首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Spore germination in the slime mold Dictyostelium discoideum was used as a model to study the developmental regulation of protein and mRNA synthesis. Changes in the synthesis of these macromolecules occur during the transition from dormant spore to amoebae. The study of the mechanisms which regulate the quantity and quality of protein synthesis can best be accomplished with cloned genes. cDNA clones which hybridized primarily with mRNAs from only spores or germinating spores and not with growing amoebae were collected. Three such clones, denoted pLK109, pLK229, and pRK270, were isolated and had inserts of approximately 500, 1,200, and 690 base pairs, respectively. Southern blot hybridization experiments suggested that each of the genes is present in multiple copies in the D. discoideum genome. RNA blot hybridizations were performed to determine the sizes of the respective mRNAs and their developmental regulation. The mRNA that hybridized to pLK109 DNA was present predominantly in spores and at 1 h after germination but was absent in growing amoebae. Its concentration dramatically dropped at 3 h. The mRNA present in spores is apparently larger (approximately 0.5 kilobase) than in the later stages of germination (0.4 kilobase), indicating processing of the RNA during germination. The mRNA that hybridized to pLK229 DNA was approximately 1.0 kilobase and was present in very low amounts during growth. Its concentration rose until 1 h after spore germination and decreased thereafter. pRK270-specific RNA was approximately 2.7 kilobases and was found predominantly at 1 h after germination. It was present in lower concentrations at 2 and 3 h after germination and was absent in spores and amoebae. In vitro translation of mRNA selected from 1-h polyadenylated RNA which was hybridized to pLK109 or pLK229 DNA gave proteins of molecular weights consistent with the sizes of the mRNAs as determined by the RNA blot analysis.  相似文献   

3.
SG mutant and aged wild type spores of the cellular slime mold Dictyostelium discoideum germinate in the absence of an externally applied activation treatment. This type of germination is referred to as autoactivation. During the swelling stage of autoactivation, spores release a factor, the autoactivator, capable of stimulating germination in subsequent spore populations. The autoactivator was not present in the dormant spore, but it or a precursor was produced internally during the first hour of autoactivation. This production was sensitive to moderately high temperatures (+31° C) and was completely destroyed by heat activation (45° C for 30 min). Internal production of the autoactivator was not sensitive to protein synthesis inhibitors. However, the release of the activator from the spore appeared to be regulated by protein synthesis. Internal autoactivator was also produced in the aged wild type strain during the postautoactivation lag phase. The activator could not be directly isolated from within the germinating spore. Its activity on the rest of the spore population was dependent upon its release from the germinating spore. A model is presented integrating the effects of heat, cycloheximide, autoinhibitor and autoactivator on spores of D. discoideum.  相似文献   

4.
During synchronized germination of spores of Dictyostelium discoideum, protein synthesis begins almost concomitantly with syntheses of messenger-like RNA (mlRNA) and 4–5S RNA (presumably tRNA) in the swollen spore stage and the initiation of ribosomal RNA (rRNA) synthesis is somewhat delayed. DNA synthesis occurs in the early stages of the amoeba emergence phase. Cycloheximide (200 μg/ml) blocked spore germination as well as total protein synthesis, whereas actinomycin D (60 μg/ml) did not affect either. This concentration of actinomycin D selectively inhibited formation of rRNA but did not influence the synthesis of mlRNA. Examinations of RNA labeled with [14C]uracil during germination indicated that polysomes initially detectable in the course of the germination process contain 14C-labeled mlRNA. It was concluded that at least some of mRNA synthesized during germination of D. discoideum spores is involved in protein synthesis required for the germination.  相似文献   

5.
Dictyostelium discoideum amoebae with an altered fbxA gene, which is thought to encode a component of an SCF E3 ubiquitin ligase, have defective regulation of cell type proportionality. In chimeras with wild-type cells, the mutant amoebae form mainly spores, leaving the construction of stalks to wild-type cells. To examine the role of fbxA and regulated proteolysis, we have recovered the promoter of fbxA and shown that it is expressed in a pattern resembling that of a prestalk-specific gene until late in development, when it is also expressed in developing spore cells. Because fbxA cells are developmentally deficient in pure culture, we were able to select suppressor mutations that promote sporulation of the original mutant. One suppressor mutation resides within the gene regA, which encodes a cyclic AMP (cAMP) phosphodiesterase linked to an activating response regulator domain. In another suppressor, there has been a disruption of dhkA, a gene encoding a two-component histidine kinase known to influence Dictyostelium development. RegA appears precociously and in greater amounts in the fbxA mutant than in the wild type, but in an fbxA/dhkA double mutant, RegA is restored to wild-type levels. Because the basis of regA suppression might involve alterations in cAMP levels during development, the concentrations of cAMP in all strains were determined. The levels of cAMP are relatively constant during multicellular development in all strains except the dhkA mutant, in which it is reduced at least sixfold. The level of cAMP in the double mutant dhkA/fbxA is relatively normal. The levels of cAMP in the various mutants do not correlate with spore formation, as would be expected on the basis of our present understanding of the signaling pathway leading to the induction of spores. Altered amounts of RegA and cAMP early in the development of the mutants suggest that both fbxA and dhkA genes act earlier than previously thought.  相似文献   

