首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial mutants of the green alga Chlamydomonas reinhardtii that are inactivated in the cytochrome pathway of respiration have previously been isolated. Despite the fact that the alternative oxidase pathway is still active the mutants have lost the capacity to grow heterotrophically (dark + acetate) and display reduced growth under mixotrophic conditions (light + acetate). In crosses between wild-type and mutant cells, the meiotic progeny only inherit the character transmitted by the mt ? parent, which indicates that the mutations are located in the 15.8 kb linear mitochondrial genome. Two new mutants (dum-18 and dum-19) have now been isolated and characterized genetically, biochemically and at the molecular level. In addition, two previously isolated mutants (dum-11 and dum-15) were characterized in more detail. dum-11 contains two types of deleted mitochondrial DNA molecules: 15.1 kb monomers lacking the subterminal part of the genome, downstream of codon 147 of the apocytochrome b (COB) gene, and dimers resulting from head-to-head fusion of asymmetrically deleted monomers (15.1 and 9.5 kb DNA molecules, respectively). As in the wild type, the three other mutants contain only 15.8 kb mitochondrial DNA molecules. dum-15 is mutated at codon 140 of the COB gene, a serine (TCT) being changed into a tyrosine (TAC). dum-18 and dum-19 both inactivate cytochrome c oxidase, as a result of frameshift mutations (addition or deletion of 1 bp) at codons 145 and 152, respectively, of the COX1 gene encoding subunit I of cytochrome c oxidase. In a total of ten respiratory deficient mitochondrial mutants characterized thus far, only mutations located in COB or COXI have been isolated. The possibility that the inactivation of the other mitochondrial genes is lethal for the cells is discussed.  相似文献   

2.
3.
4.
Chlamydomonas reinhardtii mutants resistant to the herbicide sulfometuron methyl (SM) were isolated and characterized. Growth of C. reinhardtii is sensitive to inhibition by SM at a concentration of 1 micromolar. Four mutants resistant to 10- to 100-fold higher concentrations were isolated. All possess a form of acetolactate synthase (ALS) whose specific activity in cell extracts is 100- to 1000-fold more resistant to SM than is the specific activity of wild-type enzyme. Only one mutant had abnormally low ALS specific activity in the absence of SM. All mutations were inherited as single lesions in the nuclear genome and were expressed in heterozygous diploids. The mutations in two strains mapped to linkage group IX about 30 centimorgans from streptomycin resistance and on the same side of the centromere, and in genetic crosses between mutants no segregation was observed. Accordingly, all mutations are tentatively assigned to gene smr-1. Herbicide resistance appears to be suitable as a selectable marker for molecular transformation in this organism.  相似文献   

5.
《BBA》1986,851(2):229-238
We have analyzed the heme-associated peroxidase activity in thylakoid membranes from the green algae Chlamydomonas reinhardtii after electrophoresis in the presence of sodium dodecyl sulfate. Besides cytochrome f and cytochrome b6, we observed peroxidase activity in two other bands, of 34 and 11 kDa, of unknown origin. Characterization of the b6/f complex subunits was undertaken by means of a comparison of the polypeptide deficiencies in several b6/f mutants with the polypeptide content of preparations enriched in b6/f complexes. We conclude that the b6/f complex consists of five subunits. Using site-specific translation inhibitors, we show that cytochrome f, cytochrome b6 and subunit IV are of chloroplast origin, whereas the Rieske protein and probably subunit V are translated on cytoplasmic ribosomes. A model of assembly of the complex is proposed: a cytochrome moiety, comprising the subunits of chloroplast origin, is assembled in the thylakoid membranes prior to the insertion and assembly of the subunits encoded in the nuclear genome.  相似文献   

