首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The output of genetic mutant screenings in soya bean [Glycine max (L.) Merr.] has been limited by its paleopolypoid genome. CRISPR‐Cas9 can generate multiplex mutants in crops with complex genomes. Nevertheless, the transformation efficiency of soya bean remains low and, hence, remains the major obstacle in the application of CRISPR‐Cas9 as a mutant screening tool. Here, we report a pooled CRISPR‐Cas9 platform to generate soya bean multiplex mutagenesis populations. We optimized the key steps in the screening protocol, including vector construction, sgRNA assessment, pooled transformation, sgRNA identification and gene editing verification. We constructed 70 CRISPR‐Cas9 vectors to target 102 candidate genes and their paralogs which were subjected to pooled transformation in 16 batches. A population consisting of 407 T0 lines was obtained containing all sgRNAs at an average mutagenesis frequency of 59.2%, including 35.6% lines carrying multiplex mutations. The mutation frequency in the T1 progeny could be increased further despite obtaining a transgenic chimera. In this population, we characterized gmric1/gmric2 double mutants with increased nodule numbers and gmrdn1‐1/1‐2/1‐3 triple mutant lines with decreased nodulation. Our study provides an advanced strategy for the generation of a targeted multiplex mutant population to overcome the gene redundancy problem in soya bean as well as in other major crops.  相似文献   

2.

Background

Clustered regularly interspaced short palindromic repeat (CRISPR) RNA-guided adaptive immune systems are found in prokaryotes to defend cells from foreign DNA. CRISPR Cas9 systems have been modified and employed as genome editing tools in wide ranging organisms. Here, we provide a detailed protocol to truncate genes in mammalian cells using CRISPR Cas9 editing. We describe custom donor vector construction using Gibson assembly with the commonly utilized pcDNA3 vector as the backbone.

Results

We describe a step-by-step method to truncate genes of interest in mammalian cell lines using custom-made donor vectors. Our method employs 2 guide RNAs, mutant Cas9D10A nickase (Cas9?=?CRISPR associated sequence 9), and a custom-made donor vector for homologous recombination to precisely truncate a gene of interest with a selectable neomycin resistance cassette (NPTII: Neomycin Phosphotransferase II). We provide a detailed protocol on how to design and construct a custom donor vector using Gibson assembly (and the commonly utilized pcDNA3 vector as the backbone) allowing researchers to obtain specific gene modifications of interest (gene truncation, gene deletion, epitope tagging or knock-in mutation). Selection of mutants in mammalian cell lines with G418 (Geneticin) combined with several screening methods: western blot analysis, polymerase chain reaction, and Sanger sequencing resulted in streamlined mutant isolation. Proof of principle experiments were done in several mammalian cell lines.

Conclusions

Here we describe a detailed protocol to employ CRISPR Cas9 genome editing to truncate genes of interest using the commonly employed expression vector pcDNA3 as the backbone for the donor vector. Providing a detailed protocol for custom donor vector design and construction will enable researchers to develop unique genome editing tools. To date, detailed protocols for CRISPR Cas9 custom donor vector construction are limited (Lee et al. in Sci Rep 5:8572, 2015; Ma et al. in Sci Rep 4:4489, 2014). Custom donor vectors are commercially available, but can be expensive. Our goal is to share this protocol to aid researchers in performing genetic investigations that require custom donor vectors for specialized applications (specific gene truncations, knock-in mutations, and epitope tagging applications).
  相似文献   

