首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies have been performed in a tubular flow reactor to characterize the deactivation of immobilized glucose oxidase. The effects of oxygen concentration in the range of 0.09 to 0.467mM and hydrogen peroxide concentrations in the range of 0.1 to 10mM were studied. A simple mathematical model assuming first-order reaction and deactivation was found to describe the deactivation behavior adequately. The deactivation rate constant was found to increase with increasing levels of feed oxygen. Hydrogen peroxide was found to deactivate the enzyme severely and the deactivation rate constants were higher than those for oxygen deactivation. The influence of external and internal diffusion effects on the deactivation rate constant were examined. Although diffusional restrictions were negligible for oxygen transfer to the pellet, they were significant for transfer of hydrogen peroxide to the bulk stream. Increasing deactivation rates. Severe internal diffusion limitations were observed for the glucose oxidase system. However, for particle sizes in the range of 500 to 2000 μm, no effect on the rate of deactivation of the enzyme was observed.  相似文献   

2.
3.
Summary The enzyme glucose oxidase (E.C. 1.1.3.4) was immobilized on collagen — a proteinaceous material found in biological systems as a structural material for a wide variety of cells and membranes. The novel technique of electrocodeposition, which utilizes the principles of electrophoresis, was used to deposit the enzyme-collagen complex on stainless steel helical supports. This technique has been developed in our laboratory. The mechanism of complex formation between collagen and enzyme involves multiple salt linkages, hydrogen bonds and van der Waals interactions.As a first step toward examining its feasible technical use, the kinetic behavior of the collagen-supported glucose oxidase was studied in a batch recycle type reactor and was compared with that for the soluble form. A novel reactor configuration consisting of multiple concentric electrocodeposited helical coils was used. The reactor was found to attain a stable level of activity which was maintained for several months under cyclic testing. The optimum levels of pH and temperature for the immobilized form of the enzyme were the same as those of the soluble enzyme, but the immobilized enzyme was more active than the soluble form at higher temperatures and pH. The values of the Michaelis-Menten parameters indicate that the overall reaction rate of the immobilized enzyme may be partially restricted by bulk and matrix diffusion.  相似文献   

4.
Meso-tetra(4-carboxyphenyl)porphine (CTPP(4)) binds reversibly to immobilized glucose oxidase (GOD), resulting in an absorbance peak for the CTPP(4)-GOD complex at 427nm. The absorbance intensity of the 427nm peak is reduced upon exposure to glucose, which causes the dissociation of CTPP(4) from GOD. The change in absorbance at 427nm shows linear dependence on glucose concentration from 20 to 200mg/dL (1.1-11.1mM).  相似文献   

5.
A polyethylene-g-acrylic acid (PE-g-AA) graft copolymer was prepared via gamma-ray-irradiation-induced postirradiation procedures, and was used as support material for the immobilization of glucose oxidase. Soluble carbodiimides were used as the coupling agent. Reasonable yields were obtained with CMC but not with EDAC, EEDQ, or WRK. A number of factors were studied. (1) The use of water-soluble carbodiimides as condensing agent was attempted and the optimum condition for coupling glucose oxidase to PE-g-AA was established; (2) the effect of pH and temperature on the reactivity of native and immobilized glucose oxidase was studied. When exposed to temperatures in excess of 60 degrees C, the immobilized glucose oxidase was less sensitive to thermal inactivation than the native enzyme. The optimum pH value for the performance of the enzyme-immobilized membrane was 5. 6. For 200 tests, the response error of glucose sensor was less than 4% and its linear detected range was 0-1000 ppm. The obtained glucose oxidase-immobilized PE-g-AA membranes were kept in pH 5. 6 acetate buffer solution at 4 degrees C. The glucose oxidase activity of the membrane was determined at sevenday intervals. The membranes still have 92% glucose oxidase activity even after eight weeks of storage.  相似文献   

6.
7.
Time-dependent inactivation of immobilized glucose oxidase and catalase   总被引:1,自引:0,他引:1  
Homogeneous membranes containing immobilized glucose oxidase and catalase were stored in buffered solutions at 37 degrees C to determine the mechanisms and rates of catalyst inactivation. The experiments were designed so that inactivation occurred homogeneously throughout the membrane, thereby simplifying the analysis. The mechanism of inactivation is consistent with the reaction of hydrogen peroxide and certain catalytic intermediates of both enzymes. Based on this information, numerical simulations were developed that incorporate spatially heterogeneous catalytic and inactivation processes.  相似文献   