6.
The interaction between plastocyanin and the intact cytochrome bf complex, both from spinach, has been studied by stopped-flow kinetics with mutant plastocyanin to elucidate the site of electron transfer and the docking regions of the molecule. Mutation of Tyr-83 to Arg or Leu provides no evidence for a second electron transfer path via Tyr-83 of plastocyanin, which has been proposed to be the site of electron transfer from cytochrome f. The data found with mutations of acidic residues indicate that both conserved negative patches are essential for the binding of plastocyanin to the intact cytochrome bf complex. Replacing Ala-90 and Gly-10 at the flat hydrophobic surface of plastocyanin by larger residues slowed down and accelerated, respectively, the rate of electron transfer as compared with wild-type plastocyanin. These opposing effects reveal that the hydrophobic region around the electron transfer site at His-87 is divided up into two regions, of which only that with Ala-90 contributes to the attachment to the cytochrome bf complex. These binding sites of plastocyanin are substantially different from those interacting with photosystem I. It appears that each of the two binding regions of plastocyanin is split into halves, which are used in different combinations in the molecular recognition at the two membrane complexes.  相似文献   

7.
We have studied the unfolding reaction of cytochrome f from the green alga Chlamydomonas reinhardtii. Cytochrome f is different from all other c-type heme proteins in that it is a large, two-domain protein with predominantly beta-sheet structure. Moreover, the sixth axial ligand to the heme-iron is unique in cytochrome f: it is provided by the N-terminal alpha-amino group. Unfolding of oxidized and reduced cytochrome f by guanidine hydrochloride (GuHCl) was monitored by far-UV circular dichroism (CD), Soret absorption, and tyrosine emission: the same unfolding curves were obtained regardless of method. Neither oxidized nor reduced unfolded cytochrome f can be refolded at neutral pH. At pH 3.5 refolding takes place (upon dilution to lower denaturant concentrations or by electron injection to the unfolded, oxidized form), although the reaction is extremely slow. Reduced cytochrome f appears much more resistant towards denaturant perturbation than the oxidized form (in pH range 7-3.5). The heme in unfolded cytochrome f remains low-spin to pH 4 but turns high-spin at pH 3.5 (presumably due to protonation of the N-terminal amino group). Our results suggest that the unfolding process for cytochrome f is complex, involving kinetically trapped intermediates not resolvable by spectroscopy.  相似文献   

8.
Photosynthetic organisms synthesize carotenoids for harvesting light energy, photoprotection, and maintaining the structure and function of photosynthetic membranes. A light-sensitive, phytoene-accumulating mutant, pds1-1, was isolated in Chlamydomonas reinhardtii and found to be genetically linked to the phytoene desaturase (PDS) gene. PDS catalyzes the second step in carotenoid biosynthesis-the conversion of phytoene to ζ-carotene. Decreased accumulation of downstream colored carotenoids suggested that the pds1-1 mutant is leaky for PDS activity. A screen for enhancers of the pds1-1 mutation yielded the pds1-2 allele, which completely lacks PDS activity. A second independent null mutant (pds1-3) was identified using DNA insertional mutagenesis. Both null mutants accumulate only phytoene and no other carotenoids. All three phytoene-accumulating mutants exhibited slower growth rates and reduced plating efficiency compared to wild-type cells and white phytoene synthase mutants. Insight into amino acid residues important for PDS activity was obtained through the characterization of intragenic suppressors of pds1-2. The suppressor mutants fell into three classes: revertants of the pds1-1 point mutation, mutations that changed PDS amino acid residue Pro64 to Phe, and mutations that converted PDS residue Lys90 to Met. Characterization of pds1-2 intragenic suppressors coupled with computational structure prediction of PDS suggest that amino acids at positions 90 and 143 are in close contact in the active PDS enzyme and have important roles in its structural stability and/or activity.  相似文献   

