heme degradation reaction, in contrast to most known HOs that have α-meso specificity. We demonstrate through sequence and structural comparisons that HugZ belongs to a new heme-binding protein family with a split-barrel fold. Members of this family are widespread in pathogenic bacteria and may play important roles in the iron acquisition of these bacteria.  相似文献   

6.
For many pathogenic bacteria like Pseudomonas aeruginosa heme is an essential source of iron. After uptake, the heme molecule is degraded by heme oxygenases to yield iron, carbon monoxide, and biliverdin. The heme oxygenase PigA is only induced under iron-limiting conditions and produces the unusual biliverdin isomers IXbeta and IXdelta. The gene for a second putative heme oxygenase in P. aeruginosa, bphO, occurs in an operon with the gene bphP encoding a bacterial phytochrome. Here we provide biochemical evidence that bphO encodes for a second heme oxygenase in P. aeruginosa. HPLC, (1)H, and (13)C NMR studies indicate that BphO is a "classic" heme oxygenase in that it produces biliverdin IXalpha. The data also suggest that the overall fold of BphO is likely to be the same as that reported for other alpha-hydroxylating heme oxygenases. Recombinant BphO was shown to prefer ferredoxins or ascorbate as a source of reducing equivalents in vitro and the rate-limiting step for the oxidation of heme to biliverdin is the release of product. In eukaryotes, the release of biliverdin is driven by biliverdin reductase, the subsequent enzyme in heme catabolism. Because P. aeruginosa lacks a biliverdin reductase homologue, data are presented indicating an involvement of the bacterial phytochrome BphP in biliverdin release from BphO and possibly from PigA.  相似文献   

7.
The oxidative cleavage of heme to release iron is a mechanism by which some bacterial pathogens can utilize heme as an iron source. The pigA gene of Pseudomonas aeruginosa is shown to encode a heme oxygenase protein, which was identified in the genome sequence by its significant homology (37%) with HemO of Neisseria meningitidis. When the gene encoding the neisserial heme oxygenase, hemO, was replaced with pigA, we demonstrated that pigA could functionally replace hemO and allow for heme utilization by neisseriae. Furthermore, when pigA was disrupted by cassette mutagenesis in P. aeruginosa, heme utilization was defective in iron-poor media supplemented with heme. This defect could be restored both by the addition of exogenous FeSO4, indicating that the mutant did not have a defect in iron metabolism, and by in trans complementation with pigA from a plasmid with an inducible promoter. The PigA protein was purified by ion-exchange chromotography. The UV-visible spectrum of PigA reconstituted with heme showed characteristics previously reported for other bacterial and mammalian heme oxygenases. The heme-PigA complex could be converted to ferric biliverdin in the presence of ascorbate, demonstrating the need for an exogenous reductant. Acidification and high-performance liquid chromatography analysis of the ascorbate reduction products identified a major product of biliverdin IX-beta. This differs from the previously characterized heme oxygenases in which biliverdin IX-alpha is the typical product. We conclude that PigA is a heme oxygenase and may represent a class of these enzymes with novel regiospecificity.  相似文献   

8.
9.

Background

HutZ is the sole heme storage protein identified in the pathogenic bacterium Vibrio cholerae and is required for optimal heme utilization. However, no heme oxygenase activity has been observed with this protein. Thus far, HutZ??s structure and heme-binding mechanism are unknown.

Results

We report the first crystal structure of HutZ in a homodimer determined at 2.0 ? resolution. The HutZ structure adopted a typical split-barrel fold. Through a docking study and site-directed mutagenesis, a heme-binding model for the HutZ dimer is proposed. Very interestingly, structural superimposition of HutZ and its homologous protein HugZ, a heme oxygenase from Helicobacter pylori, exhibited a structural mismatch of one amino acid residue in ??6 of HutZ, although residues involved in this region are highly conserved in both proteins. Derived homologous models of different single point variants with model evaluations suggested that Pro140 of HutZ, corresponding to Phe215 of HugZ, might have been the main contributor to the structural mismatch. This mismatch initiates more divergent structural characteristics towards their C-terminal regions, which are essential features for the heme-binding of HugZ as a heme oxygenase.

