首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ovalbumin (OVA) is the most frequently used allergen in animal models of asthma. Lipopolysaccharide (LPS) contaminating commercial OVA may modulate the evoked airway inflammatory response to OVA. However, the effect of LPS in OVA on airway remodeling, especially airway smooth muscle (ASM) has not been evaluated. We hypothesized that LPS in commercial OVA may enhance allergen-induced airway inflammation and remodeling. Brown Norway rats were sensitized with OVA on day 0. PBS, OVA, or endotoxin-free OVA (Ef-OVA) was instilled intratracheally on days 14, 19, 24. Bronchoalveolar lavage (BAL) fluid, lung, and intrathoracic lymph node tissues were collected 48 h after the last challenge. Immunohistochemistry for α-smooth muscle actin, Periodic-Acid-Schiff staining, and real-time qPCR were performed. Airway hyperresponsiveness (AHR) was also measured. BAL fluid macrophages, eosinophils, neutrophils, and lymphocytes were increased in OVA-challenged animals, and macrophages and neutrophils were significantly lower in Ef-OVA-challenged animals. The ASM area in larger airways was significantly increased in both OVA and Ef-OVA compared with PBS-challenged animals. The mRNA expression of IFN-γ and IL-13 in lung tissues and IL-4 in lymph nodes was significantly increased by both OVA and Ef-OVA compared with PBS and were not significantly different between OVA and Ef-OVA. Monocyte chemoattractant protein (MCP)-1 in BAL fluid and AHR were significantly increased in OVA but not in Ef-OVA. LPS contamination in OVA contributes to the influx of macrophages and MCP-1 increase in the airways and to AHR after OVA challenges but does not affect OVA-induced Th1 and Th2 cytokine expression, goblet cell hyperplasia, and ASM remodeling.  相似文献   

2.
Matrix metalloproteinase (MMP)-9 plays an important role in the pathogenesis of bronchial asthma. Neovastat, having significant antitumor and antimetastatic properties, is classified as a naturally occurring multifunctional antiangiogenic agent. We evaluated the therapeutic effect of Neovastat on airway inflammation in a mouse model of asthma. BALB/c mice were immunized subcutaneously with ovalbumin (OVA) on days 0, 7, 14, and 21 and challenged with inhaled OVA on days 26, 29, and 31. Neovastat was administrated by gavage (5 mg/kg body weight) three times with 12 h intervals, beginning 30 min before OVA inhalation. On day 32, mice were challenged with inhaled methacholine, and enhanced pause (Penh) was measured as an index of airway hyperresponsiveness. The severity of airway inflammation was determined by differential cell count of bronchoalveolar lavage (BAL) fluid. The MMP-9 concentration in BAL fluid samples was measured by ELISA, and MMP-9 activity was measured by zymography. The untreated asthma group showed an increased inflammatory cell count in BAL fluid and Penh value compared with the normal control group. Mice treated with Neovastat had significantly reduced Penh values and inflammatory cell counts in BAL fluid compared with untreated asthmatic mice. Furthermore, mice treated with Neovastat showed significantly reduced MMP-9 concentrations and activity in BAL fluid. These results demonstrate that Neovastat might have new therapeutic potential for airway asthmatic inflammation.  相似文献   