8.
Using monomers that polymerize to form electrically conducting polymers, one can control the thickness of the polymer film and the amount of enzyme that can be immobilized in the films. First, an investigation of the major variables that influence the immobilization of glucose oxidase by entrapment in polypyrrole films, prepared by electropolymerization from aqueous solutions containing the enzyme and monomer, was carried out. Then the optimized conditions were used to assess the effects of film thickness on the activity and stability of immobilized enzyme. For the films ranged in thickness from 0.1 mum to 1.6 mum, the resulting apparent activity and stability of the immobilized enzyme were found to be a strong function of the polymer film thickness. Above a thickness of 1.0 mum, the apparent activity of the immobilized enzyme increases linearly with increasing film thickness. The nonlinearity observed for films of thickness less than 1.0 mum can be attributed to the changes observed in the morphology of the resulting polypyrrole films. Furthermore, it was noted that when the glucose oxidase/polypyrrole films are stored in phosphate buffer, at 4 degrees C, the observed rate of loss in apparent activity of the immobilized enzyme is highest for the first few days, also being higher for the thinner films. However, after the loosely entrapped enzyme is leached from the polymer film, the rate of loss in activity is very low indicating that the well-entrapped enzyme, as well as the polypyrrole films, exhibit good stability. Finally, the reproducibility of the immobilization technique is excellent. (c) 1993 John Wiley & Sons, Inc.  相似文献   

9.
The immobilization of glucose oxidase and catalase by adsorption within the pores of controlled-pore titania has yielded a remarkably stable enzyme system. Catalase apparently acts as both a stabilizer and an activator for glucose oxidase within the pores of this material. Hydrogen peroxide concentrations and flow rates have a marked effect upon the apparent activity of the immobilized enzyme system. The carrier parameters were varied to obtain optimum loading and stability information.  相似文献   

10.
Glucose Oxidase (GOD) has been covalently bound to functionalized glass cover slips. The surface density of immobilized GOD molecules was measured by a method based on the amperometric determination of Flavin Adenine Dinucleotide (FAD). Atomic Force Microscopy (AFM) images, obtained in aqueous solution for the covalently bound enzyme, show a monomolecular layer of the enzyme on a functionalized glass surface. The catalytic constants were measured for the immobilized GOD and compared with those of the free enzyme.  相似文献   

11.
Glucose oxidase electrodes were constructed on a platinum screen using polyacrylamide gel, glutaraldehyde crosslinking, and glutaraldehyde crosslinking with +0.04 volts dc on the platinum screen as the methods of enzyme immobilization. The electrodes were evaluated in an electrochemical cell for the oxidation of glucose at the enzyme electrode and the reduction of oxygen at a platinum auxiliary electrode, using constant current voltametry or under external load operation. The method of immobilization affected the extrapolated opencircuit potential as well as the half-cell potential and the steady current under external load operation. The charged glutaraldehyde electrode gave the best current performance; however, the small output (microamps) indicated that major problems in electron transfer from an enzyme catalyst to an external circuit must be resolved before such electrodes can be used in practical application.  相似文献   

12.
The kinetic properties of glucose oxidase (EC 1.1.3.4) which has been covalently immobilized to a rotating glassy carbon electrode surface have been investigated. Analysis of the rotation rate dependence of the hydrogen peroxide-derived current suggests that oxygen mass transport to the enzyme-electrode surface is rate controlling at low rotation rates. Only as the diffusion layer approaches zero thickness (i.e., infinitely fast rotation rate) does mass transport become unimportant. A diffusion-free glucose Km for air-saturated buffer is found to be 66 mM using this methodology. The importance of mass transport restrictions in two-substrate enzymes such as glucose oxidase is discussed in the context of biosensor design.  相似文献   

13.
Glucose oxidase has been immobilized onto a thin platinum strip, by co-crosslinking with bovine serum albumin and glutaraldehyde. The retention of redox characteristics of glucose oxidase has been verified by cyclic voltammetry. The activity of the immobilized enzyme reduces to a quarter of its value when the enzyme is in solution but improves when coimmobilized with 1 urea. The potentiometric response builds up and remains stable after 100 s. It is sensitive to the thickness of the immobilizing matrix, pH and temperature. An improvement in the performance of the electrode has been achieved by coimmobilizing 2 urea and metal ions such as Mg2+ and Mn2+. The presence of Cu has been proved to be detrimental. The electrode has been calibrated in the 0.1–5.0 mM glucose concentration range. It gives a stable response for more than 50 independent assays and can be stored for 60 days without significant loss of function.  相似文献   