3.
Genome editing by clustered regularly interspaced short palindromic sequences (CRISPR)/CRISPR‐associated protein 9 (Cas9) has revolutionized functional gene analysis and genetic improvement. While reporter‐assisted CRISPR/Cas systems can greatly facilitate the selection of genome‐edited plants produced via stable transformation, this approach has not been well established in seed crops. Here, we established the seed fluorescence reporter (SFR)‐assisted CRISPR/Cas9 systems in maize (Zea mays L.), using the red fluorescent DsRED protein expressed in the endosperm (En‐SFR/Cas9), embryos (Em‐SFR/Cas9), or both tissues (Em/En‐SFR/Cas9). All three SFRs showed distinct fluorescent patterns in the seed endosperm and embryo that allowed the selection of seeds carrying the transgene of having segregated the transgene out. We describe several case studies of the implementation of En‐SFR/Cas9, Em‐SFR/Cas9, and Em/En‐ SFR/Cas9 to identify plants not harboring the genome‐editing cassette but carrying the desired mutations at target genes in single genes or in small‐scale mutant libraries, and report on the successful generation of single‐target mutants and/or mutant libraries with En‐SFR/Cas9, Em‐SFR/Cas9, and Em/En‐SFR/Cas9. SFR‐assisted genome editing may have particular value for application scenarios with a low transformation frequency and may be extended to other important monocot seed crops.  相似文献   

4.
目的: 利用CRISPR/Cas9(clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) 系统构建玉米中心蛋白(Centrin)的表达载体,经转化后分析其对玉米生长发育的影响。方法: 针对ZmCen基因的第一个外显子设计sgRNA,将其连入pOMS01-Cas9-ZmCen-sgRNA表达载体,转化农杆菌GV3101后,侵染玉米自交系材料B104的愈伤组织,经继代、诱导、分化成苗,筛选出转基因后代。对T0代和T1代基因组DNA进行PCR验证、测序及表型分析。结果: 成功构建ZmCen的表达载体。侵染农杆菌后,PCR测序显示,T0 代和T1 代突变率分别为 20.13% 和 64.52%,其中T1 代的纯合缺失突变率为5%。序列分析表明,ZmCen基因的编辑靶点附近发生了碱基的替换、插入或缺失。经与野生型表型比对发现,ZmCen 突变体T1代植株出现发育缓慢且雄花序不完全发育表型,纯合突变体植株雄花序则完全不发育。结论: 通过 CRISPR/Cas9技术成功地对玉米ZmCen基因进行了编辑,ZmCen突变体的获得为玉米雄性器官发育相关基因的研究奠定了基础。  相似文献   

5.
目的: 利用CRISPR/Cas9(clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) 系统构建玉米中心蛋白(Centrin)的表达载体,经转化后分析其对玉米生长发育的影响。方法: 针对ZmCen基因的第一个外显子设计sgRNA,将其连入pOMS01-Cas9-ZmCen-sgRNA表达载体,转化农杆菌GV3101后,侵染玉米自交系材料B104的愈伤组织,经继代、诱导、分化成苗,筛选出转基因后代。对T0代和T1代基因组DNA进行PCR验证、测序及表型分析。结果: 成功构建ZmCen的表达载体。侵染农杆菌后,PCR测序显示,T0 代和T1 代突变率分别为 20.13% 和 64.52%,其中T1 代的纯合缺失突变率为5%。序列分析表明,ZmCen基因的编辑靶点附近发生了碱基的替换、插入或缺失。经与野生型表型比对发现,ZmCen 突变体T1代植株出现发育缓慢且雄花序不完全发育表型,纯合突变体植株雄花序则完全不发育。结论: 通过 CRISPR/Cas9技术成功地对玉米ZmCen基因进行了编辑,ZmCen突变体的获得为玉米雄性器官发育相关基因的研究奠定了基础。  相似文献   

6.
Targeting the MAPK signaling pathway has transformed the treatment of metastatic melanoma. CRISPR‐Cas9 genetic screens provide a genome‐wide approach to uncover novel genetic dependencies that might serve as therapeutic targets. Here, we analyzed recently reported CRISPR‐Cas9 screens comparing data from 28 melanoma cell lines and 313 cell lines of other tumor types in order to identify fitness genes related to melanoma. We found an average of 1,494 fitness genes in each melanoma cell line. We identified 33 genes, inactivation of which specifically reduced the fitness of melanoma. This set of tumor type‐specific genes includes established melanoma fitness genes as well as many genes that have not previously been associated with melanoma growth. Several genes encode proteins that can be targeted using available inhibitors. We verified that genetic inactivation of DUSP4 and PPP2R2A reduces the proliferation of melanoma cells. DUSP4 encodes an inhibitor of ERK, suggesting that further activation of MAPK signaling activity through its loss is selectively deleterious to melanoma cells. Collectively, these data present a resource of genetic dependencies in melanoma that may be explored as potential therapeutic targets.  相似文献   