3.
To test the hypothesis that CD8+ T cells may suppress the allergen-induced late airway response (LAR) and airway eosinophilia, we examined the effect of administration of Ag-primed CD8+ T cells on allergic airway responses, bronchoalveolar lavage (BAL) leukocytes, and mRNA expression for cytokines (IL-4, IL-5, and IFN-gamma) in OVA-sensitized Brown Norway rats. On day 12 postsensitization to OVA, test rats were administered 2 million CD8+ T cells i.p. isolated from either the cervical lymph nodes (LN group; n = 8) or the spleen (Spl group; n = 6) of sensitized donors. On day 14, test rats were challenged with aerosolized OVA. Control rats were administered PBS i.p. on day 12, and challenged with OVA (n = 10) or BSA (n = 6) on day 14. The lung resistance was measured for 8 h after challenge. BAL was performed at 8 h. Cytospin slides of BAL were analyzed for major basic protein by immunostaining and for cytokine mRNA by in situ hybridization. The LAR was significantly less in the LN group (1.8 +/- 0.5 U; p < 0.01) and BSA controls (1.4 +/- 0.7; p < 0.01), but not in the Spl group (6.7 +/- 2.2), compared with that in OVA controls (8.1 +/- 1.8). In BAL, the number of major basic protein-positive cells was lower in the LN and Spl groups compared with OVA controls (p < 0.05 and p < 0.01). IL-4- and IL-5-positive cells were decreased in the LN group compared with the OVA controls (p < 0.01). INF-gamma-positive cells were increased in the LN and Spl groups compared with the OVA controls (p < 0.01). Serum OVA-specific IgE levels were unaffected by CD8+ T cell transfers. These results indicate that Ag-primed CD8+ T cells have a potent suppressive effect on LAR.  相似文献   

4.
Lunasin is a naturally occurring peptide isolated from soybeans and has been explored in cancer treatment. Lunasin inhibits NF-κB activation and thus pro-inflammatory cytokine and mediator production in macrophages. In this study we demonstrate that lunasin can effectively suppress allergic airway inflammation in two murine models of asthma. In an OVA+Alum sensitization model, intranasal lunasin treatment at the time of OVA challenges significantly reduced total cells counts in bronchoalveolar lavage (BAL) fluid and eosinophilia, peribronchiolar inflammatory infiltration, goblet cell metaplasia and airway IL-4 production. In an OVA+LPS intranasal sensitization model, lunasin treatment either at the time of sensitization or challenge has similar effects in suppress allergic airway inflammation including significantly reduced total cell and eosinophil counts in BAL fluid, inflammatory gene Fizz1 expression in the lung, and IL-4 production by OVA re-stimulated cells from mediastinal lymph nodes. We further show that intranasal instillation of OVA+lunasin significantly increases OVA-specific regulatory T cell (Treg) accumulation in the lung comparing to OVA only treatment. Taken together, our results suggest lunasin as an anti-inflammatory agent can be potentially used in asthma therapy or as an adjuvant to enhance the induction of antigen-specific Tregs and thus boost the efficacy of allergy immunotherapy.  相似文献   

5.
Leukotriene E4 (LTE4) that plays a key role in airway inflammation is expressed on platelets and eosinophils. We investigated whether blocking of the P2Y12 receptor can suppress eosinophilic inflammation in a mouse model of asthma because platelets and eosinophils share this receptor to be activated. BALB/c mice were sensitized by intraperitoneal injection of ovalbumin (OVA), followed by OVA nebulization. On each challenge day, clopidogrel, a P2Y12 antagonist was administered 30 min. before each challenge. Forty‐eight hours after the last OVA challenge, mice were assessed for airway hyperresponsiveness (AHR), cell composition and cytokine levels, including chemokine ligand 5 (CCL5), in bronchoalveolar lavage (BAL) fluid. EOL cells were treated with LTE4, with or without clopidogrel treatment, and intracellular and extracellular eosinophil cationic protein (ECP) expressions were measured to find the inhibiting function of P2Y12 antagonist on eosinophilic activation. The levels of P2Y12 expression were increased markedly in the lung homogenates of OVA‐sensitized and ‐challenged mice after platelet depletion. Administration of clopidogrel decreased AHR and the number of airway inflammatory cells, including eosinophils, in BAL fluid following OVA challenge. These results were associated with decreased levels of Th2 cytokines and CCL5. Histological examination showed that inflammatory cells as well as mucus‐containing goblet cells were reduced in clopidogrel‐administered mice compared to vehicle‐treated mice. Clopidogrel inhibited extracellular ECP secretion after LTE4 stimulation in EOL‐1 cells. Clopidogrel could prevent development of AHR and airway inflammation in a mouse model of asthma. P2Y12 can be a novel therapeutic target to the suppression of eosinophils in asthma.  相似文献   