Conclusions

HutZ??s deficiency in heme oxygenase activity might derive from its residue shift relative to the heme oxygenase HugZ. This residue shift also emphasized a limitation of the traditional template selection criterion for homology modeling.  相似文献   

10.
Utilization of heme by bacteria as a nutritional iron source involves the transport of exogenous heme, followed by cleavage of the heme macrocycle to release iron. Bradyrhizobium japonicum can use heme as an iron source, but no heme-degrading oxygenase has been described. Here, bioinformatics analyses of the B. japonicum genome identified two paralogous genes renamed hmuQ (bll7075) and hmuD (bll7423) that encode proteins with weak similarity to the heme-degrading monooxygenase IsdG from Staphylococcus aureus. The hmuQ gene is clustered with known heme transport genes in the genome. Recombinant HmuQ bound heme with a K(d) value of 0.8 microM and showed spectral properties consistent with a heme oxygenase. In the presence of a reductant, HmuQ catalyzed the degradation of heme and the formation of biliverdin. The hmuQ and hmuD genes complemented a Corynebacterium ulcerans heme oxygenase mutant in trans for utilization of heme as the sole iron source for growth. Furthermore, homologs of hmuQ and hmuD were identified in many bacterial genera, and the recombinant homolog from Brucella melitensis bound heme and catalyzed its degradation. The findings show that hmuQ and hmuD encode heme oxygenases and indicate that the IsdG family of heme-degrading monooxygenases is not restricted to gram-positive pathogenic bacteria.  相似文献   

11.
12.
Corynebacterium diphtheriae was examined for the ability to utilize various host compounds as iron sources. C. diphtheriae C7(-) acquired iron from heme, hemoglobin, and transferrin. A siderophore uptake mutant of strain C7 was unable to utilize transferrin but was unaffected in acquisition of iron from heme and hemoglobin, which suggests that C. diphtheriae possesses a novel mechanism for utilizing heme and hemoglobin as iron sources. Mutants of C. diphtheriae and Corynebacterium ulcerans that are defective in acquiring iron from heme and hemoglobin were isolated following chemical mutagenesis and streptonigrin enrichment. A recombinant clone, pCD293, obtained from a C7(-) genomic plasmid library complemented several of the C. ulcerans mutants and three of the C. diphtheriae mutants. The nucleotide sequence of the gene (hmuO) required for complementation was determined and shown to encode a protein with a predicted mass of 24,123 Da. Sequence analysis revealed that HmuO has 33% identity and 70% similarity with the human heme oxygenase enzyme HO-1. Heme oxygenases, which have been well characterized in eukaryotes but have not been identified in prokaryotes, are involved in the oxidation of heme and subsequent release of iron from the heme moiety. It is proposed that the HmuO protein is essential for the utilization of heme as an iron source by C. diphtheriae and that the heme oxygenase activity of HmuO is involved in the release of iron from heme. This is the first report of a bacterial gene whose product has homology to heme oxygenases.  相似文献   

13.
Heme oxygenase is an Mr 32,000 microsomal enzyme which catalyzes the rate-limiting step in the oxidative catabolism of heme to yield equimolar quantities of biliverdin IX alpha, carbon monoxide, and iron. In the present investigation, evidence is presented suggesting that immunochemical and structural differences exist between bovine spleen heme oxygenase and heme oxygenase enzymes from other mammalian species. Using an antibody directed against bovine spleen heme oxygenase, enzyme-linked immunosorbent assays, Western blotting experiments, and cell-free translation immunoprecipitation studies showed that bovine spleen heme oxygenase is only weakly immunochemically related to heme oxygenase from rat spleen. This observation was supported by the fact that a rat spleen heme oxygenase cDNA probe did not hybridize significantly to bovine spleen heme oxygenase mRNA in Northern analyses nor to restriction fragments containing the bovine heme oxygenase gene in Southern analyses. Tryptic peptides were prepared from bovine spleen heme oxygenase and the amino acid sequences of nine peptides comprising 94 amino acid residues were determined, providing the first information on the primary structure of bovine spleen heme oxygenase. Comparison of the sequences of these tryptic peptides with regions of the deduced amino acid sequences of rat spleen and human macrophage heme oxygenase revealed sequence similarities ranging from 55 to 100%. Several peptides displaying the highest degree of sequence similarity were found to occur in regions of the heme oxygenase molecule postulated to contain the heme binding site, indicating that despite the immunochemical and apparent structural differences between bovine spleen heme oxygenase and the rat and human enzymes, functionally important amino acid residues have been conserved in the evolution of mammalian heme oxygenase genes.  相似文献   

14.
The transposon TnSC189 was used to construct a mutant in the putative heme oxygenase gene hemO (LB186) of Leptospira interrogans. Unlike its parent strain, the mutant grew poorly in medium in which hemoglobin was the sole iron source. The putative heme oxygenase was over expressed in a His-tagged form, purified and was demonstrated to degrade heme in vitro. Unexpectedly, it was also found that the L. interrogans growth rate was significantly increased when medium was supplemented with hemoglobin, but only if ferrous iron sources were absent. This result was mirrored in the expression of some iron-related genes and suggests the presence of regulatory mechanisms detecting Fe2+ and hemoglobin. This is the first demonstration of a functional heme oxygenase from a spirochete.  相似文献   