9.
The chloroplast cytochrome bf complex is an intrinsic multisubunit protein from the thylakoid membrane consisting of four polypeptides: cytochrome f, a two heme containing cytochrome b 6, the Rieske iron-sulfur protein, and a 17 kD polypeptide of undefined function. The complex functions in electron transfer between PSII and PSI, where most mechanisms suggest that the transfer of a single reducing equivalent from plastoquinol to plastocyanin results in the translocation of two protons across the membrane. Primary sequence analyses, dichroism studies, and functional considerations allow the construction of an approximate structural model of a monomeric complex, although some evidence exists for a dimeric structure. Resolution of the properties of the two cytochrome b 6 hemes has relied upon the availability of purified solubilized complex, while evidence in the thylakoid suggests the difference between the two hemes are not as great in situ. Such variability in the spectroscopic and electrochemical properties of the cytochrome b 6 is a major concern during the experimental use of the purified complex. There is a general consensus that the complex contains a plastoquinol oxidizing (Qz) site, although the evidence for a plastoquinone reduction (Qc) site, called for in most mechanistic hypotheses, is less substantive. Probably the most severe challenge to the so called Q-cycle mechanism comes from experimental observations made with cytochrome b 6 initially reduced, where proposed interpretations more closely resemble a b-cycle than a Q-cycle. Although functional during cyclic electron transfer, the role of the complex and its possible interaction with other proteins, has not been completely resolved.Abbreviations Cytochrome b H high potential cytochrome b 6 - Cytochrome b L low potential cytochrome b 6 - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DNP-INT 2-iodo-6-isopropyl-3-methyl-2,4,4-trinitrodiphenyl ether - FNR ferredoxin:NADP oxidoreductase - HQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide - NQNO 2-n-nonyl-4-hydroxyquinoline-N-oxide - Qc quinone binding site on the cytochrome bf complex near the outside of the thylakoid membrane, alternatively designated centre i or centre r - Qz quinone binding site on the cytochrome bf complex near the inside of the thylakoid membrane, alternatively designated centre o  相似文献   

10.
Recombinant proteins have become more and more important for the pharmaceutical and chemical industry. Although various systems for protein expression have been developed, there is an increasing demand for inexpensive methods of large-scale production. Eukaryotic algae could serve as a novel option for the manufacturing of recombinant proteins, as they can be cultivated in a cheap and easy manner and grown to high cell densities. Being a model organism, the unicellular green alga Chlamydomonas reinhardtii has been studied intensively over the last decades and offers now a complete toolset for genetic manipulation. Recently, the successful expression of several proteins with pharmaceutical relevance has been reported from the nuclear and the chloroplastic genome of this alga, demonstrating its ability for biotechnological applications.  相似文献   

11.
A series of conditional mutants of the algal, biflagellate Chlamydomonas reinhardtii with temperature-sensitive defects in flagellar assembly and function were isolated. The genetics and phenotypes of 21 mutants displaying a rapid alteration in flagellar function upon shift from the permissive (20 degrees C) to the restrictive (32 degrees C) temperatures are described. These mutants designated as "drop-down" or dd-mutants have been placed in four categories on the basis of their defective phenotypes: (a) dd-assembly mutants - the preformed flagella are resorbed at 32 degrees C and reassembly of flagella is inhibited; (b) dd-fragile flagella mutants - the flagella are lost by detachment at 32 degrees C, but can be reassembled; (c) dd-motility mutants - the flagella are retained at 32 degrees C, but are functionally defective; (d) dd-lethal mutants - display combined defects in flagellar function and cell growth. Tetrad analysis of the mutants back-crossed to wild-type, recombination analysis of intermutant crosses, and complementation tests in the construction of heterozygous diploid strains indicate that at least 14 nuclear genetic loci are represented among 21 mutants. The availability of temperature-sensitive mutations affecting the assembly and function of the flagellum suggests that the morphogenesis of this complex eukaryotic organelle is amenable to genetic dissection.  相似文献   