6.
Ovalbumin (OVA)-sensitized BALB/c mice were i.n. instilled with recombinant TNF-related apoptosis inducing ligand (TRAIL) 24 hours before OVA challenge. The total number of leukocytes and the levels of the chemokine CXCL-1/KC significantly increased in the bronchoalveolar lavage (BAL) fluids of allergic animals with respect to control littermates, but not in the BAL of mice i.n. pretreated with recombinant TRAIL before OVA challenge. In particular, TRAIL pretreatment significantly reduced the BAL percentage of both eosinophils and neutrophils. On the other hand, when TRAIL was administrated simultaneously to OVA challenge its effect on BAL infiltration was attenuated. Overall, the results show that the i.n. pretreatment with TRAIL down-modulated allergic airway inflammation.  相似文献   

7.
Following allergen challenge of sensitized mice, neutrophils are the first inflammatory cells found in bronchoalveolar lavage (BAL) fluid. To determine the underlying mechanism for their accumulation, mice were sensitized to OVA on days 0 and 14, and received, on day 28, a single intranasal challenge (s.i.n.) with either OVA or ragweed. Eight hours after the s.i.n., BAL fluid was obtained. BALB/c mice sensitized and challenged with OVA showed significantly higher total cell counts and numbers of neutrophils in BAL fluid compared to the OVA-sensitized and ragweed-challenged or nonsensitized mice. Levels of neutrophil chemokines in BAL fluid supernatants were markedly elevated in the sensitized and OVA-challenged mice; Fc epsilon RI-deficient mice showed comparable numbers of neutrophils and neutrophil chemokines in BAL fluid after s.i.n. But in sensitized mice lacking the Fc common gamma-chain and B cell-deficient mice, the number of neutrophils and levels of neutrophil chemokines in BAL fluid were significantly lower. Further, mice lacking the FcgammaRIII did not develop this early neutrophil influx. Neutrophil infiltration could be induced in naive mice following intranasal instillation of allergen combined with allergen-specific IgG1. In addition, macrophages from sensitized mice were stimulated with allergen and activated to produce neutrophil chemokines. These results demonstrate that neutrophil influx after allergen challenge requires prior sensitization, is allergen-specific, is mediated through FcgammaRIII, and is dependent on the presence of Ab.  相似文献   

8.
Monocyte chemoattractant proteins-1 and -5 have been implicated as important mediators of allergic pulmonary inflammation in murine models of asthma. The only identified receptor for these two chemokines to date is the CCR2. To study the role of CCR2 in a murine model of Ag-induced asthma, we compared the pathologic and physiological responses of CCR2(-/-) mice with those of wild-type (WT) littermates following immunization and challenge with OVA. OVA-immunized/OVA-challenged (OVA/OVA) WT and CCR2(-/-) mice developed significant increases in total cells recovered by bronchoalveolar lavage (BAL) compared with their respective OVA-immunized/PBS-challenged (OVA/PBS) control groups. There were no significant differences in BAL cell counts and differentials (i.e., macrophages, PMNs, lymphocytes, and eosinophils) between OVA/OVA WT and CCR2(-/-) mice. Serologic evaluation revealed no significant difference in total IgE and OVA-specific IgE between OVA/OVA WT mice and CCR2(-/-) mice. Lung mRNA expression and BAL cytokine protein levels of IL-4, IL-5, and IFN-gamma were also similar in WT and CCR2(-/-) mice. Finally, OVA/OVA CCR2(-/-) mice developed increased airway hyper-responsiveness to a degree similar to that in WT mice. We conclude that following repeated airway challenges with Ag in sensitized mice, the development of Th2 responses (elevated IgE, pulmonary eosinophilia, and lung cytokine levels of IL-4 and IL5) and the development of airway hyper-responsiveness are not diminished by a deficiency in CCR2.  相似文献   

