首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pea genome contains seven histone H1 genes encoding different subtypes. Previously, the DNA sequence of only one gene, His1, coding for the subtype H1-1, had been identified. We isolated a histone H1 allele from a pea genomic DNA library. Data from the electrophoretic mobility of the pea H1 subtypes and their N-bromosuccinimide cleavage products indicated that the newly isolated gene corresponded to the H1-5 subtype encoded by His5. We confirmed this result by sequencing the gene from three pea lines with H1-5 allelic variants of altered electrophoretic mobility. The allele of the slow H1-5 variant differed from the standard allele by a nucleotide substitution that caused the replacement of the positively charged lysine with asparagine in the DNA-interacting domain of the histone molecule. A temperature-related occurrence had previously been demonstrated for this H1-5 variant in a study on a worldwide collection of pea germplasm. The variant tended to occur at higher frequencies in geographic regions with a cold climate. The fast allelic variant of H1-5 displayed a deletion resulting in the loss of a duplicated pentapeptide in the C-terminal domain.  相似文献   

2.
Here we report a novel two-dimensional liquid chromatography-mass spectrometry (2D LC-MS) method that combines offline hydroxyapatite (HA) chromatography with online reversed-phase liquid chromatography-mass spectrometry (HA/RP LC-MS). The 2D LC-MS method was used to enrich and characterize histones and their posttranslational modifications. The 2D HA/RP LC-MS approach separates histones based on their relative binding affinity to DNA and relative hydrophobicity. HA/RP separations showed improvement in the number of histone isoforms detected as compared with one-dimensional RP LC-MS of acid-extracted histones. The improved histone fractionation resulted in better detection of lower abundant histone variants as well as their posttranslationally modified isoforms. Histones eluted from the HA/RP in the following order: H1, H2A/H2B heterodimers followed by H3/H4 heterotetramers, as predicted from their spatial organization in nucleosomes for binding affinity to DNA. Comparison between HA-purified and acid-extracted histones revealed similar histone profiles with the exception that the HA fractions showed a greater number of H1 isoforms. Two elution conditions were also examined: batch elution and salt gradient elution. Although both elution techniques were able to fractionate the histones sufficiently, the salt gradient approach has the most potential for purification of selected histone isoforms.  相似文献   

3.
We have examined the molecular mechanisms responsible for the shifts in histone protein phenotype during embryogenesis in the sea urchinStrongylocentrotus purpuratus. The H1, H2A, and H2B classes of histone synthesized at the earliest stages of cleavage are heterogeneous: These proteins are replaced at late embryogenesis by a different set of histone-like polypeptides, some of which are also heterogeneous. The H3 and H4 histones appear to be homogeneous classes and remain constant. We have isolated from both early and late embryos the individual messenger RNAs coding for each of the multiple protein subtypes. The RNAs were isolated by hybridization to cloned DNA segments coding for a single histone protein or by elution from polyacrylamide gels. Each RNA was then analyzed and identified by its mobility on polyacrylamide gels and by its template activity in the wheat germ cell-free protein synthesizing system. The mRNAs for each of the five early histone protein classes are heterogeneous in size and differ from the late stage templates. The late mRNAs consist of at least 11 separable types coding for the 5 classes of histones. Each of the 11 has been separated and identified. The late stage proteins were shown to be authentic histones since many of their templates hybridize with histone coding DNA. The early and late stage mRNAs are transcribed from different sets of histone genes since (1) late stage H1 and H2A mRNAs fail to hybridize to cloned early stage histone genes under ideal conditions for detecting homologous early stage hybrids, (2) late stage H2B, H3, and H4 RNA/DNA hybrids melt at 14, 11, and 11°C lower, respectively, than do homologous RNA/DNA hybrids, and (3) purified late stage mRNAs direct the synthesis of the variant histone proteins which are synthesized only during later stages. The time course of synthesis of the late stage mRNAs suggests that they appear many hours before the late histone proteins can be detected, possibly as early as fertilization. In addition, early mRNAs are synthesized in small quantities as late as 40 hr after fertilization, during gastrulation. Thus, the major modulations of histone gene expression are neither abrupt nor an absolute on-off switch, and may represent only a gradual and relative repression of early gene expression. Two histones are detected only transiently during early cleavage. The mRNA for one of them, a subtype of H2A, can be detected in the cytoplasm for as long as 40 hr after fertilization. However, template activity for the other, a subtype of H2B, can be detected only at the blastula stage. Thus, the histone genes represent a complex multigene family that is developmentally modulated.  相似文献   

