首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Rat, Mouse, and Guinea Pig Brain Development and Microtubule Assembly   总被引:4,自引:3,他引:1  
The development of in vitro microtubule assembly and of tubulin concentration have been studied during brain maturation in the mouse and the rat, two species which have postnatal brain development, and in one species which is mature at birth, the guinea pig. (a) The rate of tubulin assembly is very slow soon after birth in both the mouse and rat; it increases progressively with age until adulthood. In contrast, in the guinea pig this rate is maximal at birth and slower rates are seen only at foetal stages. (b) Postnatal changes in the lag period of assembly and in the minimal concentration of tubulin (Cc) required to obtain in vitro assembly are seen in the mouse and the rat; in contrast these parameters are constant at all postnatal stages in the guinea pig with longer lag periods and lower Cc values being seen only at foetal stages. (c) Maximal rates of assembly, minimal lag periods, and minimal Cc values are restored after addition of microtubule-associated proteins to foetal guinea pig or young mouse and rat preparations, suggesting that the difference in the kinetic parameters of assembly between these species depends on differences in the concentration or activity of these proteins. (d) Maximal tubulin concentrations are observed before birth in the guinea pig and approximately at day 10 in the rat and mouse. Lennon A. M. et al. Rat, mouse, and guinea pig brain development and microtubule assembly. J. Neurochem. 35, 804–813 (1980).  相似文献   

2.
Extracts of protozoa contain materials that resemble guinea pig insulin, which is noted for its unusual structure and properties. The protozoan derived materials react in the radioimmunoassay for guinea pig insulin; some but not all of these immunoreactive materials migrate on gel filtration in the position of authentic guinea pig insulin. Experiments were done to exclude artifacts in the assay as well as inadvertent contamination by guinea pig insulin. By immunological methods, we segregated the guinea pig type immunoactivity from that which has rat/pork type immunoactivity. These findings extend our studies of extracts of guinea pig tissues which also have these two types of insulin immunoactivities.  相似文献   

3.
胰岛淀粉样多肽在豚鼠胰腺分布的免疫组织化学研究   总被引:2,自引:0,他引:2  
本文用免疫组织化学ABC法,研究了胰岛淀粉样多肽(Isletamyloidpolypeptide,IAPP或称Amylin)在豚鼠胰脏的分布,并用邻片免疫组织化学双标记法,观察了IAPP与胰岛素(Insulin,INS)、生长抑素(SomatostatinSS)的共存关系。结果显示,豚鼠胰岛内绝大多数细胞都呈IAPP阳性免疫反应,在胰外分泌部的腺泡和导管内也散在分布有IAPP免疫反应阳性细胞。多数IAPP免疫反应阳性的细胞都显示INS免疫反应阳性,胰岛内少数IAPP阳性细胞也呈SS免疫反应阳性。说明IAPP主要分布在豚鼠的胰岛内.但也少量存在于外分泌部。IAPP主要和INS共存于B细胞内。但也和SS共存于D细胞内,提示IAPP可能通过自分泌途径调节INS和SS的分泌。  相似文献   

4.
The existence of large amounts of insulin in rat brain and of a porcine- or rat-like insulin in guinea pig brain have been disputed on the basis of differing results from standard (Method I) and hydrophobic adsorption techniques (Method II) for concentrating insulin from acid ethanol extracts. To try to resolve these differences, acid ethanol extracts of rat and guinea pig brains were divided into equal aliquots and concentrated for insulin radioimmunoassay (RIA) by both techniques. The RIA used guinea pig anti-porcine insulin serum, with 50% B0 for purified pancreatic porcine, rat and guinea pig insulin standards being 1.35, 2.38 and greater than 1,000 ng/ml, respectively. Oral glucose (4 g/kg) produced plasma glucose of 377 mg/dl in a guinea pig by 20 min but was not associated with any porcine- or rat-like immunoreactive insulin. Dilutions of guinea pig and rat brain extracts had parallel cross-reactivity with insulin standard curves. Insulin contents of rat brain (uncorrected for recovery) against porcine and rat insulin standards, respectively, were 1.33 and 1.93 ng/g (Method I) and 5.93 and 11.67 ng/g (Method II). Rat plasma was 0.85 and 1.42 ng/ml, respectively. Guinea pig contained 1.35 and 1.89 ng/g (uncorrected), respectively (Method I), and 2.99 and 5.62 ng/g, respectively (Method II). Guinea pig plasma was below the sensitivity of the RIA (less than 0.15 ng/ml). These results suggest that a porcine- or rat-like insulin may exist in guinea pig brain.  相似文献   

