首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Central projections of sensory neurons from homeotic mutant appendages (Antennapedia) of Drosophila melanogaster were compared with those of wild-type antennae and wild-type legs by means of degeneration and cobalt backfilling methods. Sensory axons originating from wild-type thoracic legs terminate within the ventral ipsilateral half of the corresponding neuropile segment and do not project to the brain. Sensory fibers from the third antennal segment (AIII) of wild-type animals project into the ipsilateral antennal glomerulus (AG) and to a lesser extent into the contralateral AG, whereas those from the second antennal segment terminate principally within the ipsilateral posterior antennal center. The sensory terminals of femur, tibia, and tarsi of the homeotic leg show a distribution very similar to that of the homologous wild-type antennal segment AIII, differing to a minor degree only in the size and precise localization of terminals within the antennal glomeruli. No degenerating axons were evident in ultrastructural examination of neck connectives after removal of homeotic legs. It is thus very improbable that any sensory fibers of the homeotic leg project to normal leg projection areas in the thoracico-abdominal ganglion. Several alternative explanations are offered for the apparent retention of antennal specificity by axons from the transformed appendage.  相似文献   

2.
The central projection patterns of sensory cells from the wing and haltere of Drosophila, as revealed by filling their axons with cobalt, consist of dorsal components arising from small campaniform sensilla and ventral components arising from large campaniform sensilla and from bristles. All of the bristles of the wing are innervated, some singly and some multiply. All three classes of sensilla are strongly represented on the wing, but the haltere carries primarily small campaniform sensilla and has a correspondingly minute ventral projection. In bithorax mutants in which the haltere is transformed into wing, ventral components are added to the projection pattern, while the dorsal components appear as if haltere tissue were still present. Thus, the three classes of receptors not only produce different projection patterns when they develop in their native mesothoracic segment, but also behave differently in the homeotic situation. Consequently, different developmental programs are inferred for each class. When somatic recombination clones of bithorax tissue are generated in phenotypically wild-type flies, they also produce ventral projections. However, these projections of mutant fibers into wild-type ganglia differ in certain details from the projections of mutant fibers into mutant ganglia. Thus, homeotic changes are inferred to occur in the CNS of mutant flies, but these are not required for the execution of those developmental instructions carried in the genome of large campaniform and bristle sensory cells which specify that their axons should grow ventrad in the CNS.  相似文献   

3.
Summary Tactile hairs on the locust thorax can be divided into two classes by their external morphology and their central projection pattern: Short hairs, 10–100 m in length, which are assembled in distinct plates and rows, and long hairs, 100–800 m in length, which are distributed all over the body and are organized in large fields or aligned along the ridges of the appendages.The sensory fibers of the first class arborize in the lateral dorsal neuropile of thoracic ganglia and then extend further into the ipsilateral half of the corresponding ganglion in three main bundles from which fine rami of fibers end in the intermediate neuropile. In all three thoracic ganglia the projection pattern of homologous hair plates is similar.The sensory fibers of the second class exclusively terminate in special median ventral neuropiles, the ventral association center (VAC) and ventralmost ventral association center (VVAC). In addition fibers from meso- and metathoracic hairs, located close to the longitudinal midline of the animal, may terminate in the contralateral VAC and with one branch project to the next anterior ganglion through the ipsilateral connective. In contrast, fibers from prothoracic hairs were not found to leave their ganglion.With support by the DFG Neurale Mechanismen des VerhaltensSome of the studies were started at Universität Bielefeld, Fakultät für Biologie II (Abtlg. Prof. Dr. P. Görner)  相似文献   