7.
Most biopharmaceuticals produced today are generated using Chinese hamster ovary (CHO) cells, therefore significant attention is focused on methods to improve CHO cell productivity and product quality. The discovery of gene-editing tools, such as CRISPR/Cas9, offers new opportunities to improve CHO cell bioproduction through cell line engineering. Recently an additional CRISPR-associated protein, Cas12a (Cpf1), was shown to be effective for gene editing in eukaryotic cells, including CHO. In this study, we demonstrate the successful application of CRISPR/Cas12a for the generation of clonally derived CHO knockout (KO) cell lines with improved product quality attributes. While we found Cas12a efficiency to be highly dependent on the targeting RNA used, we were able to generate CHO KO cell lines using small screens of only 96–320 clonally derived cell lines. Additionally, we present a novel bulk culture analysis approach that can be used to quickly assess CRISPR RNA efficiency and determine ideal screen sizes for generating genetic KO cell lines. Most critically, we find that Cas12a can be directly integrated into the cell line generation process through cotransfection with no negative impact on titer or screen size. Overall, our results show CRISPR/Cas12a to be an efficient and effective CHO genome editing tool.  相似文献   

8.
Alexandra Franz  Erich Brunner 《Fly》2017,11(4):303-311
The ease of generating genetically modified animals and cell lines has been markedly increased by the recent development of the versatile CRISPR/Cas9 tool. However, while the isolation of isogenic cell populations is usually straightforward for mammalian cell lines, the generation of clonal Drosophila cell lines has remained a longstanding challenge, hampered by the difficulty of getting Drosophila cells to grow at low densities. Here, we describe a highly efficient workflow to generate clonal Cas9-engineered Drosophila cell lines using a combination of cell pools, limiting dilution in conditioned medium and PCR with allele-specific primers, enabling the efficient selection of a clonal cell line with a suitable mutation profile. We validate the protocol by documenting the isolation, selection and verification of eight independently Cas9-edited armadillo mutant Drosophila cell lines. Our method provides a powerful and simple workflow that improves the utility of Drosophila cells for genetic studies with CRISPR/Cas9.  相似文献   

9.
Processing of double‐stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soya bean and Medicago truncatula were generated using the CRISPR/Cas9 and TAL‐effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 reagent was used to create a bi‐allelic double mutant for the two soya bean paralogous Double‐stranded RNA‐binding2 (GmDrb2a and GmDrb2b) genes. These mutations, along with a CRISPR/Cas9‐generated mutation of the M. truncatula Hua enhancer1 (MtHen1) gene, were determined to be germ‐line transmissible. Furthermore, TALENs were used to generate a mutation within the soya bean Dicer‐like2 gene. CRISPR/Cas9 mutagenesis of the soya bean Dicer‐like3 gene and the GmHen1a gene was observed in the T0 generation, but these mutations failed to transmit to the T1 generation. The irregular transmission of induced mutations and the corresponding transgenes was investigated by whole‐genome sequencing to reveal a spectrum of non‐germ‐line‐targeted mutations and multiple transgene insertion events. Finally, a suite of combinatorial mutant plants were generated by combining the previously reported Gmdcl1a, Gmdcl1b and Gmdcl4b mutants with the Gmdrb2ab double mutant. Altogether, this study demonstrates the synergistic use of different genome engineering platforms to generate a collection of useful mutant plant lines for future study of small RNA processing in legume crops.  相似文献   