4.
The replacement linker histones H1(0) and H5 are present in frog and chicken erythrocytes, respectively, and their accumulation coincides with cessation of proliferation and compaction of chromatin. These cells have been analyzed for the affinity of linker histones for chromatin with cytochemical and biochemical methods. Our results show a stronger association between linker histones and chromatin in chicken erythrocyte nuclei than in frog erythrocyte nuclei. Analyses of linker histones from chicken erythrocytes using capillary electrophoresis showed H5 to be the subtype strongest associated with chromatin. The corresponding analyses of frog erythrocyte linker histones using reverse-phase high performance liquid chromatography showed that H1(0) dissociated from chromatin at somewhat higher ionic strength than the three additional subtypes present in frog blood but at lower ionic strength than chicken H5. Which of the two H1(0) variants in frog is expressed in erythrocytes has thus far been unknown. Amino acid sequencing showed that H1(0)-2 is the only H1(0) subtype present in frog erythrocytes and that it is 100% acetylated at its N termini. In conclusion, our results show differences between frog and chicken linker histone affinity for chromatin probably caused by the specific subtype composition present in each cell type. Our data also indicate a lack of correlation between linker histone affinity and chromatin condensation.  相似文献   

5.
H1 histone subtype genes differ in their expression patterns during the different stages of the cell cycle interphase. While the group of replication-dependent H1 histone subtypes is synthesized during S phase, the replacement histone subtype H1.0 is also expressed replication-independently in non-proliferating cells. The present study is the first report about the analysis of the cell cycle-dependent expression of all five replication-dependent H1 subtypes, the replacement histone H1.0 and the ubiquitously expressed subtype H1x. The expression of these H1 histone subtypes in HeLa cells was analysed on mRNA level by quantitative real-time RT-PCR as well as on protein level by immunoblotting. We found that after arrest of HeLa cells in G1 phase by treatment with sodium butyrate, the mRNA levels of all replication-dependently expressed H1 subtypes decreased, but to very different extent. During S phase the individual replication-dependently expressed H1 subtypes show similar kinetics regarding their mRNA levels. However, the variations in their protein amounts partially differ from the respective RNA levels which especially applies to histone H1.3. In contrast, the mRNA as well as the protein level of H1x remained nearly unchanged in G1 as well as during S phase progression. The results of the present study demonstrate that the cell cycle-dependent mRNA and protein expression of various H1 subtypes is differentially regulated, supporting the hypothesis of a functional heterogeneity.  相似文献   

6.
7.
We have isolated and characterized a gene, His1-3, encoding a structurally divergent linker histone in Arabidopsis thaliana. Southern and northern hybridization data indicate that A. thaliana expresses three single-copy linker histone genes, each encoding a structurally distinct variant. H1-3 is a considerably smaller protein (167 amino acids with a mass of 19.0 kDa) than any other described linker histone from higher eukaryotes. We examined the expression of His1-3 at the RNA and protein levels and found that it is induced specifically by water stress. In contrast, expression of His1-1, His1-2 and His4 appear unaffected by water stress. Furthermore, the primary structure of the protein possesses distinct characteristics that are shared with another drought-inducible linker histone, H1-D, isolated from Lycopersicon pennellii. Based on structural characteristics of the deduced protein and its inducible expression, we hypothesize that H1-3 and H1-D are linker histone variants that have specialized roles in the structure and function of plant chromatin and therefore they can be considered to be members of a unique subclass of plant histones. Immunoblotting with an antibody produced against a short polypeptide in the conserved domain of this subtype indicates that similar proteins may exist in other plants.  相似文献   

