首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

In rheumatoid arthritis (RA) immune activation and presence of autoantibodies may precede clinical onset of disease, and joint destruction can progress despite remission. However, the underlying temporal changes of such immune system abnormalities in the inflammatory response during treat-to-target strategies remain poorly understood. We have previously reported low levels of the soluble form of CD18 (sCD18) in plasma from patients with chronic RA and spondyloarthritis. Here, we study the changes of sCD18 before and during treatment of early RA and following arthritis induction in murine models of rheumatoid arthritis.

Methods

The level of sCD18 was analyzed with a time-resolved immunoflourometric assay in 1) plasma from early treatment naïve RA patients during a treat-to-target strategy (the OPERA cohort), 2) plasma from chronic RA patients, 3) serum from SKG and CIA mice following arthritis induction, and 4) supernatants from synovial fluid mononuclear cells (SFMCs) and peripheral blood mononuclear cells (PBMCs) from 6 RA patients cultured with TNFα or adalimumab.

Results

Plasma levels of sCD18 were decreased in chronic RA patients compared with early RA patients and in early RA patients compared with healthy controls. After 12 months of treatment the levels in early RA patients were similar to healthy controls. This normalization of plasma sCD18 levels was more pronounced in patients with very early disease who achieved an early ACR response. Plasma sCD18 levels were associated with radiographic progression. Correspondingly, the serum level of sCD18 was decreased in SKG mice 6 weeks after arthritis induction compared with healthy littermates. The sCD18 levels in both SKG and CIA mice exhibited a biphasic course after arthritis induction with an initial increase above baseline followed by a decline. Shedding of CD18 from RA SFMC and RA PBMC cultures was increased by TNFα and decreased by adalimumab.

Conclusions

The plasma sCD18 levels were altered in patients with RA, in mice with autoimmune arthritis and in cell cultures treated with TNFα and adalimumab. Decreased levels of plasma sCD18 could reflect autoimmunity in transition from early to chronic disease and normalization in response to treatment could reflect autoimmunity in remission.  相似文献   

2.
Chronic obstructive pulmonary disease (COPD) is characterized by intense lung infiltrations of immune cells (macrophages and monocytes). Lipopolysaccharide (LPS) activates macrophages/monocytes, leading to production of tumor necrosis factor α (TNFα) and other cytokines, which cause subsequent lung damages. In the current study, our results demonstrated that AS-703026, a novel MEK/ERK inhibitor, suppressed LPS-induced TNFα mRNA expression and protein secretion in RAW 264.7 murine macrophages, and in murine bone marrow-derived macrophages (BMDMs). Meanwhile, TNFα production in LPS-stimulated COPD patents’ peripheral blood mononuclear cells (PBMCs) was also repressed by AS-703026. At the molecular level, we showed that AS-703026 blocked LPS-induced MEK/ERK activation in above macrophages/monocytes. However, restoring ERK activation in AS-703026-treated RAW 264.7 cells by introducing a constitutive-actively (CA)-ERK1 only partially reinstated LPS-mediated TNFα production. Meanwhile, AS-703026 could still inhibit TNFα response in ERK1/2-depleted (by shRNA) RAW 264.7 cells. Significantly, we found that AS-703026 inhibited LPS-induced nuclear factor κB (NFκB) activation in above macrophages and COPD patients’ PBMCs. In vivo, oral administration of AS-703026 inhibited LPS-induced TNFα production and endotoxin shock in BALB/c mice. Together, we show that AS-703026 in vitro inhibits LPS-induced TNFα production in macrophages/monocytes, and in vivo protects mice from LPS-induced endotoxin shock. Thus, it could be further studied as a useful anti-inflammatory therapy for COPD patients.  相似文献   

3.
Lipocalin-2 (LCN2) is secreted from adipocytes, and its expression is up-regulated in obese and diabetic mice and humans. LCN2 expression and secretion have been shown to be induced by two proinflammatory cytokines, IFNγ and TNFα, in cultured murine and human adipocytes. In these studies, we demonstrated that IFNγ and TNFα induced LCN2 expression and secretion in vivo. Although we observed a strong induction of LCN2 expression and secretion from white adipose tissue (WAT) depots, the induction of LCN2 varied among different insulin-sensitive tissues. Knockdown experiments also demonstrated that STAT1 is required for IFNγ-induced lipocalin-2 expression in murine adipocytes. Similarly, knockdown of p65 in adipocytes demonstrated the necessity of the NF-κB signaling pathway for TNFα-mediated effects on LCN2. Activation of ERKs by IFNγ and TNFα also affected STAT1 and NF-κB signaling through modulation of serine phosphorylation. ERK activation-induced serine phosphorylation of both STAT1 and p65 mediated the additive effects of IFNγ and TNFα on LCN2 expression. Our results suggest that these same mechanisms occur in humans as we observed STAT1 and NF-κB binding to the human LCN2 promoter in chromatin immunoprecipitation assays performed in human fat cells. These studies substantially increase our knowledge regarding the requirements and mechanisms used by proinflammatory cytokines to induce LCN2 expression.  相似文献   

4.