4.
Summary The transplantation of appendages from one place to another on the body of crickets (Acheta domesticus) has been used to study the similarities and differences between the sensory systems of various ganglia. Mesothoracic legs have been transplanted to the abdomen in place of a cercus and cerci have been transplanted to thoracic leg stumps. After the ectopic sensory neurons had time to regenerate into the CNS, they were stained and their axonal arborizations examined. The results, which were concerned primarily with bristle receptors, revealed that bristle afferents on ectopic cerci arborized in ventral neuropil (the ventralmost association center) and leg afferents arborized in a ventral anterior region of the terminal abdominal ganglion. The results support the idea that each ganglion contains only a few distinct regions of neuropil (probably three), each receiving separate subsets of the afferent projection.The ectopic cerci were also shown to excite interneurons in the thoracic ganglia whose dendrites were located in the most ventral neuropil. These neurons normally respond to thoracic bristle afferents. Thus, the segregation of afferent axons has a correlate in the interneurons they excite.  相似文献   

5.
A group of six dorsal unpaired median (DUM) neurons of the suboesophageal ganglion (SOG) of locusts was studied with neuroanatomical and electrophysiological techniques. The neurons are located posteriorly in the SOG and have axons that descend into the ganglia of the ventral nerve cord, some as far as the terminal abdominal ganglion. Within thoracic ganglia the neurons have profuse dendritic ramifications in many neuropiles, including ventral sensory neuropiles. Based on their projection patterns three different morphological types of neurons can be distinguished. These neurons receive excitatory inputs through sensory pathways that ascend from the thoracic ganglia and are activated by limb movements. They may be involved in the modulation of synaptic transmission in thoracic ganglia.  相似文献   

6.
Three groups of giant fibers are found in the cockroach ventral nerve cord. A latero-dorsal group (dorsal GIs), a latero-ventral group (ventral GIs) and a medio-ventral group. The morphology of all three groups of fibers within the thoracic ganglia is described. The morphology of the dorsal and ventral GI pathways in the abdominal and suboesophageal ganglia is also described. The projection patterns of the neurons in each ganglion are remarkably similar which suggests a common function. When motorneurons 5rl (depressor) and 6Br4 (levator) are stained simultaneously with the dorsal and ventral GI groups, some branches from both motor and giant neurons converge. The branching of the remaining medio-ventral group of fibers and their proximity to areas receiving motorneuronal input suggests that these are the small diameter axons described by Dagan and Parnas (1970).  相似文献   

7.
Anatomy of dorsal mesothoracic structures, such as muscles, sensory organs, and innervation, was studied in the silkworm, Bombyx mori L. (Lepidoptera : Bombycidae), and compared with the adult wing motor system. Musculature and nerve innervation were investigated by dissection and electron micrograph; and central projection of sensory fibers and morphology of somata and dendrites of motor neurons by cobalt back-filling, followed by silver intensification. There are 23 muscle bundles (DLM) and 2 stretch receptors (SR). The DLMs, SRs, and epidermis are innervated by a branch of the dorsal nerve trunk emerging from the mesothoracic ganglion (MSG). The branch bifurcates into a dorsal sensory branch of about 300 sensory fibers and a dorsal motor branch of 14 fibers. The sensory fibers project mainly to a longitudinal portion near the mid line in the ventral neuropil of MSG and the metathoracic ganglion. Several fibers extend into the prothoracic ganglion (PG) and a few into the subesophageal and 1st abdominal ganglia. At least 13 (probably 14) motor neurons send axons to DLMs: 9 (probably 10) in PG, and 4 in MSG. Their dendrites are located mostly on the dorsoipsilateral side of the neuropil, but several branches cross the mid line and give rise to many fine branches on the contralateral side. Comparison between the larval (present study) and adult motor system shows a significant similarity in the musculature, peripheral nerve pattern, and motor neurons with some peculiarities.  相似文献   

8.
The central branchings of the sensory neurons in the noctuid moth ear have been investigated by introducing cobalt chloride through the cut ends of their axons. Three sensory axons stained, corresponding to the two auditory neurons (A cells) and the B neuron. The three axons were identified using physiological criteria. All three cells share the same basic morphology. Their axons divide into anterior and posterior branches, which contain numerous side branches. Their profiles lie ipsilateral, but A1 gives off some fine side branches that cross the midline. The profiles of A1 and B extend throughout all three thoracic ganglia, occupying a ventral, medial position. The branchings of A2 remain within the meso- and metathoracic ganglia occupying a more dorsal and lateral position. We compare our results with those of an earlier anatomical study, and discuss them in relation to described interneurones and to behaviour  相似文献   

