首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ligation of either CD28 or inducible costimulatory protein (ICOS) produces a second signal required for optimal T cell activation and proliferation. One prominent difference between ICOS- and CD28-costimulated T cells is the quantity of IL-2 produced. To understand why CD28 but not ICOS elicits major increases in IL-2 expression, we compared the abilities of these molecules to activate the signal transduction cascades implicated in the regulation of IL-2. Major differences were found in the regulation of phosphatidylinositol 3-kinase activity (PI3K) and c-jun N-terminal kinase. ICOS costimulation led to greatly augmented levels of PI3K activity compared with CD28 costimulation, whereas only CD28 costimulation activated c-jun N-terminal kinase. To examine how these differences in signal transduction affected IL-2 production, we transduced primary human CD4 T cells with a lentiviral vector that expressed the murine CD28 extracellular domain with a variety of human CD28 and ICOS cytoplasmic domain swap constructs. These domains were able to operate as discrete signaling units, suggesting that they can function independently. Our results show that even though the ICOS Src homology (SH) 2 binding domain strongly activated PI3K, it was unable to substitute for the CD28 SH2 binding domain to induce high levels of IL-2 and Bcl-x(L). Moreover, the CD28 SH2 binding domain alone was sufficient to mediate optimal levels of Bcl-x(L) induction, whereas the entire CD28 cytoplasmic tail was required for high levels of IL-2 expression. Thus, differences within their respective SH2 binding domains explain, at least in part, the distinct regulation of IL-2 and Bcl-x(L) expression following ICOS- or CD28-mediated costimulation.  相似文献   

2.
3.
4.
Recent studies suggest that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) plays a critical role in the maintenance of self-tolerance. Using T cell-specific PTEN knockout mice (PTENDeltaT), we have identified a novel mechanism by which PTEN regulates T cell tolerance. We found that TCR stimulation alone, without CD28 costimulation, is sufficient to induce hyperactivation of the PI3K pathway, which leads to enhanced IL-2 production by naive PTENDeltaT T cells. Importantly, as a result of this increased response to TCR stimulation, PTENDeltaT CD4(+) T cells no longer require CD28 costimulation for in vitro or in vivo expansion. In fact, unlike wild-type T cells, PTENDeltaT CD4(+) T cells are not anergized by delivery of TCR stimulation alone. These data suggest that by negatively regulating TCR signals, PTEN imposes a requirement for CD28 costimulation, thus defining a novel mechanism for its role in self-tolerance.  相似文献   

5.
Proliferation of Ag-specific T cells is central to the development of protective immunity. The concomitant stimulation of the TCR and CD28 programs resting T cells to IL-2-driven clonal expansion. We report that a prolonged occupancy of the TCR and CD28 bypasses the need for autocrine IL-2 secretion and sustains IL-2-independent lymphocyte proliferation. In contrast, a short engagement of the TCR and CD28 only drives the expansion of cells capable of IL-2 production. TCR/CD28- and IL-2-driven proliferation revealed a different requirement for PI3K and for the mammalian target of rapamycin (mTOR). Thus, both PI3K and mTOR activities were needed for T cells to proliferate to TCR/CD28-initiated stimuli and for optimal cyclin E expression. In contrast, either PI3K or mTOR were sufficient for IL-2-driven cell proliferation as they independently mediated cyclin E induction. Interestingly, rapamycin delayed cell cycle entry of IL-2-sufficient T cells, but did not prevent their expansion. Together, our findings indicate that the TCR, CD28, and IL-2 independently control T cell proliferation via distinct signaling pathways involving PI3K and mTOR. These data suggest that Ag persistence and the availability of costimulatory signals and of autocrine and paracrine growth factors individually shape T lymphocyte expansion in vivo.  相似文献   