Introduction

Tumor necrosis factor inhibitor (TNFi) therapy is effective for rheumatoid arthritis (RA). Some researchers have suggested that TNFi therapy affects B-cell homeostasis. We studied the effect of TNFi therapy on the distribution of peripheral B-cell subsets to elucidate B-cell–related biomarkers to predict the TNFi response.

Methods

Peripheral B cells were analyzed for expression of CD19, CD27, CD38 and immunoglobulin D in 31 healthy donors and 96 RA patients, including 21 patients who were followed 3 months after TNFi initiation.

Results

Treatment with steroids significantly altered the distribution of B-cell subsets. After we adjusted for age, sex and steroid dose, we found that patients with RA had B-cell subset proportions similar to controls. B-cell subset distributions did not differ upon use of TNFi at baseline or before or after TNFi introduction. TNFi responders (according to European League Against Rheumatism criteria) at 3 months had significantly higher proportions of CD27+ memory B cells at baseline, and ≥26% CD27+ cells at inclusion was associated with a relative risk of 4.9 (1.3 to 18.6) for response to TNFi treatment. CD27+ cells produced three times more TNFα than did TNFi-naïve B cells and were correlated with interferon γ produced from CD4+ cells in patients without TNFi treatment.

Conclusions

In patients with RA, high levels of baseline memory B cells were associated with response to TNFi, which may be related to TNFα-dependent activation of the T helper type 1 cell pathway.  相似文献   

5.
6.
7.
We recently reported a reciprocal relationship between tumor necrosis factor alpha (TNFα) and insulin-like receptor growth factor binding protein 3 (IGFBP-3) in whole retina of normal and IGFBP-3 knockout mice. A similar relationship was also observed in cultured retinal endothelial cells (REC). We found that TNFα significantly reduced IGFBP-3 levels and vice-versa, IGFBP-3 can lower TNFα and TNFα receptor expression. Since IGFBP-3 is protective to the diabetic retina and TNFα is causative in the development of diabetic retinopathy, we wanted to better understand the cellular mechanisms by which TNFα can reduce IGFBP-3 levels. For these studies, primary human retinal endothelial cells (REC) were used since these cells undergo TNFα-mediated apoptosis under conditions of high glucose conditions and contribute to diabetic retinopathy. We first cultured REC in normal or high glucose, treated with exogenous TNFα, then measured changes in potential signaling pathways, with a focus on P38 mitogen-activated protein kinase alpha (P38α) and casein kinase 2 (CK2) as these pathways have been linked to both TNFα and IGFBP-3. We found that TNFα significantly increased phosphorylation of P38α and CK2. Furthermore, specific inhibitors of P38α or CK2 blocked TNFα inhibition of IGFBP-3 expression, demonstrating that TNFα reduces IGFBP-3 through activation of P38α and CK2. Since TNFα and IGFBP-3 are key mediators of retinal damage and protection respectively in diabetic retinopathy, increased understanding of the relationship between these two proteins will offer new therapeutic options for treatment.  相似文献   

8.
De-differentiation of vascular smooth muscle cells (VSMCs) plays a critical role in the development of atherosclerosis, a chronic inflammatory disease involving various cytokines such as tumor necrosis factor-α (TNFα). Myocardin is a co-factor of serum response factor (SRF) and is considered to be the master regulator of VSMC differentiation. It binds to SRF and regulates the expression of contractile proteins in VSMCs. Myocardin is also known to inhibit VSMC proliferation by inhibiting the NF-κB pathway, whereas TNFα is known to activate the NF-κB pathway in VSMCs. NF-κB activation has also been shown to inhibit myocardin expression and smooth muscle contractile marker genes. However, it is not definitively known whether TNFα regulates the expression and activity of myocardin in VSMCs. The current study aimed to investigate the role of TNFα in regulating myocardin and VSMC function. Our studies showed that TNFα down-regulated myocardin expression and activity in cultured VSMCs by activating the NF-κB pathway, resulting in decreased VSMC contractility and increased VSMC proliferation. Surprisingly, we also found that TNFα prevented myocardin mRNA degradation, and resulted in a further significant increase in myocardin expression and activity in differentiated VSMCs. Both the NF-κB and p44/42 MAPK pathways were involved in TNFα regulation of myocardin, which further increased the contractility of VSMCs. These differential effects of TNFα on myocardin seemingly depended on whether VSMCs were in a differentiated or de-differentiated state. Taken together, our results demonstrate that TNFα differentially regulates myocardin expression and activity, which may play a key role in regulating VSMC functions.  相似文献   

9.