9.
Epidemiological studies have identified childhood exposure to environmental tobacco smoke as a significant risk factor for the onset and exacerbation of asthma, but studies of smoking in adults are less conclusive, and mainstream cigarette smoke (MCS) has been reported to both enhance and attenuate allergic airway inflammation in animal models. We sensitized mice to ovalbumin (OVA) and exposed them to MCS in a well-characterized exposure system. Exposure to MCS (600 mg/m(3) total suspended particulates, TSP) for 1 h/day suppresses the allergic airway response, with reductions in eosinophilia, tissue inflammation, goblet cell metaplasia, IL-4 and IL-5 in bronchoalveolar lavage (BAL) fluid, and OVA-specific antibodies. Suppression is associated with a loss of antigen-specific proliferation and cytokine production by T cells. However, exposure to a lower dose of MCS (77 mg/m(3) TSP) had no effect on the number of BAL eosinophils or OVA-specific antibodies. This is the first report to demonstrate, using identical smoking methodologies, that MCS inhibits immune responses in a dose-dependent manner and may explain the observation that, although smoking provokes a systemic inflammatory response, it also inhibits T cell-mediated responses involved in a number of diseases.  相似文献   

10.
Jung WK  Lee DY  Choi YH  Yea SS  Choi I  Park SG  Seo SK  Lee SW  Lee CM  Kim SK  Jeon YJ  Choi IW 《Life sciences》2008,82(13-14):797-805
Caffeic acid phenethyl ester (CAPE) is a biologically active ingredient of propolis, which has several interesting biological properties, including antioxidant and anti-inflammatory; however, its anti-allergic effects are poorly understood. The objective of this study was to determine whether treatment with CAPE results in significant inhibition of asthmatic reactions in a mouse model. Mice sensitized and challenged with ovalbumin (OVA) had the following typical asthmatic reactions: an increase in the number of eosinophils in bronchoalveolar lavage (BAL) fluid; a marked influx of inflammatory cells into the lung around blood vessels and airways, and airway luminal narrowing; the development of airway hyperresponsiveness (AHR); the presence of tumor necrosis factor-alpha (TNF-alpha) and Th2 cytokines, including IL-4 and IL-5, in the BAL fluid; and the presence of allergen-specific IgE in the serum. Five successive intraperitoneal administrations of CAPE before the last airway OVA challenge resulted in significant inhibition of characteristic asthmatic reactions. We determined that increased generation of reactive oxygen species (ROS) by inhalation of OVA was diminished via the administration of CAPE in BAL fluid, as well as nuclear factor-kappaB (NF-kappaB) DNA binding activity. These findings indicate that oxidative stress may have a crucial function in the pathogenesis of bronchial asthma, and that CAPE may be useful as an adjuvant therapy for the treatment of bronchial asthma.  相似文献   

11.
The influence of stress and diazepam treatment on airway inflammation was investigated in ovalbumin (OVA)-sensitized rats. Animals were injected with OVA plus aluminum hydroxide intraperitoneally (day 0) and boosted with OVA subcutaneously (day 7). From the first to 13th day after sensitization, rats were treated with diazepam, and 1 h later they were placed in a shuttle box where they received 50 mild escapable foot shocks/day preceded by a sound signal (S). Response during the warning (S) canceled shock delivery and terminated the S. On day 14, rats were submitted to a single session of 50 inescapable foot shocks preceded by S and then were challenged with OVA. High levels of stress were detected in shocked animals, manifested as ultrasonic vocalizations. Morphometric analysis of stressed animals revealed a significant increase in both edema and lymphomononucleated cells in airways compared with controls. Diazepam treatment reduced edema in stressed and nonstressed rats. No differences were found in polymorphonucleated cell infiltration. Diazepam treatment reduced lymphomononucleated cell infiltration in stressed animals. These data suggest that stress and diazepam treatment play relevant roles in edema and lymphomononucleated airway inflammation in OVA-sensitized rats.  相似文献   

12.