9.
Peripheral and central pathfinding by sensory axons from appendages was investigated in the fly Sarcophaga bullata . (a) Supernumerary appendages (haltere, wing, antenna and leg) were produced by imaginal disc transplantation at various ectopic sites, (b) Leg neuropil was deafferented by leg disc extirpation and in its place another leg disc was implanted. (c) The basal stalk of a leg disc connecting it with the thoracic ganglion was transected. Using cobalt chloride and HRP backfilling methods the pathways taken by the afferents from these experimentally altered appendages was examined. The results indicate that the larval nerves and the imaginal disc stalks act as guides for growing axons to locate their correct entry sites within the ventral ganglion. In the absence of these guides the axons follow any peripheral nerve, such as abdominal nerve, and enter the ganglion at inappropriate sites. However, within the ganglion they take particular routes, almost identical to those taken by axons from in situ appendages suggesting the existance of some kind of a labelled pathway. Deafferentation does not make the leg neuropil more attractive to ingrowing ectopic sensory axons.  相似文献   

10.
In the ant genus Diacamma, all workers eclose from their cocoons with little clublike thoracic appendages, called gemmae. Whether these gemmae are mutilated determines individual behaviour, and ultimately reproductive role, in two of the three species examined. The gemmae are covered with sensory hairs, which probably serve a mechanoreceptive function. The sensory afferents arising from these hairs were stained and traced into the central nervous system (CNS). They feature widely distributed collaterals invading all three thoracic ganglia as well as the suboesophageal and the second abdominal ganglia. The multisegmental arborization pattern of the gemma afferents is very similar to that of wing-hair afferents of other ants (queens and males) or other insects in general. This implies that gemmae and wings are homologous structures. We discuss the morphology of the gemma afferents with respect to their possible involvement in the behavioural changes associated with mutilation. The neuronal processing may be modulated by (1) the decrease of sensory input onto interneurons (suggested by the afferents' extensive arborizations); or (2) by the effect of neuromodulatory substances (suggested by the finding that terminals occur within the cell body rind of the ganglion).  相似文献   