5.
The degu, Octodon degus, is a South American hystricomorph rodent that is of interest because it develops spontaneous diabetes mellitus and has been found to have islet amyloidosis. To help clarify these problems we have cloned cDNAs encoding islet amyloid polypeptide (IAPP), insulin, and glucagon precursors from this species. The predicted amino acid sequence of degu IAPP is very similar to that of nonamyloid-forming guinea pig IAPP. In contrast, degu insulin and the C-terminal region of degu glucagon are highly divergent from those of other mammals, as is also the case in the guinea pig, suggesting the existence of some form of positive evolutionary pressure on these hormones of carbohydrate metabolism in the hystricomorph rodents.  相似文献   

6.
A marked resistance to the stimulatory action of insulin on glucose metabolism has previously been shown in guinea pig, compared to rat, adipose tissue and isolated adipocytes. The mechanism of insulin resistance in isolated guinea pig adipocytes has, therefore, been examined by measuring 125I-insulin binding, the stimulatory effect of insulin on 3-0-methylglucose transport and on lipogenesis from [3-3H]glucose, the inhibitory effect of insulin on glucagon-stimulated glycerol release, and the translocation of glucose transporters in response to insulin. The translocation of glucose transporters was assessed by measuring the distribution of specific D-glucose-inhibitable [3H]cytochalasin B binding sites among the plasma, and high and low density microsomal membrane fractions prepared by differential centrifugation from basal and insulin-stimulated cells. At a glucose concentration (0.5 mM) where transport is thought to be rate-limiting for metabolism, insulin stimulates lipogenesis from 30 to 80 fmol/cell/90 min in guinea pig cells and from 25 to 380 fmol/cell/90 min in rat cells with half-maximal effects at approximately 100 pM in both cell types. Insulin similarly stimulates 3-O-methylglucose transport from 0.40 to 0.70 fmol/cell/min and from 0.24 to 3.60 fmol/cell/min in guinea pig and rat fat cells, respectively. Nevertheless, guinea pig cells bind more insulin per cell than rat cells, and insulin fully inhibits glucagon-stimulated glycerol release. In addition, the differences between guinea pig and rat cells in the stimulatory effect of insulin on lipogenesis and 3-O-methylglucose transport cannot be explained by the greater cell size of the former compared to the latter (0.18 and 0.09 micrograms of lipid/cell, respectively). However, the number of glucose transporters in the low density microsomal membrane fraction prepared from basal guinea pig cells is markedly reduced compared to that from rat fat cells (12 and 70 pmol/mg of membrane protein, respectively) and the translocation of intracellular glucose transporters to the plasma membrane fraction in response to insulin is correspondingly reduced. These results suggest that guinea pig adipocytes are markedly resistant to the stimulatory action of insulin on glucose transport and that this resistance is the consequence of a relative depletion in the number of intracellular glucose transporters.  相似文献   

7.
In this paper we use the published data of others as well as our own recent data to question the widespread assumption that the gene for guinea pig insulin mutated rapidly after the divergence of guinea pigs from the main line of rodent evolution. We suggest that instead guinea pigs may have two pairs of alleles, one for typical guinea pig insulin, which is expressed in its pancreatic beta cells, and the other for a more typical mammalian insulin (designated rat/pork-type insulin), which is expressed in extrapancreatic cells. Further, we suggest the possibility that both pairs of genes may be evolutionarily very ancient and highly conserved. We also review evidence that the concept of nonallelic evolution may also apply to other hormones, including vasopressin, calcitonin, and growth hormone.  相似文献   

8.
Antisera to guinea pig insulin are not commonly available, largely because of the short supply and limited immunogenicity of the intact hormone. To overcome these problems we have employed a novel reagent, synthetic guinea pig insulin B-chain C-terminal decapeptide, as a hapten for raising antibodies that react with intact guinea pig insulin. The decapeptide, coupled to bovine serum albumin, was successfully used as an immunogen in rabbits. The resulting anti-serum was employed for immunocytochemical staining of guinea pig insulin in pancreatic sections. The specificity of the staining was verified by both pre-absorption and pre-immune serum controls. The utility of this new antiserum for investigations of guinea pig insulin physiology is discussed.  相似文献   