12.
Effects of three inhibitors of quinol oxidation in the chloroplast cytochrome bf complex (stigmatellin, tridecylstigmatellin and dibromothymoquinone) were studied in an isolated system comprising Photosystem I (PS I) particles, plastocyanin (PC) and cytochrome bf complex, in the absence of quinol or quinone. Addition of these inhibitors increased the extent of cytochrome f oxidation after a laser flash created oxidised PS I reaction centre (P700) and PC, and decreased somewhat the extent of PC oxidation. The re-reduction of oxidised P700 was more complete than when inhibitor was absent. The data were simulated with reactions which included the putative reduction of cytochrome f by the Rieske centre (FeS) and different rate-coefficients according as to whether inhibitor was bound to the bf complex or not. It was concluded that under the conditions studied the Rieske centre donated electrons to oxidised cytochrome f and plastocyanin with an average rate coefficient of 35 s–1. This electron transfer was prevented by any of the three inhibitors, which also increased the equilibrium coefficient for the cytochrome f/PC reaction by a maximum factor of two. This increase corresponded to a decrease in the back reaction coefficient and an increase in the forward rate. The equilibrium coefficient for the reduction of oxidised P700 by PC was about 2 in the absence of inhibitor but increased to about 20 in their presence, but only if cytochrome bf complex was additionally present. This was attributed to the transient formation of complexes between P700 with bound plastocyanin, and bf complex. The operative mid-point potential of FeS, if that of cytochrome f is 370 mV, was 390 mV. Deviations in midpoint potentials (P700/plastocyanin) from solution values were attributed to the bound state of the reactants. Estimates were made of the binding coefficient of each of the three inhibitors to p-sites in the cytochrome bf complex in the absence of competing quinol. A stoichiometry of two inhibitors per bf dimer was necessary to cause the above changes in reduction potential of cyt f and PC. A result of one inhibitor per dimer was statistically unlikely, particularly in the case of tridecylstigmatellin.Abbreviations Cyt- cytochrome - DBMIB(H2)- 2,5-dibromo-3--ethyl-6-isopropyl-p-benzoquinone (reduced) - E m- midpoint reduction potential of a couple relative to the standard hydrogen electrode - e-t- electron transfer - FeS (or R)- Rieske iron-sulphur centre - HEPES- N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid - Mega-9- nonoyl-N-methylglucamide - n-site (Qr-site)- quinone reduction site in cytochrome bf complex - PC- plastocyanin - p-site (Qo-site)- quinol oxidation site in cytochrome bf complex - PQ- plastoquinone - PSI- Photosystem I - P700- reaction centre in Photosystem I - TDS- tridecyl stigmatellin  相似文献   

13.
14.
Structural features of cytochrome f necessary for assembly into the cytochrome bf complex were examined in isolated pea chloroplasts following import of (35)S-labelled chimeric precursor proteins, consisting of the presequence of the small subunit of Rubisco fused to the turnip cytochrome f precursor. Assembly was detected by nondenaturing gel electrophoresis of dodecyl maltoside-solubilized thylakoid membranes. A cytochrome f polypeptide unable to bind haem because of mutagenesis of Cys21 and Cys24 to alanine residues was assembled into the complex and had similar stability to the wild-type polypeptide. This indicates that covalent haem binding to cytochrome f is not necessary for assembly of the protein into the cytochrome bf complex. A truncated protein lacking the C-terminal 33 amino acid residues, including the transmembrane span and the stroma-exposed region, was translocated across the thylakoid membrane, had a similar stability to wild-type cytochrome f but was not assembled into the complex. This indicates that the C-terminal region of cytochrome f is important for assembly into the complex. A mutant cytochrome f unable to bind haem and lacking the C-terminal region was also translocated across the thylakoid membrane but was extremely labile, indicating that, in the absence of the C-terminal membrane anchor, haem-less cytochrome f is recognized by a thylakoid proteolytic system.  相似文献   

15.
Chemoresponses of Chlamydomonas reinhardtii   总被引:3,自引:0,他引:3       下载免费PDF全文
Cells of Chlamydomonas reinhardtii have been found to respond to chemicals in two ways: chemokinesis and chemotaxis. Several amino acids, fatty acids, and inorganic salts can stimulate these responses.  相似文献   

16.
Monogalactosyldiacylglycerol (MGDG) in Chlamydomonas reinhardtii and other green algae contains hexadeca-4,7,10,13-tetraenoic acid (16:4) in the glycerol sn-2 position. While many genes necessary for the introduction of acyl chain double bonds have been functionally characterized, the Δ4-desaturase remained unknown. Using a phylogenetic comparison, a candidate gene encoding the MGDG-specific Δ4-desaturase from Chlamydomonas (CrΔ4FAD) was identified. CrΔ4FAD shows all characteristic features of a membrane-bound desaturase, including three histidine boxes and a transit peptide for chloroplast targeting. But it also has an N-terminal cytochrome b(5) domain, distinguishing it from other known plastid desaturases. Cytochrome b(5) is the primary electron donor for endoplasmic reticulum (ER) desaturases and is often fused to the desaturase domain in desaturases modifying the carboxyl end of the acyl group. Difference absorbance spectra of the recombinant cytochrome b(5) domain of CrΔ4FAD showed that it is functional in vitro. Green fluorescent protein fusions of CrΔ4FAD localized to the plastid envelope in Chlamydomonas. Interestingly, overproduction of CrΔ4FAD in Chlamydomonas not only increased levels of 16:4 acyl groups in cell extracts but specifically increased the total amount of MGDG. Vice versa, the amount of MGDG was lowered in lines with reduced levels of CrΔ4FAD. These data suggest a link between MGDG molecular species composition and galactolipid abundance in the alga, as well as a specific function for this fatty acid in MGDG.  相似文献   