15.
16.
Vibrio anguillarum can utilize hemin and hemoglobin as sole iron sources. In previous work we identified HuvA, the V. anguillarum outer membrane heme receptor by complementation of a heme utilization mutant with a cosmid clone (pML1) isolated from a genomic library of V. anguillarum. In the present study, we describe a gene cluster contained in cosmid pML1, coding for nine potential heme uptake and utilization proteins: HuvA, the heme receptor; HuvZ and HuvX; TonB, ExbB, and ExbD; HuvB, the putative periplasmic binding protein; HuvC, the putative inner membrane permease; and HuvD, the putative ABC transporter ATPase. A V. anguillarum strain with an in-frame chromosomal deletion of the nine-gene cluster was impaired for growth with heme or hemoglobin as the sole iron source. Single-gene in-frame deletions were constructed, demonstrating that each of the huvAZBCD genes are essential for utilization of heme as an iron source in V. anguillarum, whereas huvX is not. When expressed in Escherichia coli hemA (strain EB53), a plasmid carrying the gene for the heme receptor, HuvA, was sufficient to allow the use of heme as the porphyrin source. For utilization of heme as an iron source in E. coli ent (strain 101ESD), the tonB exbBD and huvBCD genes were required in addition to huvA. The V. anguillarum heme uptake cluster shows some differences in gene arrangement when compared to homologous clusters described for other Vibrio species.  相似文献   

17.
18.
Among the 118 genes upregulated by Pseudomonas aeruginosa in response to iron starvation [Ochsner, U. A., Wilderman, P. J., Vasil, A. I., and Vasil, M. L. (2002) Mol. Microbiol. 45, 1277-1287], we focused on the products of the two genes encoding electron transfer proteins, as a means of identifying the redox partners of the heme oxygenase (pa-HO) expressed under low-iron stress conditions. Biochemical and spectroscopic investigations demonstrated that the bfd gene encodes a 73-amino acid protein (pa-Bfd) that incorporates a [2Fe-2S]2+/+ center, whereas the fpr gene encodes a 258-residue NADPH-dependent ferredoxin reductase (pa-FPR) that utilizes FAD as a cofactor. In vitro reconstitution of pa-HO catalytic activity with the newly characterized proteins led to the surprising observation that pa-FPR efficiently supports the catalytic cycle of pa-HO, without the need of a ferredoxin. In comparison, electron transfer from pa-Bfd to pa-HO is sluggish, which strongly argues against the possibility that the seven electrons needed by pa-HO to degrade biliverdin are transferred from NADPH to pa-HO in a ferredoxin (Bfd)-dependent manner. Given that pa-HO functions to release iron from exogenous heme acquired under iron-starvation conditions, the use of a flavoenzyme rather than an iron-sulfur center-containing protein to support heme degradation is an efficient use of resources in the cell. The crystal structure of pa-FPR (1.6 A resolution) showed that its fold is comparable that of the superfamily of ferredoxin reductases and most similar to the structure of Azotobacter vinelandii FPR and Escherichia coli flavodoxin reductase. The latter two enzymes interact with distinct redox partners, a ferredoxin and a flavodoxin, respectively. Hence, findings reported herein extend the range of redox partners recognized by the fold of pa-FPR to include a heme oxygenase (pa-HO).  相似文献   

19.
20.
Mechanism of heme degradation by heme oxygenase   总被引:5,自引:0,他引:5  
Heme oxygenase catalyzes the three step-wise oxidation of hemin to alpha-biliverdin, via alpha-meso-hydroxyhemin, verdoheme, and ferric iron-biliverdin complex. This enzyme is a simple protein which does not have any prosthetic groups. However, heme and its two metabolites, alpha-meso-hydroxyhemin and verdoheme, combine with the enzyme and activate oxygen during the heme oxygenase reaction. In the conversion of hemin to alpha-meso-hydroxyhemin, the active species of oxygen is Fe-OOH, which self-hydroxylates heme to form alpha-meso-hydroxyhemin. This step determines the alpha-specificity of the reaction. For the formation of verdoheme and liberation of CO from alpha-meso-hydroxyhemin, oxygen and one reducing equivalent are both required. However, the ferrous iron of the alpha-meso-hydroxyheme is not involved in the oxygen activation and unactivated oxygen is reacted on the 'activated' heme edge of the porphyrin ring. For the conversion of verdoheme to the ferric iron-biliverdin complex, both oxygen and reducing agents are necessary, although the precise mechanism has not been clear. The reduction of iron is required for the release of iron from the ferric iron-biliverdin complex to complete total heme oxygenase reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号