9.
The radii of curvature (R) of the horizontal (Rh), anterior (Ra) and posterior (Rp) semicircular canals were measured by a new technique (called ROTA) for cat, guinea pig and man. For each canal, data points from the ossecus canal were rotated and plotted by computer such that the plane of the sheet of computer plot corresponded to the plane best fitting that canal. The radius of each osseous canal was determined and where necessary, the radius of the are of data points was corrected for thickness of the absent tissue. For cat, guinea pig and man there are differences in R between canals within a labyrinth suggesting that if other things are equal there could be differences in the average mechanical sensitivity of the canals, which is consistent with physiological recordings from primary vestibular neurons in the cat, The Rs determined by ROTA are compared with Rs determined by conventional histological means.  相似文献   

10.
In this study we present data on the partial biological and biochemical characterization of guinea pig leukocyte migration inhibition factor (LIF) and migration inhibition factor (MIF). The results indicate that guinea pig LIF and MIF are distinct mediators of cellular immunity, in terms of indicator cells affected and molecular weight. This is in agreement with previous reports showing distinctions between human LIF and MIF. Partial characterization of guinea pig LIF suggested that it is a heat-stable protein of molecular weight 68,000–158,000 and does not contain terminal sialic acid groups.  相似文献   

11.
Previous studies have shown that guinea pigs are resistant to the in vivo diabetogenic action of alloxan and that this resistance may be accompanied by a regeneration of B cells in the initial days following administration of the drug. In the studies reported here, we used the measurement of insulin and glucagon released over a 7-day culture period as indices of islet cell viability and examined effects of in vitro exposure to alloxan upon subsequent release of insulin and glucagon from guinea pig (alloxan-resistant) and rat (alloxan-sensitive) islet cell cultures. An alloxan dose-dependent decrease in subsequent insulin release was found. However, whereas the lowest concentration of the drug (1 mM) produced a significant depression in insulin release in rat islet cultures, with maximal depression occurring after exposure to 5 mM alloxan, insulin release from guinea pig cultures was not significantly depressed by 1 or 2 mM alloxan, and 5 mM alloxan treatment produced a submaximal depression. Furthermore, insulin release from guinea pig but not rat cultures increased transiently at between 6 and 18 hr during the first day following exposure to all doses of alloxan. Treatment with high doses of the drug (40 mM or greater) caused the same maximal chronic depression of insulin release for both species. In contrast, glucagon release from cultures of both species was not affected significantly following alloxan treatment. Thus, guinea pig B cells are more resistant than those of the rat to the action of alloxan, but this resistance can be overcome by employing high doses of the drug. Other factions unidentified by the present studies may also be involved in the failure of guinea pigs to develop diabetes following in vivo treatment with alloxan.  相似文献   

12.
Summary Amphotericin B enhances Na+ conductance of the mucosal membrane of gallbladder epithelial cells and in such a way it modifies the brush border electromotive force. On this basis a method to measure cell and shunt resistances by comparing changes of the mucosal membrane potential (V m ) and of the transmural p.d. (V ms ) is developed. This method is applied in gallbladders of different vertebrate species (i.e. rabbit, guinea pig, goose, tortoise, toad, trout). The two tested mammals, rabbit and guinea pig, exhibited a lower shunting percentage (89–93%) than the nonmammals (96–97%), but this fact did not bring about a homogeneous positiveV ms . This means that shunting percent contributes, but it is not the only source of differences inV ms , in accordance with that reported by Gelarden and Rose (J. Membrane Biol. 19:37, 1974). Moreover, mammals exhibited a lower luminal resistance and a lower ratio between luminal and basolateral resistance than nonmammals. Possible causes of these differences are discussed.  相似文献   

13.
A highly sensitive enzyme immunoassay of anti-insulin antibodies in guinea pig serum is described. Guinea pig anti-insulin serum was diluted to various extents with nonspecific guinea pig serum and incubated with insulin. After incubation, free insulin was separated from insulin-anti-insulin antibody complex by treatment with dextran-charcoal. Anti-insulin antibodies in the complex were dissociated from insulin by incubation with 0.23 M HCl and inactivated. The amount of dissociated insulin was measured by sandwich enzyme immunoassay using anti-insulin IgG-coated polystyrene balls and affinity-purified anti-insulin Fab'-horseradish peroxidase conjugate. The detection limit of anti-insulin antibodies in guinea pig serum was 6.7 pg/assay or 150 ng/liter of serum. The present enzyme immunoassay was 10,000-fold more sensitive than the previously described enzyme immunoassay, in which insulin-coated polystyrene balls were incubated with diluted guinea pig anti-insulin serum and subsequently with rabbit (anti-guinea pig IgG) Fab'-horseradish peroxidase conjugate.  相似文献   

