首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Growth, lipid peroxidation, H2O2 produciton and the response of the antioxidant enzymes and metabolites of the ascorbate glutathione pathway to oxidative stress caused by two concentrations (50 and 100 µM) of Cr(III) and Cr(VI) was studied in 15 day old seedlings of sorghum (Sorghum bicolor (L.) Moench cv CO 27) after 10 days of treatment. Cr accumulation in sorghum plants was concentration and organ dependant. There was no significant growth retardation of plants under 50 µM Cr(III) stress. 100 µM Cr(VI) was most toxic of all the treatments in terms of root and leaf growth and oxidative stress. 50 µM Cr(VI) treated roots exhibited high significant increase in superoxide dismutase (SOD), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) (p < 0.01) and significant increases in catalse (CAT), ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) (p < 0.05). A high increase in ascorbic acid (AA) level was seen in roots of 50 µM Cr(VI) treated plants in comparison with control. Levels of reduced glutathione (GSH) showed a varied and complex response in all the treatments in both plant parts. GSH/GSSG ratio was not affected by Cr(III) treatment in leaves, in contrast, roots exhibited significant reduction in the ratio. Results indicate that GSH depletion increased sensitivity to oxidative stress (Cr(VI) roots and leaves and Cr(III) 100 µM roots) and AA in tandem with APX compensated for GSH depletion by acting directly on H2O2 and the mechanism of defensive response in roots as well as leaves varied in its degree and effectiveness due to the concentration dependant differences observed in translocation of the element itself, reactive oxygen species (ROS) generation and enzyme inhibition based on the oxidation state supplied to the plants.  相似文献   

2.
为了明确非酶抗氧化物质抗坏血酸(AsA)、还原型谷胱甘肽(GSH)及相关代谢酶抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)在紫花苜蓿(Medicago sativa L.)对牛角花齿蓟马Odontothrips loti Haliday为害的抗性中的作用,测定了不同牛角花齿蓟马虫口密度下抗、感蓟马苜蓿无性系R-1、I-1的AsA、GSH含量及APX、GR活性的变化。结果表明:受牛角花齿蓟马为害后,R-1无性系在低虫口密度(1、3头/枝条)下,AsA、GSH含量和GR活性均上升,在高虫口密度(5、7头/枝条)下,AsA含量和GR活性先升高后下降,GSH含量上升后保持稳定;I-1无性系的AsA、GSH含量先升高后下降,GR活性在为害后期呈上升趋势;R-1、I-1无性系的APX活性均先上升后下降,但R-1无性系APX活性的上升速率及下降速率小于I-1无性系。说明AsA、GSH含量及APX、GR活性的升高可能是紫花苜蓿对牛角花齿蓟马诱导抗性的一种表现,但I-1无性系对蓟马为害的应激反应滞后于R-1无性系。在牛角花齿蓟马为害后期,R-1无性系体内的AsA、GSH含量及APX、GR活性仍处于较高水平,也说明了R-1无性系对牛角花齿蓟马为害的抗性较I-1无性系强。  相似文献   

3.
Ten strawberry genotypes, resistant and moderately resistant (Joliette, Seascape, Aromas, FIN005-55 and FIN005-50) and susceptible ones (FIN00132-8, FIN00134-11, FIN00132-14, FIN005-7 and Kent) were used to assess the role of the antioxidative defence system against Mycosphaerella fragariae infection. The pathogen-induced changes of hydrogen peroxide (H2O2) and antioxidant enzymes ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) involved in the ascorbate–glutathione (ASC–GSH) cycle were examined in leaves of the selected genotypes. A significant different response was observed among the genotypes. A marked increase in H2O2 content, APX, MDHAR, DHAR and GR activities were observed in resistant and moderately resistant genotypes after inoculation by M. fragariae. In contrast, weak changes were observed in susceptible genotypes for the aforementioned enzymes and compounds. It seems that resistant genotypes capable of overproducing H2O2 have a higher capacity to scavenge and reduce the injury to strawberry leaves by regulating the ASC–GSH cycle. The results may be useful in future breeding programmes to select those individuals with high scavenging properties to breed new resistant lines.  相似文献   