10.
11.
《遗传学报》2020,47(1):37-47
The clustered regularly interspaced short palindromic repeats(CRISPR)/Cas9 technology has been widely utilized for knocking out genes involved in various biological processes in zebrafish. Despite this technology is efficient for generating different mutations, one of the main drawbacks is low survival rate during embryogenesis when knocking out some embryonic lethal genes. To overcome this problem, we developed a novel strategy using a combination of CRISPR/Cas9 mediated gene knockout with primordial germ cell(PGC) transplantation(PGCT) to facilitate and speed up the process of zebrafish mutant generation, particularly for embryonic lethal genes. Firstly, we optimized the procedure for CRISPR/Cas9 targeted PGCT by increasing the efficiencies of genome mutation in PGCs and induction of PGC fates in donor embryos for PGCT. Secondly, the optimized CRISPR/Cas9 targeted PGCT was utilized for generation of maternal-zygotic(MZ) mutants of tcf7l1a(gene essential for head development), pou5f3(gene essential for zygotic genome activation) and chd(gene essential for dorsal development) at F_1 generation with relatively high efficiency. Finally, we revealed some novel phenotypes in MZ mutants of tcf7l1 a and chd, as MZtcf7l1 a showed elevated neural crest development while MZchd had much severer ventralization than its zygotic counterparts. Therefore, this study presents an efficient and powerful method for generating MZ mutants of embryonic lethal genes in zebrafish. It is also feasible to speed up the genome editing in commercial fishes by utilizing a similar approach by surrogate production of CRISPR/Cas9 targeted germ cells.  相似文献   

12.
The employment of anti-epidermal growth factor receptor (EGFR) antibodies represents a backbone of the therapeutic options for the treatment of metastatic colorectal cancer (mCRC). However, this therapy is poorly effective or ineffective in unselected patients. Mutations in KRAS, BRAF and PIK3CA genes have recently emerged as the best predictive factors of low/absent response to EGFR-targeted therapy. Due to the need for efficacious treatment options for mCRC patients bearing these mutations, in this short report we examined the antitumoral activity of the protease inhibitor gabexate mesilate, alone and in combination with the anti-EGFR monoclonal antibody cetuximab, in a panel of human CRC cell lines harbouring a different expression pattern of wild-type/mutated KRAS, BRAF and PIK3CA genes. Results obtained showed that gabexate mesilate significantly inhibited the growth, invasive potential and tumour-induced angiogenesis in all the CRC cells employed in this study (including those ones harbouring dual KRAS/PIK3CA or BRAF/PIK3CA mutation), while cetuximab affected these parameters only in CRC cells with KRAS, BRAF and PIK3CA wild-type. Notably, the antitumoral efficacy of gabexate mesilate and cetuximab in combination was found to be not superior than that observed with gabexate mesilate as single agent. Overall, these preliminary findings suggest that gabexate mesilate could represent a promising therapeutic option for mCRC patients, particularly for those harbouring KRAS, BRAF and PIK3CA mutations, either as mono-therapy or in addition to standard chemotherapy regimens. Further studies to better elucidate gabexate mesilate mechanism of action in CRC cells are therefore warranted.  相似文献   

13.
汪乐洋  黄海燕  吴强 《遗传》2017,39(4):313-325
在基因组中,编码区存在许多高度相似的基因簇或基因群(多拷贝基因),非编码区也存在大量的重复序列。这些重复序列能通过改变染色体的三维结构调控基因的转录,对于生物体的遗传与进化起到了重要的作用。其高度同源的特征使得利用CRISPR/Cas9技术进行基因组编辑时面临更加复杂的状况。如果编辑的片段是二倍体或多倍体,还会产生各条染色单体上的编辑情况不相同的现象。为此本文选择了2个位于同一染色体相距11 kb的高度同源300 bp片段(L1和L2)进行CRISPR介导的DNA片段编辑。采用一对sgRNA(分别共同靶向两片段的上、下游位点)引导Cas9对HepG2细胞两个高度相似的DNA片段进行切割。片段编辑的细胞进一步单克隆化后,对获得的22个L1/L2编辑的CRISPR单克隆细胞株进行详细的基因型鉴定。结果发现除了这两个DNA片段本身被删除外,它们之间的大片段也存在被删除的现象,三个片段的各种反转组合也很频繁。该研究结果对于采用CRISPR/Cas9系统编辑多拷贝基因或重复序列,尤其是对二倍体或多倍体生物进行基因组编辑时具有重要的借鉴和参考价值。  相似文献   