14.
Luo C  Tong M  Chilukuri N  Brecht K  Maxwell DM  Saxena A 《Biochemistry》2007,46(42):11771-11779
The reactivation of nerve agent-inhibited acetylcholinesterase (AChE) by oxime is the most important step in the treatment of nerve agent poisoning. Since the evaluation of nerve agent antidotes cannot be conducted in humans, results from animal experiments are extrapolated to humans. Guinea pig is one of the animal models that is frequently used for conducting nerve agent antidote evaluations. Several investigations have demonstrated that the efficacy of an oxime primarily depends on its ability to reactivate nerve agent-inhibited AChE. If the in vitro oxime reactivation of nerve agent-inhibited animal AChE is similar to that of human AChE, it is likely that the results of an in vivo animal study will reliably extrapolate to humans. Therefore, the goal of this study was to compare the reactivation of guinea pig and human AChEs inhibited by six different G and V type nerve agents. Reactivation kinetic studies with five mono- and bis-pyridinium oximes showed that oxime reactivation of nerve agent-inhibited human AChE in most cases was faster than guinea pig AChE. The most significant enhancement was observed in the reactivation of human AChE inhibited by nerve agents containing bulky side chains GF, GD, and VR, by H-series oximes HLo-7, HI-6, and ICD-585. In these cases, species-related differences observed between the two AChEs, based on the second-order reactivation rate constants, were 90- to over 400-fold. On the other hand, less than 3-fold differences were observed in the rates of aging of nerve agent-inhibited guinea pig and human AChEs. These results suggest that the remarkable species-related differences observed in the reactivation of nerve agent-inhibited guinea pig and human AChEs were not due to differences in the rates of aging. These results also suggest that guinea pig may not be an appropriate animal model for the in vivo evaluation of oxime therapy.  相似文献   

15.
Sequence and evolution of guinea pig preproinsulin DNA   总被引:1,自引:0,他引:1  
Guinea pig insulin exhibits an unusually high degree of divergence from the conserved insulins of other mammals. cDNA clones encoding guinea pig preproinsulin were isolated, and their nucleic acid sequences were determined. Comparisons of the nucleic acid sequence and its predicted amino acid sequence with sequences encoding insulins of other species revealed that the gene encoding guinea pig preproinsulin evolved from the same ancestral mammalian gene as other known mammalian insulin genes.  相似文献   

16.
G Mannor  B Movsas  R S Yalow 《Life sciences》1984,34(14):1341-1345
The Michaelis constants (Km's) and maximum reaction velocities (Vmax's) for the degradation of beef insulin by livers from frogs, guinea pigs, rats, a rabbit, a dog and a pig were determined. The Km's for mammalian livers appear to be species-dependent and range from 0.25 microM to 0.65 microM. The Km for frog liver was somewhat lower, averaging 0.13 microM. The Km is independent of animal age, but the enzyme concentrations (Vmax) were greatly reduced in the fetal guinea pig and 3 day rat compared to the adult livers. There appears to be no relation between Km and the chemical dissimilarity between beef insulin and endogenous insulin of the species, since guinea pig liver insulinase had a Km (0.50 microM) intermediate between dog (0.47 microM) and pig (0.65 microM) liver insulinase although guinea pig insulin has a markedly different amino acid sequence and biologic activity.  相似文献   

17.
Abstract: Heterogeneity of the 5-hydroxytryptamine2 (5-HT2) receptor across species has been implicated in several pharmacological and physiological studies. Although 5-HT2 receptors in the rat have been linked to increases in Phosphoinositide (PI) hydrolysis, little evidence exists to support the association of guinea pig 5-HT2 receptors with Pl hydrolysis, the second messenger generally linked with 5-HT2receptors. In the present study, we have taken a molecular and biochemical approach to determining whether species differences in brain 5-HT2 receptors exist between rat and guinea pig. First, we isolated partial cortical 5-HTa receptor cDNA clones that encompassed the third intracellular loop, a receptor area putatively important in receptor-effector coupling. The amino acid sequences deduced from the cDNA clones for rat and guinea pig brain 5-HT2 receptor were 97% homologous. However, the guinea pig 5-HT2 receptor had two tandem substitutions that disrupted a potential alpha helix in the region of the third cytoplasmic loop, which theoretically could alter the intracellular coupling of the guinea pig cortical 5-HT2 receptor. Because of these molecular differences, we examined further the pharmacological activation of the brain 5-HT2 receptor from guinea pig. 5-HT and the 5-HT2 receptor agonist α-methyl-5-HT increased PI hydrolysis in guinea pig cortical slices whereas the 5-HT1c receptor agonist 5-methyltryptamine was significantly less potent. In addition, the 5-HT2 receptor antagonists LY53857, ketanserin, and spiperone blocked 5-HT-stimulated Pl hydrolysis. These pharmacological data suggested that activation of the 5-HT2 receptor in guinea pig cortical slices was associated with PI hydrolysis. Thus, although areas of the guinea pig brain 5-HT2 receptor that influence receptor-effector coupling were different from the rat, such differences were not critical to receptor-effector coupling because, as in the rat, guinea pig brain 5-HT2 receptors were also coupled to PI hydrolysis.  相似文献   