Background

H89 is a potent inhibitor of Protein Kinase A (PKA) and Mitogen- and Stress-Activated protein Kinase 1 (MSK1) with some inhibitory activity on other members of the AGC kinase family. H89 has been extensively used in vitro but its anti-inflammatory potential in vivo has not been reported to date. To assess the anti-inflammatory properties of H89 in mouse models of asthma.

Methodology/Principal Findings

Mice were sensitized intraperitoneally (i.p.) to ovalbumin (OVA) with or without alum, and challenged intranasally with OVA. H89 (10 mg/kg) or vehicle was given i.p. two hours before each OVA challenge. Airway hyperresponsiveness (AHR) was assessed by whole-body barometric plethysmography. Inflammation was assessed by the total and differential cell counts and IL-4 and IL-5 levels in bronchoalveolar lavage (BAL) fluid. Lung inflammation, mucus production and mast cell numbers were analyzed after histochemistry. We show that treatment with H89 reduces AHR, lung inflammation, mast cell numbers and mucus production. H89 also inhibits IL-4 and IL-5 production and infiltration of eosinophils, neutrophils and lymphocytes in BAL fluid.

Conclusions/Significance

Taken together, our findings implicate that blockade of AGC kinases may have therapeutic potential for the treatment of allergic airway inflammation.  相似文献   

13.
14.
Chronic airway inflammation is a key feature of bronchial asthma. Leukotrienes are potent inflammatory mediators that play a role in the pathophysiology of asthma, and their levels are elevated in the airways in response to allergen challenge. We examined the anti-inflammatory effect of thymoquinone (TQ), the active principle in the volatile oil of Nigella sativa seeds, on leukotriene (LT) biosynthesis in a mouse model of allergic asthma. Mice sensitized and challenged with ovalbumin (OVA) antigen had an increased amounts of leukotriene B4 and C4, Th2 cytokines, and eosinophils in bronchoalveolar lavage (BAL) fluid. In addition, there was also a marked increase in lung tissue eosinophilia and goblet cell numbers. Administration of TQ before OVA challenge inhibited 5-lipoxygenase, the main enzyme in leukotriene biosynthesis, expression by lung cells and significantly reduced the levels of LTB4 and LTC4. This was accompanied by a marked decrease in Th2 cytokines and BAL fluid and lung tissue eosinophilia, all of which are characteristics of airway inflammation. These results demonstrate the anti-inflammatory effect of TQ in experimental asthma.  相似文献   

15.
TGF-beta regulates airway responses via T cells   总被引:3,自引:0,他引:3  
Allergic asthma is characterized by airway hyperreactivity, inflammation, and a Th2-type cytokine profile favoring IgE production. Beneficial effects of TGF-beta and conflicting results regarding the role of Th1 cytokines have been reported from murine asthma models. In this study, we examined the T cell as a target cell of TGF-beta-mediated immune regulation in a mouse model of asthma. We demonstrate that impairment of TGF-beta signaling in T cells of transgenic mice expressing a dominant-negative TGF-beta type II receptor leads to a decrease in airway reactivity in a non-Ag-dependent model. Increased serum levels of IFN-gamma can be detected in these animals. In contrast, after injection of OVA adsorbed to alum and challenge with OVA aerosol, transgenic animals show an increased airway reactivity and inflammation compared with those of wild-type animals. IL-13 levels in bronchoalveolar lavage fluid and serum as well as the number of inducible NO synthase-expressing cells in lung infiltrates were increased in transgenic animals. These results demonstrate an important role for TGF-beta signaling in T cells in the regulation of airway responses and suggest that the beneficial effects observed for TGF-beta in airway hyperreactivity and inflammation may be due to its regulatory effects on T cells.  相似文献   