14.
Molecular Biology - In an experimental study using the CRISPR/Cas9 system, “enhanced” NK cell lines with knockout of CISH, the gene for the CIS protein (a negative regulator of NK...  相似文献   

15.
CRISPR/Cas9 has emerged as one of the most popular genome editing tools due to its simple design and high efficiency in multiple species. Myostatin (MSTN) negatively regulates skeletal muscle growth and mutations in myostatin cause double-muscled phenotype in various animals. Here, we generated myostatin mutation in Erhualian pigs using a combination of CRISPR/Cas9 and somatic cell nuclear transfer. The protein level of myostatin precursor decreased dramatically in mutant cloned piglets. Unlike myostatin knockout Landrace, which often encountered health issues and died shortly after birth, Erhualian pigs harboring homozygous mutations were viable. Moreover, myostatin knockout Erhualian pigs exhibited partial double-muscled phenotype such as prominent muscular protrusion, wider back and hip compared with wild-type piglets. Genome editing in Chinese indigenous pig breeds thus holds great promise not only for improving growth performance, but also for protecting endangered genetic resources.  相似文献   

16.
利用CRISPR/Cas9基因编辑技术构建大鼠L2细胞α-ENaC基因敲除的细胞株,研究α-ENaC基因对细胞增殖的影响。构建敲除α-ENaC基因的CRISPR/Cas9表达载体和筛选报告载体,通过转染和嘌呤霉素筛选获得单克隆细胞株,Western Blot、测序确定突变的细胞株,CCK-8检测突变细胞株的增殖活力。成功构建靶向α-ENaC基因第一外显子的CRISPR/Cas9表达载体和筛选报告载体,嘌呤霉素筛选后,挑选8个单细胞克隆中有两个单细胞克隆α-ENaC蛋白表达下降,一个单细胞克隆α-ENaC蛋白不再表达,测序结果显示3个单细胞克隆分别为2个单等位基因突变和1个双等位基因突变,且未发现脱靶现象。突变细胞株的增殖活力降低,其中双等位基因突变细胞株增殖活力降低更为显著。因此,利用CRISPR/Cas9结合SSA-RPG报告载体成功获得了α-ENaC基因敲除的L2细胞株,α-ENaC与细胞增殖有关。  相似文献   

17.
Rice blast is one of the most destructive diseases affecting rice worldwide. The adoption of host resistance has proven to be the most economical and effective approach to control rice blast. In recent years, sequence-specific nucleases (SSNs) have been demonstrated to be powerful tools for the improvement of crops via gene-specific genome editing, and CRISPR/Cas9 is thought to be the most effective SSN. Here, we report the improvement of rice blast resistance by engineering a CRISPR/Cas9 SSN (C-ERF922) targeting the OsERF922 gene in rice. Twenty-one C-ERF922-induced mutant plants (42.0%) were identified from 50 T0 transgenic plants. Sanger sequencing revealed that these plants harbored various insertion or deletion (InDel) mutations at the target site. We showed that all of the C-ERF922-induced allele mutations were transmitted to subsequent generations. Mutant plants harboring the desired gene modification but not containing the transferred DNA were obtained by segregation in the T1 and T2 generations. Six T2 homozygous mutant lines were further examined for a blast resistance phenotype and agronomic traits, such as plant height, flag leaf length and width, number of productive panicles, panicle length, number of grains per panicle, seed setting percentage and thousand seed weight. The results revealed that the number of blast lesions formed following pathogen infection was significantly decreased in all 6 mutant lines compared with wild-type plants at both the seedling and tillering stages. Furthermore, there were no significant differences between any of the 6 T2 mutant lines and the wild-type plants with regard to the agronomic traits tested. We also simultaneously targeted multiple sites within OsERF922 by using Cas9/Multi-target-sgRNAs (C-ERF922S1S2 and C-ERF922S1S2S3) to obtain plants harboring mutations at two or three sites. Our results indicate that gene modification via CRISPR/Cas9 is a useful approach for enhancing blast resistance in rice.  相似文献   