11.
In adult crayfish, Procambarus clarkii, motoneurons to a denervated abdominal superficial flexor muscle regenerate long-lasting and highly specific synaptic connections as seen from recordings of excitatory postsynaptic potentials, even when they arise from the ganglion of another crayfish. To confirm the morphological origins of these physiological connections we examined the fine structure of the allotransplanted tissue that consisted of the third abdominal ganglion and the nerve to the superficial flexor muscle (the fourth ganglion and the connecting ventral nerve cord were also included). Although there is considerable degeneration, the allotransplanted ganglia display intact areas of axon tracts, neuropil, and somata. Thus in both short (6–8 weeks) and long (24–30 weeks) term transplants approximately 20 healthy somata are present and this is more than the five axons regenerated to the host muscle. The principal neurite and dendrites of these somata receive both excitatory and inhibitory synaptic inputs, and these types of synaptic contacts also occur among the dendritic profiles of the neuropil. Axon tracts in the allotransplanted ganglia and ventral nerve cord consist largely of small diameter axons; most of the large axons including the medial and lateral giant axons are lost. The transplanted ganglia have many blood vessels and blood lacunae ensuring long-term survival. The transplanted superficial flexor nerve regenerates from the ventral to the dorsal surface of the muscle where it has five axons, each consisting of many profiles rather than a single profile. This indicates sprouting of the individual axons and accounts for the enlarged size of the regenerated nerve. The regenerated axons give rise to normal-looking synaptic terminals with well-defined synaptic contacts and presynaptic dense bars or active zones. Some of these synaptic terminals lie in close proximity to degenerating terminals, suggesting that they may inhabit old sites and in this way ensure target specificity. The presence of intact somata, neuropil, and axon tracts are factors that would contribute to the spontaneous firing of the transplanted motoneurons. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Summary In spiders the bulk of the central nervous system (CNS) consists of fused segmental ganglia traversed by longitudinal tracts, which have precise relationships with sensory neuropils and which contain the fibers of large plurisegmental interneurons. The responses of these interneurons to various mechanical stimuli were studied electrophysiologically, and their unilateral or bilateral structure was revealed by intracellular staining. Unilateral interneurons visit all the neuromeres on one side of the CNS. They receive mechanosensory input either from a single leg or from all ipsilateral legs via sensory neurons that invade leg neuromeres and project into specific longitudinal tracts. The anatomical organization of unilateral interneurons suggests that their axons impart their information to all ipsilateral leg neuromeres. Bilateral interneurons are of two kinds, symmetric and asymmetric neurons. The latter respond to stimulation of all legs on one side of the body, having their dendrites amongst sensory tracts of the same side of the CNS. Anatomical evidence suggests that their terminals invade all four contralateral leg neuromeres. Bilaterally symmetrical plurisegmental interneurons have dendritic arborizations in both halves of the fused ventral ganglia. They respond to the stimulation of any of the 8 legs. A third class of cells, the ascending neurons have unilateral or bilateral dendritic arborizations in the fused ventral ganglia and show blebbed axons in postero-ventral regions of the brain. Their response characteristics are similar to those of other plurisegmental interneurons. Descending neurons have opposite structural polarity, arising in the brain and terminating in segmental regions of the fused ventral ganglia. Descending neurons show strong responses to visual stimulation. Approximately 50% of all the recorded neurons respond exclusively to stimulation of a single type of mechanoreceptor (either tactile hairs, or trichobothria, or slit sensilla), while the rest respond to stimulation of a variety of sensilla. However, these functional differences are not obviously reflected by the anatomy. The functional significance of plurisegmental interneurons is discussed with respect to sensory convergence and the coordination of motor output to the legs. A comparison between the response properties of certain plurisegmental interneurons and their parent longitudinal tracts suggests that the tracts themselves do not reflect a modality-specific organization.Abbreviations BPI bilateral plurisegmental interneuron - CNS central nervous system - FVG fused ventral ganglia - LT longitudinal tract - PI plurisegmental interneuron - PSTH peristimulus timehistogram - UPI unilateral plurisegmental interneuron  相似文献   

13.
Summary The thoracic and abdominal segments of the Drosophila embryo contain 373 neurons innervating external sensory structures and 162 neurons innervating chordotonal organs. These neurons are arranged in ventral, lateral and dorsal clusters within each segment, in a highly invariant pattern. Two fascicles are formed in each segment as the sensory axons grow ventrally towards the CNS and meet motor axons growing dorsally from the CNS. In all but the last segment, the anterior fascicle is contributed by the dorsal and lateral neurons, while the posterior one is formed by the ventral neurons. Five distinct segmental patterns are described, corresponding to (1) the prothorax, (2) the other two thoracic segments, (3) the first seven abdominal segments, (4) the eighth and (5) the ninth (and possibly the tenth) abdominal segments.The publisher regrets that two companion papers unfortunately were published out of sequence. The present paper should have preceded the paper entitled The sense organs in the Drosophila larva and their relation to the embryonic pattern of sensory neurons, which appeared in Volume 195, Number 4 of the journal (pp 222–228)  相似文献   

14.
The hermit crab, Pagurus pollicarus, has the same organization in its fourth abdominal ganglion as its macruran relatives in spite of the reduction in abdominal muscles, sensory receptors, and appendages. Connective axons are grouped into discrete bundles between which five groups of commissural fibers run to connect left and right sides. The neurites of ventral cell bodies run dorsally in characteristic groups between the connective bundles. The hermit crab fourth ganglion has two thirds as many cells as the crayfish and is laterally compressed. This reduction appears related to the reduction in the sizes of the ganglionic roots. The ventral fine fibered neuropil is larger on the left than the right side reflecting the loss of pleopods on the right side. The basic organization of decapod abdominal ganglia appears to permit considerable integrative flexibility within a relatively conservative morphological framework.  相似文献   