8.
B Drabent  E Kardalinou  D Doenecke 《Gene》1991,103(2):263-268
The gene coding for the human H1t histone, a testis-specific H1 subtype, was isolated from a genomic library using a human somatic H1 gene as a hybridization probe. The corresponding mRNA is not polyadenylated and encodes a 206-amino-acid protein. Sequence analysis and S1 nuclease mapping of the human H1t gene reveals that the 5' flanking region contains several consensus promoter elements, as described for somatic, i.e., S-phase-dependent H1 subtype genes. The 3' region includes the stem-and-loop structure necessary for mRNA processing of most histone mRNAs. Northern blot analysis with RNAs from different human tissues and cell lines revealed that only testicular RNA hybridized with this gene probe.  相似文献   

9.
10.
11.
In recent years, much knowledge about the functions of defined genes in spermatogenesis has been gained by making use of mouse transgenic and gene knockout models. Single null mutations in mouse genes encoding four male germ cell proteins, transition protein 2 (Tnp-2), proacrosin (Acr), histone H1.1 (H1.1), and histone H1t (H1t), have been generated and analyzed. Tnp-2 is believed to participate in the removal of the nuclear histones and initial condensation of the spermatid nucleus. Proacrosin is an acrosomal protease synthesized as a proenzyme and activated into acrosin during the acrosome reaction. The linker histone subtype H1.1 belongs to the group of main-type histones and is synthesized in somatic tissues and germ cells during the S-phase of the cell cycle. The histone gene H1t is expressed exclusively in spermatocytes and may have a function in establishing an open chromatin structure for the replacement of histones by transition proteins and protamines. Male mutant mice lacking any of these proteins show no apparent defects in spermatogenesis or fertility. To examine the synergistic effects of these proteins in spermatogenesis and during fertilization, two lines of triple null mice (Tnp-2-/-/Acr-/-/H1.1-/- and Tnp-2-/-/Acr-/-/H1t-/-) were established. Both lines are fertile and show normal sperm parameters, which clearly demonstrate the functional redundancy of these proteins in male mouse fertility. However, sperm only deficient for Acr (Acr-/-) are able to compete significantly with sperm from triple knockout mice Tnp-2-/-/Acr-/-/H1.1-/- (70.7% vs. 29.3%) but not with sperm from triple knockout mice Tnp-2-/-/Acr-/-/H1t-/- (53.6% vs. 46.4%). These results are consistent with a model that suggests that some sperm proteins play a role during sperm competition.  相似文献   

12.
In pea, subtype H1-7 of histone H1 is specific for young actively growing tissues and disappears from chromatin of mature tissues. We sequenced the alleles coding for three main variants, numbered according to the increase of the electrophoretic mobility. Allele 1 differs from the most common allele 2 by eight nucleotide substitutions, two of them associated with amino acid replacements, His->Tyr in the globular domain and Ala->Val in the C-terminal domain. Allele 3 differs from alleles 1 and 2 by a 24-bp deletion in the part coding for the C-terminal domain. In three greenhouse experiments, we compared quantitative traits in nearly isogenic lines differing by these H1-7 variants. In experiment 1, three lines bearing either of the three allelic variants were compared, the other experiments involved pairs of lines bearing variants 1 and 3. In all experiments, statistically significant differences between the lines were registered, mostly related to the plant size. The most prominent effect was associated with plant growth dynamics. Plants of line 3, carrying the 8-amino acid deletion in histone H1-7, on average grew slower. In two experiments, the differences of the mean stem length persisted throughout plant growth while in experiment 2 differences disappeared upon maturity. The H1-7 subtype is supposed to be related to maintenance of chromatin state characteristic for cell growth and division.  相似文献   

13.
14.
Triton X-114 and cation-exchange chromatography, SP-Sepharose FF, removed endotoxins from solutions containing recombinant histone H1.5. Dissociated endotoxins were removed but fractions containing histone H1.5 were enhanced in the elution step. The final concentration of endotoxins, measured by a limulus amoebocyte lysate (LAL) assay, was below 0.05 EU mg–1 histone H1.5. The recovery of protein was above 95%.  相似文献   