4.
5.
Leaf discs of the ozone tolerant tobacco (Nicotiana tabacum L.) cv. Bel B and of the ozone sensitive cv. Bel W3, were exposed to an acute ozone fumigation (300 ppb) for 3 h. We measured ozone uptake by leaves and physiological characteristics before, during and after the treatment, in order to determine if the different O3 sensitivity was correlated to the leaf uptake. In the tolerant cv. Bel B, O3 uptake was high during the first 2 h of ozone exposure and then decreased. In the sensitive cv. Bel W3, the rate of O3 uptake decreased constantly during ozone fumigation. The estimated cumulative uptake over the treatment time was higher (200 ± 30 μmol m–2) in Bel B than in Bel W3 (130 ± 12 μmol m–2). Thus, the ozone sensitivity was not correlated with ozone uptake. Stomatal conductance and photosynthesis were significantly inhibited during the fumigation in both cultivars. However, these reductions were strong and irreversible in the cv. Bel W3, while in the cv. Bel B both parameters recovered in the post-fumigation period. Thus, ozone tolerance may be related to a sustained capacity of recovery. There was no linear correlation between ozone uptake and photosynthesis reduction, but a threshold of ozone uptake was found after which photosynthesis was substantially impaired. This threshold may or may not be reached under the same external ozone level, indicating that the AOT40 may not be a sufficiently accurate index for the detection of ozone damage in plants.  相似文献   

6.
We have subjected peas (Pisum sativum L.) to four different oxidative stresses: cold conditions (4 °C) in conjunction with light, treatment with paraquat, fumigation with ozone, and illumination of etiolated seedlings (greening). In crude extracts of leaves from stressed plants, an increase (up to twofold) in activity of glutathione reductase (GR) was observed which was consistent with previous reports from several laboratories. In all cases, except for ozone fumigation, the increase in activity was not due to an elevation in the steady-state levels of GR protein. None of the applied stresses had any effect on steady-state levels of GR mRNA. In contrast to the small increase in GR activity, the K m of GR for glutathione disulphide showed a marked decrease when determined for extracts of stressed leaves, compared with that from unstressed plants. This indicates that GR from stressed plants has an increased affinity for glutathione disulphide. The profile of GR activity bands fractionated on non-denaturing acrylamide gels varied for extracts from differently stressed leaves and when compared with GR from unstressed plants. The changes in GR-band profiles and the alteration in the kinetic properties are best explained as changes in the isoform population of pea GR in response to stress.Abbreviations GR glutathione reductase - GSSG glutathione disulphide - Rubisco Ribulose-1,5-bisphosphate carboxylase-oxygenase - RNase A/T1 ribonucleases A and T1 We are grateful to Prof. Alan Wellburn and Dr. Phil Beckett (Division of Biological Sciences, University of Lancaster, UK) for providing ozone-fumigated material and Dr. Jeremy Harbinson for providing material grown at 4° C. This work was supported by a grant-in-aid to the John Innes Institute from the Agricultural and Food Research Council. E.A.E. and C.E. gratefully acknowledge the support of a John Innes Foundation studentship and a European Molecular Biology Organisation Fellowship respectively.  相似文献   

7.
To access contributions of inductive responses of the antioxidant enzymes in the resistance to salt stress, activities of the enzymes were determined in the rice (Oryza sativaL. cv. Dongjin) plant. In the leaves of the rice plant, salt stress preferentially enhanced the content of H2O2 as well as the activities of the superoxide dismutase (SOD), ascorbate peroxidase (APX), and peroxidase specific to guaiacol, whereas it induced the decrease of catalase activity. On the other hand, salt stress had little effect on the activity levels of glutathione reductase (GR). In order to analyze the changes of antioxidant enzyme isoforms against salt stress, plant extracts were subjected to native PAGE. Leaves of the rice plant had two isoforms of Mn-SOD and five isoforms of Cu/Zn-SOD. Fe-SOD isoform was not observed in the activity gels. Expression of Cu/Zn-1, -2, and Mn-SOD-2 isoforms was preferentially enhanced by salt stress. Seven APX isoforms were presented in the leaves of the rice plants. The intensities of APX-4 to -7 were enhanced by salt stress, whereas those of APX-1 to -3 were minimally in changed response to salt stress. There were seven GR isoforms in the leaves of rice plants. Levels of activity for most GR isoforms did not change in the stressed plants compared to the control plants. On the other hand, the levels of activity for most antioxidant enzymes changed little in the roots of stressed plants compared to the control plants. These results collectively suggest that SOD leads to the overproduction of hydrogen peroxide in the leaves of rice plants subjected to salt stress: The overproduction of hydrogen peroxide functions as the signal of salt stress, which induces the induction of specific APX isoforms but not specific GR isoforms under catalase deactivation.  相似文献   