6.
CD28 provides a costimulatory signal that cooperates with the TCR/CD3 complex to induce T cell activation, cytokine production, and clonal expansion. We have recently shown that CD28 directly regulates progression of T lymphocytes through the cell cycle. Although a number of signaling pathways have been linked to the TCR/CD3 and to CD28, it is not known how these two receptors cooperate to induce cell cycle progression. Here, using cell-permeable pharmacologic inhibitors of phosphatidylinositol 3-hydroxykinase (PI3K) and mitogen-activated protein kinase kinase (MEK1/2), we show that cell cycle progression of primary T lymphocytes requires simultaneous activation of PI3K- and MEK1/2-dependent pathways. Decreased abundance of cyclin-dependent kinase inhibitor p27(kip1), which requires simultaneous TCR/CD3 and CD28 ligation, was dependent upon both MEK and PI3K activity. Ligation of TCR/CD3, but not CD28 alone, resulted in activation of MEK targets extracellular signal-related kinase 1/2, whereas ligation of CD28 alone was sufficient for activation of PI3K target protein kinase B (PKB; c-Akt). CD28 ligation alone was also sufficient to mediate inactivating phosphorylation of PKB target glycogen synthase kinase-3 (GSK-3). Moreover, direct inactivation of GSK-3 by LiCl in the presence of anti-CD3, but not in the presence of anti-CD28, resulted in down-regulation of p27(kip1), hyperphosphorylation of retinoblastoma tumor suppressor gene product, and cellular proliferation. Thus, inactivation of the PI3K-PKB target GSK-3 could substitute for CD28 but not for CD3 signals. These results show that the PI3K-PKB pathway links CD28 to cell cycle progression and suggest that p27(kip1) integrates mitogenic MEK- and PI3K-dependent signals from TCR and CD28 in primary T lymphocytes.  相似文献   

7.
The antiapoptotic protein Bcl-x(L) is induced in activated T lymphocytes upon costimulation through CD28, 4-1BB, and OX40. Bcl-x(L) is also highly enriched in memory T lymphocytes. Based on this body of evidence, it was thought that Bcl-x(L) plays an essential role in the generation of effector and memory T lymphocytes. We report that mice with a conditional deletion of Bcl-x in T lymphocytes develop a normal CD8(+) T cell response to Listeria monocytogenes infection. Furthermore, Bcl-x conditional knockout mice exhibit normal T-dependent humoral immune responses. These results indicate that Bcl-x is dispensable for the generation of effector and memory T lymphocytes and suggest that costimulation of T lymphocytes promotes their survival through a Bcl-x(L) independent mechanism.  相似文献   

8.
9.
10.
Two splice variants derived from the Bcl-x gene via alternative 5' splice site selection (5'SS) are proapoptotic Bcl-x(s) and antiapoptotic Bcl-x(L). Previously, our laboratory showed that apoptotic signaling pathways regulated the alternative 5'SS selection via protein phosphatase-1 and de novo ceramide. In this study, we examined the elusive prosurvival signaling pathways that regulate the 5'SS selection of Bcl-x pre-mRNA in cancer cells. Taking a broad-based approach by using a number of small-molecule inhibitors of various mitogenic/survival pathways, we found that only treatment of non-small cell lung cancer (NSCLC) cell lines with the phosphoinositide 3-kinase (PI3K) inhibitor LY294002 (50 μmol/L) or the pan-protein kinase C (PKC) inhibitor G?6983 (25 μmol/L) decreased the Bcl-x(L)/(s) mRNA ratio. Pan-PKC inhibitors that did not target the atypical PKCs, PKCι and PKCζ, had no effect on the Bcl-x(L)/(s) mRNA ratio. Additional studies showed that downregulation of the proto-oncogene, PKCι, in contrast to PKCζ, also resulted in a decrease in the Bcl-x(L)/(s) mRNA ratio. Furthermore, downregulation of PKCι correlated with a dramatic decrease in the expression of SAP155, an RNA trans-acting factor that regulates the 5'SS selection of Bcl-x pre-mRNA. Inhibition of the PI3K or atypical PKC pathway induced a dramatic loss of SAP155 complex formation at ceramide-responsive RNA cis-element 1. Finally, forced expression of Bcl-x(L) "rescued" the loss of cell survival induced by PKCι siRNA. In summary, the PI3K/PKCι regulates the alternative splicing of Bcl-x pre-mRNA with implications in the cell survival of NSCLC cells.  相似文献   