17.
C Remacle  D Baurain  P Cardol  R F Matagne 《Genetics》2001,158(3):1051-1060
The mitochondrial rotenone-sensitive NADH:ubiquinone oxidoreductase (complex I) comprises more than 30 subunits, the majority of which are encoded by the nucleus. In Chlamydomonas reinhardtii, only five components of complex I are coded for by mitochondrial genes. Three mutants deprived of complex I activity and displaying slow growth in the dark were isolated after mutagenic treatment with acriflavine. A genetical analysis demonstrated that two mutations (dum20 and dum25) affect the mitochondrial genome whereas the third mutation (dn26) is of nuclear origin. Recombinational analyses showed that dum20 and dum25 are closely linked on the genetic map of the mitochondrial genome and could affect the nd1 gene. A sequencing analysis confirmed this conclusion: dum20 is a deletion of one T at codon 243 of nd1; dum25 corresponds to a 6-bp deletion that eliminates two amino acids located in a very conserved hydrophilic segment of the protein.  相似文献   

18.
Sodium dodecyl sulfate gel electrophoresis of unheated, detergent-solubilized thylakoid membranes of Chlamydomonas reinhardtii gives two chlorophyll-protein complexes. Chlorophyll-protein complex I (CP I) is the blue-green in color and can be dissociated by heat into "free" chlorophyll and a constituent polypeptide (polypeptide 2; mol wt 66,000). Similar experiments with spinach and Chinese cabbage show that the higher plant CP I contains an equivalent polypeptide but of slightly lower molecular weight (64,000). Both polypeptide 2 and its counterpart in spinach are soluble in a 2:1 (vol/vol) mixture of chloroform-methanol. Chemical analysis reveals that C. reinhardtii CP I has a chlorophyll a to b weight ratio of about 5 and that it contains approximately 5% of the total chlorophyll and 8-9% of the total protein of the thylakoid membranes. Thus, it can be calculated that each constituent polypeptide chain is associated with eight to nine chlorophyll molecules. Attempts to measure the molecular weight of CP I by calibrated SDS gels were unsuccessul since the complex migrates anomalously in such gels. Two Mendelian mutants of C. reinhardtii, F1 and F14, which lack P700 but have normal photosystem I activity, do not contain CP I or the 66,000-dalton polypeptide in their thylakoid membranes. Our results suggest that CP I is essential for photosystem I reaction center activity and that P700 may be associated with the 66,000-dalton polypeptide.  相似文献   

19.
20.
Chlamydomonas reinhardtii intraflagellar transport (IFT) particles can be biochemically resolved into two smaller assemblies, complexes A and B, that contain up to six and 15 protein subunits, respectively. We provide here the proteomic and immunological analyses that verify the identity of all six Chlamydomonas A proteins. Using sucrose density gradient centrifugation and antibody pulldowns, we show that all six A subunits are associated in a 16 S complex in both the cell bodies and flagella. A significant fraction of the cell body IFT43, however, exhibits a much slower sedimentation of ~2 S and is not associated with the IFT A complex. To identify interactions between the six A proteins, we combined exhaustive yeast-based two-hybrid analysis, heterologous recombinant protein expression in Escherichia coli, and analysis of the newly identified complex A mutants, ift121 and ift122. We show that IFT121 and IFT43 interact directly and provide evidence for additional interactions between IFT121 and IFT139, IFT121 and IFT122, IFT140 and IFT122, and IFT140 and IFT144. The mutant analysis further allows us to propose that a subset of complex A proteins, IFT144/140/122, can form a stable 12 S subcomplex that we refer to as the IFT A core. Based on these results, we propose a model for the spatial arrangement of the six IFT A components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号