16.
AimsFudosteine is a cysteine derivative that is used as an expectorant in chronic bronchial inflammatory disorders. It has been shown to decrease the number of goblet cells in an animal model. This study examined the effects of fudosteine on airway inflammation and remodeling in a murine model of chronic asthma.Main methodsBALB/c mice were sensitized by an intraperitoneal injection of ovalbumin (OVA), and subsequently challenged with nebulized ovalbumin three days a week for four weeks. Seventy-two hours after the fourth challenge, airway hyperresponsiveness (AHR) and the cell composition of bronchoalveolar lavage (BAL) fluid were assessed. Fudosteine was administered orally at 10 mg/kg or 100 mg/kg body weight from the first to the fourth challenge.Key findingsWe investigated the effects of fudosteine on the development of allergic airway inflammation and airway hyperresponsiveness after chronic allergen challenges. The administration of fudosteine during the challenge with ovalbumin prevented the development of airway hyperresponsiveness and accumulation of lymphocytes in the airways. Eotaxin, IL-4, and TGF-β levels and the relative intensity of matrix metalloproteinase-2 and matrix metalloproteinase-9 (MMP-2 and MMP-9) in BAL fluid were reduced by the fudosteine treatment; however, the number of eosinophils in BAL fluid and serum IgE levels did not change. The expression of TGF-β, the development of goblet cell hyperplasia, subepithelial collagenization, and basement membrane thickening were also reduced by the fudosteine treatment.SignificanceThese results indicate that fudosteine is effective in reducing airway hyperresponsiveness, airway inflammation, and airway remodeling in a murine model of chronic asthma.  相似文献   

17.
The role of Th2/CD4 T cells, which secrete IL-4, IL-5, and IL-13, in allergic disease is well established; however, the role of CD8(+) T cells (allergen-induced airway hyperresponsiveness (AHR) and inflammation) is less clear. This study was conducted to define the role of Ag-primed CD8(+) T cells in the development of these allergen-induced responses. CD8-deficient (CD8(-/-)) mice and wild-type mice were sensitized to OVA by i.p. injection and then challenged with OVA via the airways. Compared with wild-type mice, CD8(-/-) mice developed significantly lower airway responsiveness to inhaled methacholine and lung eosinophilia, and exhibited decreased IL-13 production both in vivo, in the bronchoalveolar lavage (BAL) fluid, and in vitro, following Ag stimulation of peribronchial lymph node (PBLN) cells in culture. Reconstitution of sensitized and challenged CD8(-/-) mice with allergen-sensitized CD8(+) T cells fully restored the development of AHR, BAL eosinophilia, and IL-13 levels in BAL and in culture supernatants from PBLN cells. In contrast, transfer of naive CD8(+) T cells or allergen-sensitized CD8(+) T cells from IL-13-deficient donor mice failed to do so. Intracellular cytokine staining of lung as well as PBLN T cells revealed that CD8(+) T cells were a source of IL-13. These data suggest that Ag-primed CD8(+) T cells are required for the full development of AHR and airway inflammation, which appears to be associated with IL-13 production from these primed T cells.  相似文献   