18.
Vegetables provide many nutrients in the form of fiber, vitamins, and minerals, which make them an important part of our diet. Numerous biotic and abiotic stresses can affect crop growth, quality, and yield. Traditional and modern breeding strategies to improve plant traits are slow and resource intensive. Therefore, it is necessary to find new approaches for crop improvement. Clustered regularly interspaced short palindromic repeats/CRISPR associated 9 (CRISPR/Cas9) is a genome editing tool that can be used to modify targeted genes for desirable traits with greater efficiency and accuracy. By using CRISPR/Cas9 editing to precisely mutate key genes, it is possible to rapidly generate new germplasm resources for the promotion of important agronomic traits. This is made possible by the availability of whole genome sequencing data and information on the function of genes responsible for important traits. In addition, CRISPR/Cas9 systems have revolutionized agriculture, making genome editing more versatile. Currently, genome editing of vegetable crops is limited to a few vegetable varieties (tomato, sweet potato, potato, carrot, squash, eggplant, etc.) due to lack of regeneration protocols and sufficient genome sequencing data. In this article, we summarize recent studies on the application of CRISPR/Cas9 in improving vegetable trait development and the potential for future improvement.  相似文献   

19.

Key message

A method based on DNA single-strand conformation polymorphism is demonstrated for effective genotyping of CRISPR/Cas9-induced mutants in rice.

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) has been widely adopted for genome editing in many organisms. A large proportion of mutations generated by CRISPR/Cas9 are very small insertions and deletions (indels), presumably because Cas9 generates blunt-ended double-strand breaks which are subsequently repaired without extensive end-processing. CRISPR/Cas9 is highly effective for targeted mutagenesis in the important crop, rice. For example, homozygous mutant seedlings are commonly recovered from CRISPR/Cas9-treated calli. However, many current mutation detection methods are not very suitable for screening homozygous mutants that typically carry small indels. In this study, we tested a mutation detection method based on single-strand conformational polymorphism (SSCP). We found it can effectively detect small indels in pilot experiments. By applying the SSCP method for CRISRP-Cas9-mediated targeted mutagenesis in rice, we successfully identified multiple mutants of OsROC5 and OsDEP1. In conclusion, the SSCP analysis will be a useful genotyping method for rapid identification of CRISPR/Cas9-induced mutants, including the most desirable homozygous mutants. The method also has high potential for similar applications in other plant species.
  相似文献   

20.
Xu  Xiuwen  Cao  Xiaojuan  Gao  Jian 《Transgenic research》2019,28(3-4):341-356

CRISPR/Cas9 system has been developed as a highly efficient genome editing technology to specifically induce mutations in a few aquaculture species. In this study, we described induction of targeted gene (namely tyrosinase, tyr) mutations in large-scale loach Paramisgurnus dabryanus, an important aquaculture fish species and a potential model organism for studies of intestinal air-breathing function, using the CRISPR/Cas9 system. Tyr gene in large-scale loach was firstly cloned and then its expressions were investigated. Two guide RNAs (gRNAs) were designed and separately transformed with Cas9 in the loach. 89.4% and 96.1% of injected loach juveniles respectively displayed a graded loss of pigmentation for the two gRNAs, in other words, for target 1 and target 2. We classified the injected loach juveniles into five groups according to their skin color phenotypes, including four albino groups and one wild-type-like group. And one of them was clear albino group, which was of high ornamental and commercial value. More than 50 clones for each albino transformant with a visible phenotype in each target were randomly selected and sequenced. Results obtained here showed that along with the increase of pigmentation, wild-type alleles appeared in the injected loach juveniles more often and insertion/deletion alleles less frequently. This study demonstrated that CRISPR/Cas9 system could be practically performed to modify large-scale loach tyr to produce an albino mutant of high ornamental and commercial value, and for the first time showed successful use of the CRISPR/Cas9 system for genome editing in a Cobitidae species.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号