6.
60Co gamma rays can induce germination of the spores of the cellular slime mold, Dictyostelium discoideum, in the absence of heat shock, amino acids, or bacteria food source. About 65% amoebae emergence occurs by 13 hr after a dose of 180 krad.  相似文献   

7.
Vegetative and developed amoebae of Dictyostelium discoideum gain traction and move rapidly on a wide range of substrata without forming focal adhesions. We used two independent assays to quantify cell-substrate adhesion in mutants and in wild-type cells as a function of development. Using a microfluidic device that generates a range of hydrodynamic shear stress, we found that substratum adhesion decreases at least 10 fold during the first 6 hr of development of wild type cells. This result was confirmed using a single-cell assay in which cells were attached to the cantilever of an atomic force probe and allowed to adhere to untreated glass surfaces before being retracted. Both of these assays showed that the decrease in substratum adhesion was dependent on the cAMP receptor CAR1 which triggers development. Vegetative cells missing talin as the result of a mutation in talA exhibited slightly reduced adhesive properties compared to vegetative wild-type cells. In sharp contrast to wild-type cells, however, these talA mutant cells did not show further reduction of adhesion during development such that after 5 hr of development they were significantly more adhesive than developed wild type cells. In addition, both assays showed that substrate adhesion was reduced in 0 hr cells when the actin cytoskeleton was disrupted by latrunculin. Consistent with previous observations, substrate adhesion was also reduced in 0 hr cells lacking the membrane proteins SadA or SibA as the result of mutations in sadA or sibA. However, there was no difference in the adhesion properties between wild type AX3 cells and these mutant cells after 6 hr of development, suggesting that neither SibA nor SadA play an essential role in substratum adhesion during aggregation. Our results provide a quantitative framework for further studies of cell substratum adhesion in Dictyostelium.  相似文献   

8.
Germination of Microsporum gypseum macroconidia was accompanied by the release of alkaline protease, calcium ions, and inorganic phosphate into the germination fluid. The rate of germination was greatest during the first 2 hr, decreasing thereafter. This decrease in rate was accompanied by a decrease in protease activity, which was caused by an interaction of the enzyme with the inorganic phosphate released from the spores and accumulated in the germination medium after 2 hr. Germination of high spore densities was regulated by the ratio of released phosphate to protease protein, resulting in a constant percentage of germination at both high and low spore densities. A germination-defective mutant strain failed to germinate normally and released excessively high concentrations of phosphate into the germination medium during the initial 2 hr of incubation. Addition of calcium ions to germination mutant macroconidia stabilized spore morphology, prevented protease inactivation, and allowed normal germ-tube outgrowth. The germination of macroconidia appears to be regulated by the release of phosphate ions, which then inhibit the alkaline protease.  相似文献   

9.
Chemotactic stimulation of Dictyostelium discoideum amoebae with pulses of cAMP or folate causes a series of rapid changes in the amount of actin protein associated with the Triton-insoluble cytoskeleton. The first of these changes occurs within 3 sec. of stimulation. The changes are dose-dependent and are within the physiological range of concentrations of cAMP or folate eliciting chemotaxis. These effects on the cytoskeleton show a pattern of regulation during development matching the respective chemotactic sensitivities of D. discoideum to cAMP (most sensitive at 4–8 hr of development) and to folate (rapidly decreasing sensitivity over 0–4 hr). At twelve hr, however, the responsiveness to folate unexpectedly reappears, suggesting a function of folate later in development than previously reported.  相似文献   

10.
11.
Cellular dedifferentiation is an important developmental response to perturbations in morphogenesis. In the cellular slime mold Dictyostelium discoideum this process gives cells the flexibility, when multicellular development is disrupted, to respond to nutrients and reinitiate vegetative growth. Recent studies in D. discoideum described by Soll and colleagues(1) show that genes previously thought to be expressed only during spore germination are also expressed during induced dedifferentiation, suggesting that similar molecular mechanisms are involved in these two developmental processes. It should now be possible to determine whether the developmental programs that control dedifferentiation during spore germination also control conversion of cell types in the multicellular organism.  相似文献   