18.
Tryptase inhibition blocks airway inflammation in a mouse asthma model   总被引:11,自引:0,他引:11  
Release of human lung mast cell tryptase may be important in the pathophysiology of asthma. We examined the effect of the reversible, nonelectrophilic tryptase inhibitor MOL 6131 on airway inflammation and hyper-reactivity in a murine model of asthma. MOL 6131 is a potent selective nonpeptide inhibitor of human lung mast cell tryptase based upon a beta-strand template (K(i) = 45 nM) that does not inhibit trypsin (K(i) = 1,061 nM), thrombin (K(i) = 23, 640 nM), or other serine proteases. BALB/c mice after i.p. OVA sensitization (day 0) were challenged intratracheally with OVA on days 8, 15, 18, and 21. MOL 6131, administered days 18-21, blocked the airway inflammatory response to OVA assessed 24 h after the last OVA challenge on day 22; intranasal delivery (10 mg/kg) had a greater anti-inflammatory effect than oral delivery (10 or 25 mg/kg) of MOL 6131. MOL 6131 reduced total cells and eosinophils in bronchoalveolar lavage fluid, airway tissue eosinophilia, goblet cell hyperplasia, mucus secretion, and peribronchial edema and also inhibited the release of IL-4 and IL-13 in bronchoalveolar lavage fluid. However, tryptase inhibition did not alter airway hyper-reactivity to methacholine in vivo. These results support tryptase as a therapeutic target in asthma and indicate that selective tryptase inhibitors can reduce allergic airway inflammation.  相似文献   

19.
Heme oxygenase (HO), the heme-degrading enzyme, has shown anti-inflammatory effects in several models of pulmonary diseases. HO is induced in airways during asthma; however, its functional role is unclear. Therefore, we evaluated the role of HO on airway inflammation [evaluated by bronchoalveolar lavage (BAL) cellularity and BAL levels of eotaxin, PGE(2), and proteins], mucus secretion (evaluated by analysis of MUC5AC gene expression and periodic acid-Schiff staining), oxidative stress (evaluated by quantification of 4-hydroxynonenal adducts and carbonylated protein levels in lung homogenates), and airway responsiveness to histamine in ovalbumin (OVA)-sensitized and multiple aerosol OVA or saline-challenged guinea pigs (6 challenges, once daily, OVA group and control group, respectively). Airway inflammation, mucus secretion, oxidative stress, and responsiveness were significantly increased in the OVA group compared with the control group. HO upregulation by repeated administrations of hemin (50 mg/kg i.p.) significantly decreased airway responsiveness in control animals and airway inflammation, mucus secretion, oxidative stress, and responsiveness in OVA animals. These effects were reversed by the concomitant administration of the HO inhibitor tin protoporphyrin-IX (50 micromol/kg i.p.). Repeated administrations of tin protoporphyrin-IX alone significantly increased airway responsiveness in control animals but did not modify airway inflammation, mucus secretion, oxidative stress, and responsiveness in OVA animals. These results suggest that upregulation of the HO pathway has a significant protective effect against airway inflammation, mucus hypersecretion, oxidative stress, and hyperresponsiveness in a model of allergic asthma in guinea pigs.  相似文献   

20.
Sensitized guinea pigs were used to assess the effect of treatment with the compound U-83836E ((-)-2-[[4-(2,6-di-1-pyrrolidinyl-4-pyrimidinyl)-1-piperazinyl]methyl]-3 ,4-dihydro-2,5,7,8-tetramethyl-2H--benzopyran-6-ol, dihydrochloride) on the antigen-induced late-phase (16 h) airway hyperreactivity, increase in inflammatory cell number, edema, and release of inflammatory mediators in the bronchoalveolar lavage (BAL) fluid. After antigen challenge, an increase of the in vitro reactivity of the trachea and upper bronchi to acetylcholine and histamine and an increase in the number of leukocytes in the BAL fluid, mainly eosinophils and mononuclear cells, were observed. The concentrations of proteins, histamine, and PGE2 in the BAL fluid were also significantly increased by 53, 57, and 216%, respectively, after antigen challenge. Treatment with U-83836E (10 mg/kg) given i.p. 17 and 3 h before and 6 h after antigen challenge inhibited by approximately 80% the total cell number in the airways and the BAL fluid protein content. Moreover, this treatment totally inhibited airway hyperreactivity. Histamine and PGE2 levels in the BAL fluid were not significantly affected by U-83836E treatment. These results indicate that U-83836E is effective against some of the characteristic features of asthma in ovalbumin-sensitized guinea pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号