8.
The current study confirmed earlier conclusions regarding differential ozone (O3) tolerances of two soybean cultivars, Essex and Forrest, and evaluated antioxidant enzyme activities of these two varieties based on their performance under environmentally relevant, elevated O3 conditions. The experiment was conducted in open-top chambers in the field during the 1994 and 1995 growing seasons. Exposure of plants to moderately high O3 levels (62.9 nl l−1 air, 2-year seasonal average) caused chlorophyll loss and increased membrane permeability when compared to control plants grown in charcoal filtered air (24.2 nl l−1 air). The other effects of O3 treatment were decrease in seed yield, loss of total sulfhydryl groups, reduction of soluble protein content, and increase in guaiacol peroxidase activity in leaves of both cultivars. The O3-induced increase in guaiacol peroxidase activity was much smaller in cv. Essex leaflets. Cv. Essex had less leaf oxidative damage and smaller reduction in seed yield than cv. Forrest under elevated O3 conditions. During ozonation, mature leaflets of the more O3 tolerant cv. Essex had higher levels of glutathione reductase (30%), ascorbate peroxidase (13%), and superoxide dismutase (45%) activity than did mature leaflets of cv. Forrest. Cu,Zn-superoxide dismutase, which represented 95% of total superoxide dismutase activity in the two cultivars, appeared to be increased by O3 exposure in the leaflets of O3 tolerant cv. Essex but not in those of cv. Forrest. Cytosolic ascorbate peroxidase activity was also higher in leaflets of cv. Essex than in cv. Forrest regardless of O3 level. Stromal ascorbate peroxidase and Mn-superoxide dismutase activity did not appear to be involved in the O3 tolerance of the two soybean cultivars. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
10.
通过盆栽实验, 对干旱胁迫下黄土高原地区冰草(Agropyron cristatum)叶片的抗坏血酸和谷胱甘肽合成及循环代谢相关酶及物质含量进行了研究。结果表明: 冰草可以通过增强叶片的抗坏血酸和谷胱甘肽合成及循环代谢酶: 抗坏血酸过氧化物酶、谷胱甘肽还原酶、脱氢抗坏血酸还原酶、单脱氢抗坏血酸还原酶、L-半乳糖酸-1, 4-内酯脱氢酶和γ-谷氨酰半胱氨酸合成酶活性, 维持植物体内抗坏血酸和谷胱甘肽水平及氧化还原状态, 从而抵御干旱造成的氧化胁迫。但叶片抗坏血酸和谷胱甘肽合成及循环代谢对不同水平干旱胁迫的响应, 随胁迫时间的延长而不同。在胁迫24天以前, 严重干旱下叶片的抗坏血酸和谷胱甘肽合成及循环代谢增强较显著; 在胁迫24天后, 由于该胁迫下植物所遭受的氧化胁迫较为严重, 叶片中上述6种酶的活性均呈降低趋势。而在中度干旱下叶片抗坏血酸和谷胱甘肽合成及循环代谢相关的6种酶在整个胁迫过程中均保持较高的活性。这说明, 冰草能够长时间有效地抵御中度干旱所造成的氧化胁迫, 但只能在一定时间范围内有效地抵御严重干旱所造成的氧化胁迫, 胁迫时间延长则会降低其抵御严重干旱的能力。  相似文献   