12.
The multifunctional regulator VelB physically interacts with other velvet regulators and the resulting complexes govern development and secondary metabolism in the filamentous fungus Aspergillus nidulans. Here, we further characterize VelB’s role in governing asexual development and conidiogenesis in A. nidulans. In asexual spore formation, velB deletion strains show reduced number of conidia, and decreased and delayed mRNA accumulation of the key asexual regulatory genes brlA, abaA, and vosA. Overexpression of velB induces a two-fold increase of asexual spore production compared to wild type. Furthermore, the velB deletion mutant exhibits increased conidial germination rates in the presence of glucose, and rapid germination of conidia in the absence of external carbon sources. In vivo immuno-pull-down analyses reveal that VelB primarily interacts with VosA in both asexual and sexual spores, and VelB and VosA play an inter-dependent role in spore viability, focal trehalose biogenesis and control of conidial germination. Genetic and in vitro studies reveal that AbaA positively regulates velB and vosA mRNA expression during sporogenesis, and directly binds to the promoters of velB and vosA. In summary, VelB acts as a positive regulator of asexual development and regulates spore maturation, focal trehalose biogenesis and germination by interacting with VosA in A. nidulans.  相似文献   

13.
14.
The specific activity of cathepsin B-like, cathepsin D-like, and leucine aminopeptidase enzymes was measured in dormant, aging, and germinating spores of wild-type and mutant Dictyostelium discoideum.The activity of leucine aminopeptidase was relatively constant during spore aging and spore germination. The level of cathepsin D-like activity was highest in young dormant spores but decreased during germination or aging.The level of cathepsin B-like activity remained constant in wild-type spores which were aged for 13 days. The dormant spores of spontaneous germination mutants initially contained low levels of cathepsin B-like activity which increased during aging. Thus, there was no correlation between the level of endogenous cathepsin B activity and the ability to be autoactivated or heat-activated. The level of cathepsin B-like activity does not have a role in the generation of energy for the swelling stage of germination. Finally, the combined level of endogenous and exogenous cathepsin B activity increased more than 20-fold during the emergence of myxamoebae suggesting that the enzyme(s) may play a role at this development stage of germination.  相似文献   

15.
16.
17.
18.
19.
Developing Dictyostelium discoideum amoebae form a stalked fruiting body in which individual cells differentiate into either stalk cells or spores. The major known inducer of stalk cell differentiation is the chlorinated polyketide DIF-1 (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one); however a mutant blocked in the terminal step of DIF-1 biosynthesis still produces one of the prestalk cell subtypes – the pstA cells – as well as some mature stalk cells. We therefore searched for additional stalk cell-inducing factors in the medium supporting development of this mutant. These factors were purified by solvent extraction and HPLC and identified by mass spectroscopy and NMR. The mutant lacked detectable DIF-2 and DIF-3 (the pentanone and deschloro homologues of DIF-1) but four major stalk cell-inducing activities were detected, of which three were identified. Two compounds were predicted intermediates in DIF-1 biosynthesis: the desmethyl, and desmethyl-monochloro analogues of DIF-1 (dM-DIF-1 and Cl-THPH, respectively), supporting the previously proposed pathway of DIF-1 biosynthesis. The third compound was a novel factor and was identified as 4-methyl-5-pentylbenzene-1,3-diol (MPBD) with the structure confirmed by chemical synthesis. To investigate the potential roles of these compounds as signal molecules, their effects on morphological stalk and spore differentiation were examined in cell culture. All three induced morphological stalk cell differentiation. We found that synthetic MPBD also stimulated spore cell differentiation. Now that these factors are known to be produced and released during development, their biological roles can be pursued further.  相似文献   

20.
The gerP1 transposon insertion mutation of Bacillus cereus is responsible for a defect in the germination response of spores to both L-alanine and inosine. The mutant is blocked at an early stage, before loss of heat resistance or release of dipicolinate, and the efficiency of colony formation on nutrient agar from spores is reduced fivefold. The protein profiles of alkaline-extracted spore coats and the spore cortex composition are unchanged in the mutant. Permeabilization of gerP mutant spores by coat extraction procedures removes the block in early stages of germination, although a consequence of the permeabilization procedure in both wild type and mutant is that late germination events are not complete. The complete hexacistronic operon that includes the site of insertion has been cloned and sequenced. Four small proteins encoded by the operon (GerPA, GerPD, GerPB, and GerPF) are related in sequence. A homologous operon (yisH-yisC) can be found in the Bacillus subtilis genome sequence; null mutations in yisD and yisF, constructed by integrational inactivation, result in a mutant phenotype similar to that seen in B. cereus, though somewhat less extreme and equally repairable by spore permeabilization. Normal rates of germination, as estimated by loss of heat resistance, are also restored to a gerP mutant by the introduction of a cotE mutation, which renders the spore coats permeable to lysozyme. The B. subtilis operon is expressed solely during sporulation, and is sigma K-inducible. We hypothesize that the GerP proteins are important as morphogenetic or structural components of the Bacillus spore, with a role in the establishment of normal spore coat structure and/or permeability, and that failure to synthesize these proteins during spore formation limits the opportunity for small hydrophilic organic molecules, like alanine or inosine, to gain access to their normal target, the germination receptor, in the spore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号