15.
Summary This paper describes the afferent projections of hair sensilla of the pro- and mesothoracic legs and the lateral thoracic sclerites of larval and adultTenebrio molitor and the corresponding set of pupal hair sensilla. The sensory neurons that innervate the hair sensilla of larval or adult insects project somatotopically into the thoracic neuropil. Different types of sensilla on the same region of the body surface project to the same zone of the ipsilateral thoracic ventral neuropil but exhibit different arborization patterns. Although there is a profound reorganization of body surface sensilla, the basic somatotopic layout of the larva is maintained in the adult. The sensory neurons that innervate the pupal hair sensilla possess central projections similar to those of the corresponding adult sensory neurons. The central projections of pupal sensory neurons are somatotopically oriented. Their projection pattern is serially homologous in the thoracic and the abdominal ganglia. The central projection pattern of the described pupal sensory neurons is constant throughout pupation. MAb 22C10 immunoreactivity allows an estimate of the timing of the early differentiation of the imaginal sensory neurons originating during pupation. Ablation experiments indicate that pupal sensory neurons influence the central projection pattern of the differentiating imaginal sensory neurons.  相似文献   

16.
The escape system of the American cockroach is both fast and directional. In response to wind stimulation both of these characteristics are largely due to the properties of the ventral giant interneurons (vGIs), which conduct sensory information from the cerci on the rear of the animal to type A thoracic interneurons (TIAs) in the thoracic ganglia. The cockroach also escapes from tactile stimuli, and although vGIs are not involved in tactile-mediated escapes, the same thoracic interneurons process tactile sensory information. The response of TIAs to tactile information is typically biphasic. A rapid initial depolarization is followed by a longer latency depolarization that encodes most if not all of the directional information in the tactile stimulus. We report here that the biphasic response of TIAs to tactile stimulation is caused by two separate conducting pathways from the point of stimulation to the thoracic ganglia. Phase 1 is generated by mechanical conduction along the animal's body cuticle or other physical structures. It cannot be eliminated by complete lesion of the nerve cord, and it is not evoked in response to electrical stimulation of abdominal nerves that contain the axons of sensory receptors in abdominal segments. However, it can be eliminated by lesioning the abdominal nerve cord and nerve 7 of the metathoracic ganglion together, suggesting that the relevant sensory structures send axons in nerve 7 and abdominal nerves of anterior abdominal ganglia. Phase 2 of the TIAs tactile response is generated by a typical neural pathway that includes mechanoreceptors in each abdominal segment, which project to interneurons with axons in either abdominal connective. Those interneurons with inputs from receptors that are ipsilateral to their axon have a greater influence on TIAs than those that receive inputs from the contralateral side. The phase 1 response has an important role in reducing initiation time for the escape response. Animals in which the phase 2 pathway has been eliminated by lesion of the abdominal nerve cord are still capable of generating a partial startle response with a typically short latency even when stimulated posterior to the lesion. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
Previous studies have indicated that the formation of stereotyped segmental nerves in leech embryos depends on the interactions between CNS projections and ingrowing afferents from peripheral neurons. Especially, CNS-ablation experiments have suggested that CNS-derived guidance cues are required for the correct navigation of several groups of peripheral sensory neurons. In order to directly test this hypothesis we have performed transplantations of CNS ganglia into ectopic sites in segments from which the resident ganglia have been removed. We find that the transplanted ganglia extend numerous axons distributed roughly equally in all directions. When these CNS projections reach and make contact with peripheral sensory axons they are used as guides for peripheral neurons to grow toward and into the ectopic ganglia even when this means following novel pathways that cross the midline and/or segmental boundaries. The peripheral sensory axons turn and grow toward the ectopic ganglia only when in physical contact with CNS axons, suggesting that diffusible chemoattractants are not a factor. These results demonstrate that the guidance cues provided by ectopic CNS projections are both necessary and sufficient to steer peripheral sensory neuron axons into the CNS.  相似文献   