15.
Bio-Rex 70 chromatography was combined with reverse-phase (RP) HPLC to fractionate histone H1 zero and 4 histone H1 subtypes from human placental nuclei as previously described (Parseghian MH et al., 1993, Chromosome Res 1:127-139). After proteolytic digestion of the subtypes with Staphylococcus aureus V8 protease, peptides were fractionated by RP-HPLC and partially sequenced by Edman degradation in order to correlate them with human spleen subtypes (Ohe Y, Hayashi H, Iwai K, 1986, J Biochem (Tokyo) 100:359-368; 1989, J Biochem (Tokyo) 106:844-857). Based on comparisons with the sequence data available from other mammalian species, subtypes were grouped. These groupings were used to construct a coherent nomenclature for mammalian somatic H1s. Homologous subtypes possess characteristic patterns of growth-related and cAMP-dependent phosphorylation sites. The groupings defined by amino acid sequence also were used to correlate the elution profiles and electrophoretic mobilities of subtypes derived from different species. Previous attempts at establishing an H1 nomenclature by chromatographic or electrophoretic fractionations has resulted in several misidentifications. We present here, for the first time, a nomenclature for somatic H1s based on amino acid sequences that are analogous to those for H1 zero and H1t. The groupings defined should be useful in correlating the many observations regarding H1 subtypes in the literature.  相似文献   

16.
17.
18.
Protein phosphatase T from rat liver, so termed due to its activity toward [32P-Thr]casein and its marked preference for the phosphopeptide Arg-Arg-Ala-Thr(P)-Val-Ala over its phosphoseryl derivative (Donella Deana, A., Marchiori, F., Meggio, F. and Pinna, L.A. (1982) J. Biol. Chem. 257, 8565-8568), is shown here to belong to the family of type 2A protein phosphatase according to Cohen's nomenclature (Ingebritsen, T.S. and Cohen, P. (1983) Eur. J. Biochem. 132, 255-261). In particular, protein phosphatase T is endowed with phosphorylase phosphatase activity that is stimulated by protamine, histone H1 and heparin, it is inhibited by spermine, it does not bind to heparin-Sepharose and it readily dephosphorylates the phosphopeptide Arg-Arg-Leu-Ser(P)-Ile-Ser-Thr-Glu-Ser reproducing the phosphorylation site of the alpha-subunit of phosphorylase kinase. The Mr of protein phosphatase T determined by gel filtration under non-denaturating conditions is about 150 kDa and its activity ratio toward histone H1 phosphorylated by protein kinase C versus histone H1 phosphorylated by cAMP-dependent protein kinase is unusually high. Some properties of protein phosphatase T, such as its weak binding to DEAE-cellulose and its high stimulation by protamine as compared to a relatively poor stimulation by histone H1, suggest that it may be similar to subtype 2Ao of protein phosphatase 2A.  相似文献   

19.
20.
A method for the rapid chromatography of histones by high-performance liquid chromatography (HPLC) using a reverse-phase μBondapak C18 column containing a packing of octadecylsilane chemically bonded to silica and a linear elution gradient running from water to acetonitrile is described. Two conditions were found to be necessary to achieve histone fractionation: (i) silylation of the active groups of the silica solid support, and (ii) trifluoroacetic acid (TFA) in the eluting solvents. Greater than 90% of the total [3H]lysine-labeled protein applied to the column was eluted from the column. The fractionation of the histones appears to be based on the hydrophobic properties of the proteins. The HPLC histone fractions (identified by their electrophoretic mobilities) were eluted from the column in the following order: H1, H2B, (LHP)H2A, (MHP)H2A + H4, (LHP)H3, and (MHP)H3 (where LHP and MHP refer to the less hydrophobic and more hydrophobic histone variants). Phosphorylated histone species were not resolved from their unmodified parental species. The volatile nature of the water/acetonitrile/TFA eluting solvent facilitated the recovery of salt-free histones from the eluted HPLC fractions by simple lyophilization. This system is very useful for the rapid isolation of the lysine-rich histones, H1 and H2B, and the variants of histone H3. With further development, this system is expected to extend the advantages of HPLC to the fractionation of histone H4 and the variants of histone H2A as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号