Introduction

A protein analysis using a mass spectrometry indicated that there are serum proteins showing significant quantitative changes after the administration of infliximab. Among them, connective tissue growth factor (CTGF) seems to be related to the pathogenesis of rheumatoid arthritis (RA). Therefore, this study was conducted to investigate how CTGF is associated with the disease progression of RA.

Methods

Serum samples were collected from RA patients in active or inactive disease stages, and before or after treatments with infliximab. CTGF production was evaluated by ELISA, RT-PCR, indirect immunofluorescence microscopy, and immunoblotting. Osteoclastogenesis was evaluated using tartrate-resistant acid phosphatase (TRAP) staining, a bone resorption assay and osteoclasts specific catalytic enzymes productions.

Results

The serum concentrations of CTGF in RA were greater than in normal healthy controls and disease controls. Interestingly, those were significantly higher in active RA patients compared to inactive RA patients. Furthermore, the CTGF levels significantly were decreased by infliximab concomitant with the disease amelioration. In addition, tumour necrosis factor (TNF)α can induce the CTGF production from synovial fibroblasts even though TNFα can oppositely inhibit the production of CTGF from chondrocytes. CTGF promoted the induction of the quantitative and qualitative activities of osteoclasts in combination with M-CSF and receptor activator of NF-κB ligand (RANKL). In addition, we newly found integrin αVβ3 on the osteoclasts as a CTGF receptor.

Conclusions

These results indicate that aberrant CTGF production induced by TNFα plays a central role for the abnormal osteoclastic activation in RA patients. Restoration of aberrant CTGF production may contribute to the inhibition of articular destruction in infliximab treatment.  相似文献   

10.

Objectives

Fc receptors (FcR) interacting with immune complexes (ICs) is a central event in the immune pathogenesis of rheumatoid arthritis (RA). Here we asked if a specific FcR is linked to RA pathogenesis and if FcR activities relate to disease and treatment outcome in early RA.

Material and Methods

Twenty autoantibody-positive RA patients and 33 HC were included. The patients were evaluated before and after treatment with methotrexate and prednisolone. At follow-up, the EULAR response criteria were applied to determine the individual treatment outcomes. Serum immunoglobulin levels were measured and the expression of FcR for IgG (FcγR) and IgA (FcαR) on peripheral blood monocytes were determined by flow cytometry. The monocytic FcγR function was evaluated by human IgG1 and IgG3 IC-binding and TNFα stimulated release. Plasma levels of soluble FcRs (sFcRs) were determined with ELISA.

Results

The IgG1 and IgG3 levels were elevated in the RA sera. The RA monocytes expressed more CD64 and cell surface-bound IgG than HC monocytes, and showed an impaired FcγR function as reflected by changes in IC-binding and decreased IC-stimulated TNFα secretion. These findings correlated significantly with different disease activity markers. Furthermore, sFcRs were elevated in the patient plasma, and sCD64 was specific for RA (compared with a reference group of patients with active psoriatic arthritis). Following treatment, immunoglobulins and sFcR levels were reduced, whereas membrane CD64 was only decreased in patients with good response to treatment.

Conclusions

Early RA patients display increased membrane and soluble CD64 and an impaired FcγR function correlating with joint disease activity. Beneficial responses of anti-rheumatic treatment in patients reduce CD64. These data suggest sCD64 as an important objective biomarker in RA.  相似文献   

11.
Early spontaneous abortion (ESA) is one of the most common complications during pregnancy and the inflammation condition in uterine environment such as long‐term exposure to high TNFα plays an essential role in the aetiology. Ferritin heavy chain (FTH1) is considered to be closely associated with inflammation and very important in normal pregnancy, yet the underlying mechanism of how TNFα induced abortion and its relationship with FTH1 remain elusive. In this study, we found that TNFα and FTH1 were positively expressed in decidual stromal cells and increased significantly in the ESA group compared with the normal pregnancy group (NP group). Besides, TNFα expression was positively correlated with FTH1 expression. Furthermore, in vitro cell model demonstrated that high TNFα could induce the abnormal signals of TNFR/NF‐κB/FTH1 and activate apoptosis both in human endometrium stromal cells (hESCs) and in local decidual tissues. Taken together, the present findings suggest that the excessive apoptosis in response to TNFα‐induced upregulation of FTH1 may be responsible for the occurrence of ESA, and thus provide a possible therapeutic target for the treatment of ESA.  相似文献   

12.