18.
The 1st thoracic spiracular atrium is closed by anterior and posterior muscle fibres extending between its dorsal and ventral wall. The 2nd thoracic spiracle has only a single (anterior) closing lip, movable by a muscle inserting on the wall below the spiracular aperture; this configuration may be a lepidopteran ground-plan autapomorphy. There are functional spiracles on abdominal segments I – VII, each with a closing “bow” and “lever”. There are intrinsic occlusor muscles in all abdominal spiracles and the 1st spiracle has an extrinsic (ventral) dilator. Dorsal dilator muscles or ligaments are absent. A dorsal and a ventral tracheal trunk extend from the 1st thoracic spiracle into the head; the latter supplies the mouthparts and the antenna; there is no connection between the dorsal and ventral cephalic trunk systems. There is a single series of lateral connectives between the spiracles of each side. There is a ventral tracheal commissure in both pterothoracic segments, but none in the prothorax. In each pterothoracic segment an anterior and a posterior tracheal arch give off branches to the wing and anastomose with each other on their downwards course into the leg. Wing tracheation is greatly reduced. The anterior and posterior tracheae of each wing are independent of each other. There is a dorsal commissure in abdominal segment VIII; ventral abdominal commissures are lacking in Micropterix, although present in other micropterigid genera. The terminalia are partly supplied from tracheae arising in segment VII. Air sacs occur in the tibiae only. Phylogenetic aspects of holometabolan tracheation patterns are discussed.  相似文献   

19.
Summary By use of antisera raised against synthetic pigment-dispersing hormone (PDH) of Uca pugilator and FMRFamide, the distribution of immunoreactive structures in the central nervous system (CNS) of Carcinus maenas and Orconectes limosus was studied by light microscopy. In both species, a total of 10–12 PDH-positive perikarya occur amongst the anterior medial, dorsal lateral and angular somata of the cerebral ganglion (CG). In C. maenas, one PDH-perikaryon was found in each commissural ganglion (COG) and several more in the thoracic ganglion. In O. limosus, only four immunopositive perikarya could be demonstrated in the ventral nerve cord, i.e., two somata in the anterior and two in the posterior region of the suboesophageal ganglion (SOG). PDH-immunoreactive tracts and fiber plexuses were present in all central ganglia of both species, and individual axons were observed in the connectives. FMRFamide-immunoreactivity was studied in O. limosus only. Neurons of different morphological types were found throughout the entire CNS, including numerous perikarya in the anterior medial, anterior olfactory, dorsal lateral and posterior cell groups of the CG. Four perikarya were found in the COG, six large and numerous smaller ones in the SOG, and up to eight cells in each of the thoracic and abdominal ganglia. In each ganglion, the perikarya form fiber plexuses. Axons from neurons belonging to the CG could be traced into the ventral nerve cord; nerve fibers arising from perikarya in the SOG appeared to project to the posterior ganglia. In none of the structures examined colocalization of PDH- and FMRF-amide-immunoreactivity was observed.Dedicated to Prof. K.-E. Wohlfarth-Bottermann on the occasion of his 65th birthday  相似文献   

20.
Females of the ants belonging to the queenless genus Diacamma have a pair of unique tiny thoracic appendages, called "gemmae," located on the mesothoracic segment. They are covered with sensory hairs, filled with exocrine glands and are involved in the behavioral regulation of reproduction. We report here a morphological, developmental, and genetic study of the development of the gemmae. Both male and female larvae have dorsal mesothoracic discs, although differing in shape and fate. In Diacamma ceylonense, we show that, contrary to butterflies, these discs specify parts of the adult thorax in addition to wing tissues, as in Drosophila. We have cloned and studied the expression of wingless (wg) and scalloped (sd), two genes known to play a critical role in wing morphogenesis in Drosophila. In the fly's mesothoracic dorsal disc, sd is specifically expressed in the wing pouch. In Diacamma, we show that sd is also expressed in male dorsal thoracic discs, whereas its expression was undetectable in females. From this result and observations of shape and growth of cultured isolated discs, we suggest that gemmae originate from a more ventral part of the dorsal disc than the wing pouch and discuss the pro and cons of gemma/wing homology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号