11.
One of the primary plant mechanisms protecting leaf cells against enhanced atmospheric ozone is the accumulation of polyamines, generally observed as an increase in putrescine level, and in particular its bound form to thylakoid membranes. Ozone-sensitive plants of tobacco (cultivar Bel W3) in contrast to ozone-tolerant Bel B, are not able to increase their endogenous thylakoid membrane-bound putrescine when they are exposed to an atmosphere with enhanced ozone concentration, resulting in reduction of their photosynthetic rates and consequently reduction in plant biomass formation. In comparison to the tolerant cultivar Bel B, a prolongation of ozone exposure thus can lead to typical visible symptoms (necrotic spots) in leaves of the sensitive plant. Exogenously manipulated increase of the cellular putrescine levels of the ozone-sensitive Bel W3 is sufficient to revert these effects, whereas a reduction in endogenous putrescine levels of the tolerant cultivar Bel B renders them sensitive to ozone treatment. The results of this work reveal a regulator role for polyamines in adaptation of the photosynthetic apparatus and consequently to its protection in an environment polluted by ozone.  相似文献   

12.
Effects of exogenous salicylic acid (SA) on plant growth, contents of Na, K, Ca and Mg, activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and catalase (CAT), and contents of ascorbate and glutathione were investigated in tomato (Lycopersicon esculentum L.) plants treated with 100 mM NaCl. NaCl treatment significantly increased H2O2 content and lipid peroxidation indicated by accumulation of thiobarbituric acid reactive substances (TBARS). A foliar spray of 1 mM SA significantly decreased lipid peroxidation caused by NaCl and improved the plant growth. This alleviation of NaCl toxicity by SA was related to decreases in Na contents, increases in K and Mg contents in shoots and roots, and increases in the activities of SOD, CAT, GPX and DHAR and the contents of ascorbate and glutathione.  相似文献   

13.
栾霞  陈振德  汪东风  曹委 《生态学报》2012,32(2):614-621
以菠菜(Spinacia oleracea L.)为材料,研究了毒死蜱胁迫下海藻酸铈配合物对菠菜叶片抗坏血酸-谷胱甘肽循环的影响。结果表明,在毒死蜱胁迫下,菠菜叶片中H2O2积累量比对照明显增加,非酶促抗氧化物质-抗坏血酸(AsA)和还原型谷胱甘肽(GSH)含量明显降低,抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)、脱氢抗坏血酸还原酶(DHAR)和单脱氢抗坏血酸还原酶(MDAR)的活性明显升高。在毒死蜱胁迫下,喷施不同浓度的海藻酸铈配合物使菠菜叶片中的H2O2积累量减少,AsA和GSH含量升高,APX、GR、DHAR和MDAR等抗氧化酶活性也有所提高,缓解了毒死蜱胁迫。试验表明,适宜浓度的海藻酸铈配合物处理可使菠菜叶片对毒死蜱胁迫有一定的缓解作用。  相似文献   

14.
We tested the mode of action of Cd on photosynthesis and activities of ATP-sulfurylase (ATP-S), catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), and on contents of phytochelatins (PCs) and glutathione (GSH) in two cultivars of wheat (Triticum aestivum L.) PBW-343 and WH-542 differing in yield potential. Cd treatment increased Cd content and photosynthetic activity in PBW-343 more than in WH-542. The activities of APX, GR, ATP-S, and synthesis of PCs and GSH were also increased by Cd, but the CAT and SOD activities were inhibited in both the cultivars. The efficient functioning of antioxidative enzymes, production of PCs and GSH, helped in counteracting the effects of Cd namely in PBW-343, protected photosynthetic ability, and increased the tolerance to Cd.  相似文献   

15.
The changes of ascorbic acid, dehydroascorbic acid, and glutathione content and related enzyme activities were studied in apple buds during dormancy and thidiazuron-induced bud break. An increase in ascorbic acid, reduced form of glutathione (GSH), total glutathione, total non-protein thiol (NPSH) and non-glutathione thiol (RSH) occurred as a result of induction by thidiazuron during bud break, whereas dehydroascorbic acid and oxidized glutathione (GSSG) decreased during the same period. Thidiazuron also enhanced the ratio of GSH/GSSG, and activities of ascorbate free radical reductase (AFR; EC 1.6.5.4), ascorbate peroxidase (EC 1.11.1.11). dehydroascorbate reductase (DHAR; EC 1.8.5.1) and glutathione reductase (GR; EC 1.6.4.2). The ascorbic acid content and the activities of AFR, ascorbate peroxidase, and DHAR peaked when buds were in the side green or green tip stage just prior to the start of rapid expansion, and declined thereafter. The GSH, NPSH, RSH, ratio of GSH/GSSG, and activities of GR increased steadily during bud development.  相似文献   