11.
12.
CD40, a member of the tumor necrosis factor receptor superfamily, is frequently expressed in carcinomas where its stimulation results in induction of apoptosis when de novo protein synthesis is inhibited. The requirement of protein synthesis inhibition for efficient killing suggests that CD40 transduces potent survival signals capable of suppressing its pro-apoptotic effects. We have found that inhibition of CD40 signaling on the phosphatidylinositol 3-kinase (PI3K) and ERK MAPK but not on the p38 MAPK axis disrupts this balance and sensitizes carcinoma cells to CD40-mediated cell death. The CD40-mediated PI3K and ERK activities were found to converge on the regulation of protein synthesis in carcinoma cells via a pathway involving the activation of p90 ribosomal S6 kinase (p90Rsk) and p70S6 kinases, upstream of the translation elongation factor eEF2. In addition, CD40 ligation was found to mediate a PI3K- and mammalian target of rapamycin (mTOR)-dependent phosphorylation of 4E-BP1 and its subsequent dissociation from the mRNA cap-binding protein eIF4E as well as an ERK-dependent phosphorylation of eIF4E, thus promoting translation initiation. Concomitantly, the antiapoptotic protein cFLIP was found to be induced in CD40 ligand-stimulated carcinoma cells in a PI3K-, ERK-, and mammalian target of rapamycin (mTOR)-dependent manner and down-regulation of cFLIPS expression sensitized to CD40-mediated carcinoma cell death. These data underline the significance of the PI3K and ERK pathways in controlling the balance between CD40-mediated survival and death signals through the regulation of the protein synthesis machinery. Pharmacological agents that target this machinery or its upstream kinases could, therefore, be exploited for CD40-based tumor therapy.  相似文献   

13.
LFA-1 binding to ICAM-I provides a costimulatory signal for CD8(+) T cell activation that results in increased IL-2 mRNA levels and protein production to support proliferation. CD28 binding to its B7 ligands has the same effect, and the two costimulatory receptors activate some of the same intracellular signaling events, including up-regulation of phosphatidylinositol (PI) 3-kinase activity. However, costimulation by LFA-1 depends upon the activity of this enzyme, whereas costimulation by CD28 does not, as evidenced by differential effects of specific inhibitors of PI 3-kinase. When cells are costimulated with ICAM-1 in the presence of the inhibitors wortmannin or LY294002, proliferation is blocked, but increases in IL-2 mRNA levels and protein production are not. Costimulation also results in increased surface expression of CD25, which is essential for formation of an active IL-2R. This is blocked by the PI 3-kinase inhibitors when costimulation is via LFA-1 but not when it is via CD28. Finally, IL-2-driven proliferation is not blocked by the inhibitors once CD25 surface expression has increased. Thus, the PI 3-kinase-dependent step in CD8 T cell costimulation by LFA-1 is up-regulation of IL-2R expression. In contrast, CD28 engagement also increases IL-2R surface expression, but the up-regulation does not depend upon PI 3-kinase activity.  相似文献   