18.
Insulin binding experiments were performed with liver plasma membranes from guinea pig, calf and chicken. Bound insulin was separated from free insulin by a simple and rapid centrifugation of membranes through a layer of silicon oil. 125I-labeled beef insulin was displaced from receptor sites by unlabelled guinea pig, beef and chicken insulin. The receptors of animals with insulins of different biological activity show similar basic characteristics and affinities to the different insulin molecules and thus are not specialised for the interactions with the homologous insulin molecule. The binding capacity of the membranes for beef insulin seems to be inversely related to the affinity of the homologous insulin to the receptor, guinea pig membranes showing the highest and chicken membranes the lowest receptor concentration  相似文献   

19.
Maternal nutrient restriction and impaired fetal growth are associated with postnatal insulin resistance, hyperinsulinemia, and glucose intolerance in humans but not consistently in other species, such as the rat or sheep. We therefore determined the effect of mild (85% ad libitum intake/kg body wt) or moderate (70% ad libitum intake/kg body wt) maternal feed restriction throughout pregnancy on glucose and insulin responses to an intravenous glucose tolerance test (IVGTT) in the young adult guinea pig. Maternal feed restriction reduced birth weight (mild and moderate: both P < 0.02) in male offspring. Moderate restriction increased plasma glucose area under the curve (P < 0.04) and decreased the glucose tolerance index (K(G)) (P < 0.02) during the IVGTT in male offspring compared with those of mildly restricted but not of ad libitum-fed mothers. Moderate restriction increased fasting plasma insulin (P < 0.04, adjusted for litter size) and the insulin response to IVGTT (P < 0.001), and both moderate and mild restriction increased the insulin-to-glucose ratio during the IVGTT (P < 0.003 and P < 0.02) in male offspring. When offspring were classed into tertiles according to birth weight, glucose tolerance was not altered, but fasting insulin concentrations were increased in low compared with medium birth weight males (P < 0.03). The insulin-to-glucose ratio throughout the IVGTT was increased in low compared with medium (P < 0.01) or high (P < 0.05) birth weight males. Thus maternal feed restriction in the guinea pig restricts fetal growth and causes hyperinsulinemia in young adult male offspring, suggestive of insulin resistance. These findings suggest that mild to moderate prenatal perturbation programs postnatal glucose homeostasis adversely in the guinea pig, as in the human.  相似文献   

20.
The amino acid composition, and the absorption, circular dichroism (CD) and magnetic circular dichroism spectra of a metalloprotein induced in the livers of guinea pigs by the injection of CdCl2 are reported. The amino acid composition of this protein closely resembles that of rat liver metallothionein (MT). We show that this protein has spectroscopic properties that closely follow the behaviour previously reported for several other cadmium-containing metallothioneins in its spectral response to changes in pH, and to the addition of cadmium and copper(I). Dramatic changes are observed in the CD spectrum during the addition of copper(I); it is suggested that these changes are the result of the formation of a mixed Cu(I)/Cd(II) cluster that forms in the α domain once the β domain has been saturated with Cu(I). These results are of particular importance in the characterization of this protein as belonging to the metallothionein class of proteins, as spectral changes of this type are directly related to the displacement of Cd2+ and Zn2+ from the two, thiolatecluster binding sites that are amongst the unique properties of mammalian metallothioneins. It is demonstrated that the CD spectrum provides a sensitive indicator of the presence of these special metal binding sites by indicating changes in the binding geometry and stoichiometry in response to an incoming metal. These results indicate that the guinea pig liver metallothionein induced by injections of CdCl2 uses the same α and β type of clusters for cadmium binding as rat liver Cd, Zn-MT, even though there are minor differences in the amino acid composition between the guinea pig and rat liver proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号