Objective

Patients with rheumatoid arthritis (RA) have altered circadian rhythm of circulating serum cortisol, melatonin and IL-6, as well as disturbance in the expression of clock genes ARNTL2 and NPAS2. In humans, TNFα increases the expression ARNTL2 and NPAS2 but paradoxically suppresses clock output genes DPB and PER3. Our objective was to investigate the expression of direct clock suppressors DEC1 and DEC2 (BHLHE 40 and 41 proteins) in response to TNFα and investigate their role during inflammation.

Methods

Cultured primary fibroblasts were stimulated with TNFα. Effects on DEC2 were studied using RT-qPCR and immunofluorescence staining. The role of NF-κB in DEC2 increase was analyzed using IKK-2 specific inhibitor IMD-0354. Cloned DEC2 was transfected into HEK293 cells to study its effects on gene expression. Transfections into primary human fibroblasts were used to confirm the results. The presence of DEC2 was analyzed in (RA) and osteoarthritis (OA) synovial membranes by immunohistochemistry.

Results

TNFα increased DEC2 mRNA and DEC2 was mainly detected at nuclei after the stimulus. The effects of TNFα on DEC2 expression were mediated via NF-κB. Overexpression, siRNA and promoter activity studies disclosed that DEC2 directly regulates IL-1β, in both HEK293 cells and primary human fibroblasts. DEC2 was increased in synovial membrane in RA compared to OA.

Conclusion

Not only ARNTL2 and NPAS2 but also DEC2 is regulated by TNFα in human fibroblasts. NF-κB mediates the effect on DEC2, which upregulates IL-1β. Circadian clock has a direct effect on inflammation in human fibroblasts.  相似文献   

13.

Introduction

Adalimumab is a fully human anti–tumor necrosis factor α (anti-TNFα) monoclonal antibody that specifically blocks the interaction of TNFα with its receptors. It binds both soluble and transmembrane TNFα. We hypothesized that blocking these TNFα signals regulates the altered TNFα production in rheumatoid arthritis (RA) patients.

Methods

We compared, by flow cytometry, Toll-like receptor induction levels of membrane and intracellular TNFα in monocytes (iTNFα + CD14+ cells) from 12 patients before and after adalimumab treatment with those from 5 healthy donors.

Results

Before starting the treatment, the percentage of iTNFα+ CD14+ cells in the RA patients was significantly lower than that in healthy donors (mean ± SEM = 33.16 ± 4.82% vs 66.51 ± 2.4%, P < 0.001). When we added in vitro TNFα to healthy donor culture cells, levels of iTNFα+ CD14+ cells decreased, suggesting that the TNFα signal was responsible for the iTNFα+ CD14+ cell downregulation observed in the RA patients. After 2, 6 and 12 adalimumab injections, we observed significant blocking of membrane and soluble TNFα and a progressive increase in iTNFα+ CD14+ cells in ten patients with a good to moderate response as defined by the European League Against Rheumatism (EULAR) criteria. Levels of iTNFα+ CD14+ cells after 12 injections in these 10 patients were comparable to levels in healthy donors. In two patients, iTNFα+ CD14+ cell upregulation was not observed, and their EULAR-defined responses had not improved. The first patient developed antiadalimumab antibodies, explaining why adalimumab was not able to block membrane and soluble TNFα. In the second patient, adalimumab was discontinued because of adverse effects, which led to a decrease in iTNFα+ CD14+ cells to levels measured before treatment.

Conclusions

Our findings suggest that adalimumab treatment in RA patients can return iTNFα levels to those of healthy donors. This effect was not observed in the presence of neutralizing antiadalimumab antibodies.  相似文献   