16.
To explore the significance of the ascorbate–glutathione cycle under drought stress, the leaves of 2-year-old potted apple (Malus domestica Borkh.) plants were used to investigate the changes of each component of the ascorbate–glutathione cycle as well as the gene expression of dehydroascorbate reductase (DHAR, EC 1.8.5.1), ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) under drought stress. The results showed that the malondialdehyde (MDA) and H2O2 concentrations in apple leaves increased during drought stress and began to decrease after re-watering. The contents of total ascorbate, reduced ascorbic acid (AsA), total glutathione and glutathione (GSH) were obviously upregulated in apple leaves when the soil water content was 40–45%. With further increase of the drought level, the contents of the antioxidants and especially redox state of AsA and GSH declined. However, levels of them increased again after re-watering. Moreover, drought stress induced significant increase of the activities of enzymes such as APX, scavenging H2O2, and also of monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), DHAR and GR used to regenerate AsA and GSH, especially when the soil water content was above 40–45%. During severe drought stress, activities of the enzymes were decreased and after re-watering increased again. Gene expression of cytoplasmic DHAR, cytoplasmic APX and cytoplasmic GR showed similar changes as the enzyme activities, respectively. The results suggest that the ascorbate–glutathione cycle is up-regulated in response to drought stress, but cannot be regulated at severe drought stress conditions.  相似文献   

17.
Antioxidant defences of the apoplast   总被引:1,自引:0,他引:1  
Summary The apoplast of barley and oat leaves contained superoxide dismutase (SOD), catalase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase activities. The activities of these enzymes in the apoplastic extracts were greatly modified 24 h after inoculation with the biotrophic fungal pathogenBlumeria graminis. The quantum efficiency of photosystem II, which is related to photosynthetic electron transport flux, was comparable in inoculated and healthy leaves during this period. Apoplastic soluble acid invertase activity was also modified in inoculated leaves. Inoculation-dependent increases in apoplastic SOD activity were observed in all lines. Major bands of SOD activity, observed in apoplastic protein extracts by activity staining of gels following isoelectric focusing, were similar to those observed in whole leaves but two additional minor bands were found in the apoplastic fraction. The apoplastic extracts contained substantial amounts of dehydroascorbate (DHA) but little or no glutathione (GSH). Biotic stress decreased apoplastic ascorbate and DHA but increased apoplastic GSH in resistant lines. The antioxidant cycle enzymes may function to remove apoplastic H2O2 with ascorbate and GSH derived from the cytoplasm. DHA and oxidized glutathione may be reduced in the apoplast or returned to the cytosol for rereduction.Abbreviations AA reduced ascorbate - APX ascorbate peroxidase - DHA dehydroascorbate (oxidised ascorbate) - DHAR dehydroascorbate reductase - G6PDH glucose-6-phosphate dehydrogenase - GSH reduced glutathione - GSSG glutathione disulphide - GR glutathione reductase - MDHA monodehydroascorbate - MDHAR monodehydroascorbate reductase - SOD superoxide dismutase  相似文献   

18.
Ozone-tolerant Bel B and ozone-sensitive Bel W3 tobacco cultivars were subjected to acute ozone fumigation (200 p.p.b. for 3 h) and the subcellular localization of H2O2 was then studied. H2O2 accumulated on the cell walls and plasma membrane of both cultivars but the accumulation pattern differed greatly. H2O2 production was high in both cultivars immediately after fumigation, but, in the tolerant Bel B cultivar, after 7 h was only detected in some spongy cells adjacent to epidermal cells. Instead, in the sensitive Bel W3 cultivar, accumulation was still abundant in the cell walls of palisade, spongy and epidermal cells at this time. Significant changes in apoplastic ascorbate pool were noted in both cultivars in the first hours after fumigation. As the reduced ascorbate content remained unchanged, the marked increase in total ascorbate must have originated from the striking increase in dehydroascorbate, particularly in the ozone-sensitive Bel W3. Exposure of plants to ozone resulted in a marked transient increase in both free and conjugated salicylic acid (SA) as well as an increase in the activity of benzoic acid 2-hydroxylase which catalyses SA biosynthesis. SA induction differed greatly in the two cultivars, in that: (1) SA accumulation was far greater in the ozone-sensitive Bel W3 cv. and (2) the maximum SA peak was delayed in Bel W3 and observed only 7 h after fumigation ended. These results suggest that a high SA content, as documented in the ozone-sensitive Bel W3 cultivar, could trigger the production of ROS with subsequent SA-mediated cell-death.  相似文献   