14.
The role of PI3K in T cell activation and costimulation has been controversial. We previously reported that a kinase-inactivating mutation (D910A) in the p110delta isoform of PI3K results in normal T cell development, but impaired TCR-stimulated cell proliferation in vitro. This proliferative defect can be overcome by providing CD28 costimulation, which raises the question as to whether p110delta activity plays a role in T cell activation in vivo, which occurs primarily in the context of costimulation. In this study, we show that the PI3K signaling pathway in CD28-costimulated p110delta D910A/D910A T cells is impaired, but that ERK phosphorylation and NF-kappaB nuclear translocation are unaffected. Under in vitro conditions of physiological Ag presentation and costimulation, p110delta D910A/D910A T cells showed normal survival, but underwent fewer divisions. Differentiation along the Th1 and Th2 lineages was impaired in p110delta D910A/D910A T cells and could not be rescued by exogenous cytokines in vitro. Adoptive transfer and immunization experiments in mice revealed that clonal expansion and differentiation in response to Ag and physiological costimulation were also compromised. Thus, p110delta contributes significantly to Th cell expansion and differentiation in vitro and in vivo, also in the context of CD28 costimulation.  相似文献   

15.
ICOS ligation in concert with TCR stimulation results in strong PI3K activation in T lymphocytes. The ICOS cytoplasmic tail contains an YMFM motif that binds the p85alpha subunit of class IA PI3K, similar to the YMNM motif of CD28, suggesting a redundant function of the two receptors in PI3K signaling. However, ICOS costimulation shows greater PI3K activity than CD28 in T cells. We show in this report that ICOS expression in activated T cells triggers the participation of p50alpha, one of the regulatory subunits of class IA PI3Ks. Using different T-APC cell conjugate systems, we report that p50alpha accumulates at the immunological synapse in activated but not in resting T cells. Our results demonstrate that ICOS membrane expression is involved in this process and that p50alpha plasma membrane accumulation requires a functional YMFM Src homology 2 domain-binding motif in ICOS. We also show that ICOS triggering with its ligand, ICOSL, induces the recruitment of p50alpha at the synapse of T cell/APC conjugates. In association with the p110 catalytic subunit, p50alpha is known to carry a stronger lipid kinase activity compared with p85alpha. Accordingly, we observed that ICOS engagement results in a stronger activation of PI3K. Together, these findings provide evidence that p50alpha is likely a determining factor in ICOS-mediated PI3K activity in T cells. These results also suggest that a differential recruitment and activity of class IA PI3K subunits represents a novel mechanism in the control of PI3K signaling by costimulatory molecules.  相似文献   

16.
17.
The activity of cofilin, an actin-remodeling protein, is required for T lymphocyte activation with regard to formation of the immunological synapse, cytokine production, and proliferation. In unstimulated T PBL (PB-T), cofilin is present in its Ser3-phosphorylated inactive form. Costimulation of TCR/CD3 and CD28 induces dephosphorylation and, thus, activation of cofilin. In this study we characterized the signaling cascades leading to cofilin activation in untransformed human PB-T. We show that a Ras-PI3K cascade regulates dephosphorylation of cofilin in PB-T. The GTPase Ras is a central mediator of this pathway; transient expression of an activated form of H-Ras in PB-T triggered the dephosphorylation of cofilin. Inhibition of either MAPK/ERK kinase or PI3K blocked both Ras-induced and costimulation-induced cofilin dephosphorylation in PB-T, showing that the combined activities of both signaling proteins are required to activate cofilin. That Ras functions as a central regulator of cofilin dephosphorylation after costimulation through CD3 x CD28 was finally proven by transient expression of a dominant negative form of H-Ras in primary human PB-T. It clearly inhibited costimulation-induced cofilin dephosphorylation, and likewise, activation of PI3K was diminished. Our data, in addition, demonstrate that regarding the downstream effectors of Ras, a clear difference exists between untransformed human PB-T and the T lymphoma line Jurkat. Thus, in PB-T the Ras signaling cascade is able to activate PI3K, whereas in Jurkat cells this is not the case. In addition to the insights into the regulation of cofilin, this finding discloses a to date unrecognized possibility of PI3K activation in T lymphocytes.  相似文献   