14.
Resistance to erythropoietin (EPO) affects a significant number of anaemic patients with end-stage renal disease. Previous reports suggest that inflammation is one of the major independent predictors of EPO resistance, and the effects of EPO treatment on inflammatory mediators are not well established. The aim of this study was to investigate EPO-induced modification to gene expression in primary cultured leucocytes. Microarray experiments were performed on primed ex vivo peripheral blood mononuclear cells (PBMCs) and treated with human EPO-α. Data suggested that EPO-α modulated genes involved in cell movement and interaction in primed PBMCs. Of note, EPO-α exerts anti-inflammatory effects inhibiting the expression of pro-inflammatory cytokine IL-8 and its receptor CXCR2; by contrast, EPO-α increases expression of genes relating to promotion of inflammation encoding for IL-1β and CCL8, and induces de novo synthesis of IL-1α, CXCL1 and CXCL5 in primed cells. The reduction in MAPK p38-α activity is involved in modulating both IL-1β and IL-8 expression. Unlike the induction of MAPK, Erk1/2 activity leads to upregulation of IL-1β, but does not affect IL-8 expression and release. Furthermore, EPO-α treatment of primed cells induces the activation of caspase-1 upstream higher secretion of IL-1β, and this process is not dependent on caspase-8 activation. In conclusion, our findings highlight new potential molecules involved in EPO resistance and confirm the anti-inflammatory role for EPO, but also suggest a plausible in vivo scenario in which the positive correlation found between EPO resistance and elevated levels of some pro-inflammatory mediators is due to treatment with EPO itself.  相似文献   

15.
16.
The exact mechanism of tumour necrosis factor α (TNF‐α) promoting osteoclast differentiation is not completely clear. A variety of P2 purine receptor subtypes have been confirmed to be widely involved in bone metabolism. Thus, the purpose of this study was to explore whether P2 receptor is involved in the differentiation of osteoclasts. Mouse bone marrow haematopoietic stem cells (BMHSCs) were co‐cultured with TNF‐α to explore the effect of TNF‐α on osteoclast differentiation and bone resorption capacity in vitro, and changes in the P2 receptor were detected at the same time. The P2 receptor was silenced and overexpressed to explore the effect on differentiation of BMHSCs into osteoclasts. In an in vivo experiment, the animal model of PMOP was established in ovariectomized mice, and anti‐TNF‐α intervention was used to detect the ability of BMHCs to differentiate into osteoclasts as well as the expression of the P2 receptor. It was confirmed in vitro that TNF‐α at a concentration of 20 ng/mL up‐regulated the P2X7 receptor of BMHSCs through the PI3k/Akt signalling pathway, promoted BMHSCs to differentiate into a large number of osteoclasts and enhanced bone resorption. In vivo experiments showed that more P2X7 receptor positive osteoclasts were produced in postmenopausal osteoporotic mice. Anti‐TNF‐α could significantly delay the progression of PMOP by inhibiting the production of osteoclasts. Overall, our results revealed a novel function of the P2X7 receptor and suggested that suppressing the P2X7 receptor may be an effective strategy to delay bone formation in oestrogen deficiency‐induced osteoporosis.  相似文献   

17.
18.
19.
20.
Bone marrow-derived mesenchymal stem cells (BM-MSCs) are often recruited to solid tumors, integrate into the tumor stroma, and contribute to tumor development. TNFα is a major inflammatory cytokine present in the tumor microenvironment and has a profound influence on the progression of tumor development. This study was aimed to investigate the role of BM-MSCs in tumor promotion in response to TNFα. Quantitative real-time PCR arrays show that diverse cytokines/chemokines were induced in TNFα-treated BM-MSCs; in particular, CXCR3 ligand chemokines, including CXCL9, CXCL10, and CXCL11, were potently induced. A serial and site-directed mutation analysis in the CXCL9, CXCL10, and CXCL11 promoters revealed that NF-κB binding elements were responsible for TNFα-induced promoter activation of CXCR3 ligand chemokines. TNFα stimulated NF-κB activity, and ectopic expression of NF-κB enhanced TNFα-induced promoter activities of the CXCR3 ligand chemokines. Gel shift and supershift assays showed that NF-κB was associated with CXCR3 ligand chemokine promoters in response to TNFα treatment. All three CXCR3 ligand chemokines enhanced the migration and invasive motility of MDA-MB-231 breast cancer cells expressing CXCR3. Treatment of MDA-MB-231 cells with CXCL10 activated small GTPase of Rho family proteins, such as RhoA and Cdc42. CXCL9-, CXCL10-, or CXCL11-induced invasive capability of MDA-MB-231 cells was completely abrogated in the presence of a neutralizing anti-CXCR3 antibody in the culture medium. Moreover, CXCL9, CXCL10, and CXCL11 stimulated the expression of MMP-9, but not MMP-2, in MDA-MB-231 cells. These results suggest that BM-MSCs promote the locomotion of breast cancer cells through CXCR3 ligand-mediated actin rearrangement by TNFα in the tumor microenvironment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号