19.
Shi Q  Bao Z  Zhu Z  He Y  Qian Q  Yu J 《Phytochemistry》2005,66(13):1551-1559
The effects of exogenous silicon (Si) on plant growth, activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and catalase, and concentrations of ascorbate and glutathione were investigated in cucumber (Cucumis sativus L.) plants treated with excess manganese (Mn) (600 microM). Compared with the treatment of normal Mn (10 microM), excess Mn significantly increased H2O2 concentration and lipid peroxidation indicated by accumulation of thiobarbituric acid reactive substances. The leaves showed apparent symptoms of Mn toxicity and the plant growth was significantly inhibited by excess Mn. The addition of Si significantly decreased lipid peroxidation caused by excess Mn, inhibited the appearance of Mn toxicity symptoms, and improved plant growth. This alleviation of Mn toxicity by Si was related to a significant increase in the activities of SOD, APX, DHAR and GR and the concentrations of ascorbate and glutathione.  相似文献   

20.
Michael Luwe  Ulrich Heber 《Planta》1995,197(3):448-455
Spinach (Spinacia oleracea L.), broad bean (Vicia faba L.) and beech (Fagus sylvatica L.) plants were exposed to ozone at concentrations often measured in air during the summer months (120–300 g·m–3) and antioxidants were determined in the leaf tissue and in the aqueous phase of the cell wall, the apoplasm. Concentrations of both reduced ascorbate (AA) and its oxidized form, dehydroascorbate (DHA), showed the tendency to increase transiently in the apoplasm of spinach leaves 6–24 h after starting fumigation with ozone. In beech leaves, apoplasmic AA and DHA increased 3–7 d after beginning of treatment. At the very high concentration of 1600 g O3·m–3, an increase of apoplasmic AA was already measured after 1 d in beech leaves. Apparently, spinach and beech leaves respond to oxidative stress by increasing AA transport into the apoplasm and by accelerating DHA export. In contrast to these observations, DHA accumulated during 3 d of fumigation with only 120 g O3·m–3 in the apoplasm of broad bean leaves, while AA contents did not increase. After termination of fumigation, the extracellular redox state of ascorbate normalized within 1 d. Glutathione could not be detected in the apoplasm of any of the three leaf species. Intracellular AA changed its redox state in response to exposure to elevated concentrations of ozone. After 4–6 weeks of fumigation with 200–300 g O3·m–3 an increase of intracellular DHA was measured in beech leaves. At the same time, chlorophyll contents decreased and characteristic symptoms of ozone damage could be observed. However, no significant change in the redox state of apoplasmic ascorbate could be detected in beech leaves. Evidently, detoxification of ozone by apoplasmic AA was insufficient to protect the leaf tissue. Fumigation with a high ozone concentration (1600 g·m–3) caused an appreciable increase in the cellular contents of the oxidized forms of ascorbate and glutathione in beech leaves. Whereas in spinach leaves intracellular antioxidant contents and redox states were not altered during fumigation with 120–240 g O3·m–3, in broad bean leaves the intracellular DHA concentration increased and intracellular ascorbate became more oxidized after fumigation of the plants with 120 g O3·m–3. Apparently, broad bean leaves are more sensitive to ozone than beech and spinach leaves.Abbreviations AA ascorbate, reduced form - DHA ascorbate, oxidized form (dehydroascorbate) - FW fresh weight - GSH glutathione, reduced form - GSSG glutathione, oxidized form - IWF intercellular washing fluid - Vair intercellular air space volume of leaves - Vapo apoplasmic water volume of leaves This work was supported within the Sonderforschungsbereich 251 of the University of Würzburg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号