14.
In this study, glucose oxidase and polyphenol oxidase were immobilized in conducting polymer matrices; polypyrrole and poly(N-(4-(3-thienyl methylene)-oxycarbonyl phenyl) maleimide-co-pyrrole) via electrochemical method. Fourier transform infrared and scanning electron microscope were employed to characterize the copolymer of (N-(4-(3-thienyl methylene)-oxycarbonyl phenyl) maleimide) with pyrrole. Kinetic parameters, maximum reaction rate and Michealis-Menten constant, were determined. Effects of temperature and pH were examined for immobilized enzymes. Also, storage and operational stabilities of enzyme electrodes were investigated. Glucose and polyphenol oxidase enzyme electrodes were used for determination of the glucose amount in orange juices and human serum and phenolic amount in red wines, respectively.  相似文献   

15.
16.
An interference and cross-talk free dual electrode amperometric biosensor integrated with a microdialysis sampling system is described, for simultaneous monitoring of glucose and lactate by flow injection analysis. The biosensor is based on a conventional thin layer flow-through cell equipped with a Pt dual electrode (parallel configuration). Each Pt disk was modified by a composite bilayer consisting of an electrosynthesised overoxidized polypyrrole (PPYox) anti-interference membrane covered by an enzyme entrapping gel, obtained by glutaraldehyde co-crosslinking of glucose oxidase or lactate oxidase with bovine serum albumin. The advantages of covalent immobilization techniques were coupled with the excellent interference-rejection capabilities of PPYox. Ascorbate, cysteine, urate and paracetamol produced lactate or glucose bias in the low micromolar range; their responses were, however, completely suppressed when the sample was injected through the microdialysis unit. Under these operational conditions the flow injection responses for glucose and lactate were linear up to 100 and 20 mM with typical sensitivities of 9.9 (+/- 0.1) and 7.2 (+/- 0.1) nA/mM. respectively. The shelf-lifetime of the biosensor was at least 2 months. The potential of the described biosensor was demonstrated by the simultaneous determination of lactate and glucose in untreated tomato juice samples; results were in good agreement with those of a reference method.  相似文献   

17.
Glucose oxidation by immobilized glucose oxidase (GlO) and catalase (Cat) has been investigated in batch and continuous reactions for operational studies. The macrokinetics of the process depend on coupled reaction steps and diffusion rates. The problem may be approximated by a simple pseudohomogeneous model taking into account both substrates of glucose oxidase and the intermediate reaction product H2O2. The effectiveness of both enzymes is enhanced in the coupled reaction path, the overall effectiveness nevertheless is very low. H2O2 causes the inactivation of both GlO and Cat. The rates of deactivation depend on the oxidation rates of glucose that give different quasistationary levels of H2O2 concentration. As a first approximation, the deactivation rates may be described by first-order reactions with respect to H2O2.  相似文献   

18.
Glucose sensing electrodes have been realized by immobilizing glucose oxidase (GOx) on unmodified edge plane of highly oriented pyrolytic graphite (epHOPG) and the native oxide of heavily doped silicon (SiO2/Si). Both kinds of electrode show direct interfacial electron transfer due to the redox process of the immobilized GOx. The measured formal potential of the redox process agrees with that of the native enzyme, suggesting that the immobilized GOx has retained its enzymatic activity. The electron transfer rates of the GOx immobilized electrode are 2s(-1) for GOx/epHOPG electrode and 7.9s(-1) for GOx/SiO2/Si electrode, which are greater than those for which GOx is immobilized on modified electrodes, probably due to the fact that the enzyme makes direct contact to electrode surface. The preservation of the enzymatic activity of the immobilized GOx has been confirmed by observing the response of the GOx/epHOPG and GOx/SiO2/Si electrodes to glucose with a detection limit of 0.050 mM. The response signals the catalyzed oxidation of glucose and, therefore, confirms that the immobilized GOx retained its enzymatic activity. The properties of the electrode as a glucose sensor are presented.  相似文献   

19.
20.
Summary Reactor performance was studied to investigate whether a rotating packed disk reactor (RPDR) can be used for the enzymatic oxidation of biochemicals. The disks were packed with calcium alginate beads with immobilized glucose oxidase and catalase, which catalyze the reaction of glucose and oxygen. The production rate of gluconic acid increased with the speed of rotation and the bulk flow rate. An optimum submergence for maximum productivity existed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号