18.
T cell Ig mucin domain-containing molecule 3 (Tim-3) is a glycoprotein found on the surface of a subset of CD8(+) and Th1 CD4(+) T cells. Elevated expression of Tim-3 on virus-specific T cells during chronic viral infections, such as HIV-1, hepatitis B virus, and hepatitis C virus, positively correlates with viral load. Tim-3(+) cytotoxic T cells are dysfunctional and are unable to secrete effector cytokines, such as IFN-γ and TNF-α. In this study, we examined potential inducers of Tim-3 on primary human T cells. Direct HIV-1 infection of CD4(+) T cells, or LPS, found to be elevated in HIV-1 infection, did not induce Tim-3 on T cells. Tim-3 was induced by the common γ-chain (γc) cytokines IL-2, IL-7, IL-15, and IL-21 but not IL-4, in an Ag-independent manner and was upregulated on primary T cells in response to TCR/CD28 costimulation, as well as γc cytokine stimulation with successive divisions. γc cytokine-induced Tim-3 was found on naive, effector, and memory subsets of T cells. Tim-3(+) primary T cells were more prone to apoptosis, particularly upon treatment with galectin-9, a Tim-3 ligand, after cytokine withdrawal. The upregulation of Tim-3 could be blocked by the addition of a PI3K inhibitor, LY 294002. Thus, Tim-3 can be induced via TCR/CD28 costimulation and/or γc cytokines, likely through the PI3K pathway.  相似文献   

19.
To investigate the role that translation plays in the stabilization of the IL-2 mRNA, we inhibited protein synthesis in both cis and trans. To block translation in trans, we utilized the inhibitors puromycin (PUR) and cycloheximide (CHX), which differentially effect polysome structure. We found that CHX enhances the stability of IL-2 mRNA in cells stimulated with anti-TCR Ab alone, but it inhibits CD28-induced message stabilization in costimulated cells. In contrast, PUR had a minimal effect on IL-2 mRNA stability in either the presence or absence of costimulation. The differential effects of these two inhibitors suggest that: 1) CHX is unlikely to stabilize the IL-2 mRNA by inhibiting the expression of a labile RNase; 2) CD28-mediated IL-2 mRNA stabilization does not require translation; and 3) IL-2 mRNA decay is not coupled to translation. To block translation in cis, we generated sequence-tagged IL-2 genomic reporters that contain a premature termination codon (PTC). In both the presence and absence of costimulation, these PTC-containing mRNAs exhibit drastically diminished stability. Interestingly, the addition of CHX but not PUR completely restored CD28-mediated stabilization, suggesting that CHX can block the enhanced decay induced by a PTC. Finally, CHX was able to superinduce IL-2 mRNA levels in anti-TCR Ab-stimulated cells but not in CD28-costimulated cells, suggesting that CHX may also act by other mechanisms.  相似文献   

20.
CD28 is well characterized as a costimulatory molecule in T cell activation. Recent evidences indicate that TNFR superfamily members, including glucocorticoid-induced TNFR-related protein (GITR), act as costimulatory molecules. In this study, the relationship between GITR and CD28 has been investigated in murine CD8(+) T cells. When suboptimal doses of anti-CD3 Ab were used, the absence of GITR lowered CD28-induced activation in these cells whereas the lack of CD28 did not affect the response of CD8(+) T cells to GITR costimulus. In fact, costimulation of CD28 in anti-CD3-activated GITR(-/-) CD8(+) T cells resulted in an impaired increase of proliferation, impaired protection from apoptosis, and an impaired rise of activation molecules such as IL-2R, IL-2, and IFN-gamma. Most notably, CD28-costimulated GITR(-/-) CD8(+) T cells revealed lower NF-kappaB activation. As a consequence, up-regulation of Bcl-x(L), one of the major target proteins of CD28-dependent NF-kappaB activation, was defective in costimulated GITR(-/-) CD8(+) T cells. What contributed to the response to CD28 ligation in CD8(+) T cells was the early up-regulation of GITR ligand on the same cells, the effect of which was blocked by the addition of a recombinant GITR-Fc protein. Our results indicate that GITR influences CD8(+) T cell response to CD28 costimulation, lowering the threshold of CD8(+) T cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号