首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural vitamin E includes four tocopherols and four tocotrienols. RRR-α-tocopherol is the most abundant form in nature and has the highest biological activity. Although vitamin E is the main lipid-soluble antioxidant in the body, not all its properties can be assigned to this action. As antioxidant, vitamin E acts in cell membranes where prevents the propagation of free radical reactions, although it has been also shown to have pro-oxidant activity. Non-radical oxidation products are formed by the reaction between α-tocopheryl radical and other free radicals, which are conjugated to glucuronic acid and excreted through the bile or urine. Vitamin E is transported in plasma lipoproteins. After its intestinal absorption vitamin E is packaged into chylomicrons, which along the lymphatic pathway are secreted into the systemic circulation. By the action of lipoprotein lipase (LPL), part of the tocopherols transported in chylomicrons are taken up by extrahepatic tissues, and the remnant chylomicrons transport the remaining tocopherols to the liver. Here, by the action of the “α-tocopherol transfer protein”, a major proportion of α-tocopherol is incorporated into nascent very low density lipoproteins (VLDL), whereas the excess of α-tocopherol plus the other forms of vitamin E are excreted in bile. Once secreted into the circulation, VLDL are converted into IDL and LDL by the action of LPL, and the excess of surface components, including α-tocopherol, are transferred to HDL. Besides the LPL action, the delivery of α-tocopherol to tissues takes place by the uptake of lipoproteins by different tissues throughout their corresponding receptors. Although we have already a substantial information on the action, effects and metabolism of vitamin E, there are still several questions open. The most intriguing is its interaction with other antioxidants that may explain how foods containing small amounts of vitamin E provide greater benefits than larger doses of vitamin E alone.  相似文献   

2.
Three separate studies were carried out to test the hypothesis that rat liver secretes vitamin E (alpha-tocopherol) within very low density lipoproteins (VLDL). i) When the clearance of plasma chylomicrons (CM) and VLDL was blocked by the administration of Triton WR-1339, alpha-tocopherol concentrations increased linearly with time in both classes of triacylglycerol-rich lipoproteins, although accumulation rates within VLDL exceeded those within CM. For fasted rats, appearance of alpha-tocopherol in VLDL persisted at slightly reduced rates. alpha-Tocopherol and triglycerides in the VLDL fraction responded to Triton WR-1339 administration by coordinate increases. In contrast to the situation in serum, alpha-tocopherol concentrations decreased in the liver following injection of Triton. ii) In order to inhibit the secretion of hepatic lipoproteins containing apolipoprotein B (apoB), rats were fed a diet containing orotic acid. This resulted in a reduction of apoB and alpha-tocopherol concentrations in serum and VLDL, whereas the vitamin E content of liver was increased. iii) In primary cultures of hepatocytes, alpha-tocopherol was secreted into the culture media predominantly within VLDL. We, therefore, conclude that the liver secretes alpha-tocopherol within VLDL and in this way contributes to the maintenance of serum vitamin E concentrations.  相似文献   

3.
Vitamin E: function and metabolism.   总被引:32,自引:0,他引:32  
Although vitamin E has been known as an essential nutrient for reproduction since 1922, we are far from understanding the mechanisms of its physiological functions. Vitamin E is the term for a group of tocopherols and tocotrienols, of which alpha-tocopherol has the highest biological activity. Due to the potent antioxidant properties of tocopherols, the impact of alpha-tocopherol in the prevention of chronic diseases believed to be associated with oxidative stress has often been studied, and beneficial effects have been demonstrated. Recent observations that the alpha-tocopherol transfer protein in the liver specifically sorts out RRR-alpha-tocopherol from all incoming tocopherols for incorporation into plasma lipoproteins, and that alpha-tocopherol has signaling functions in vascular smooth muscle cells that cannot be exerted by other forms of tocopherol with similar antioxidative properties, have raised interest in the roles of vitamin E beyond its antioxidative function. Also, gamma-tocopherol might have functions apart from being an antioxidant. It is a nucleophile able to trap electrophilic mutagens in lipophilic compartments and generates a metabolite that facilitates natriuresis. The metabolism of vitamin E is equally unclear. Excess alpha-tocopherol is converted into alpha-CEHC and excreted in the urine. Other tocopherols, like gamma- and delta-tocopherol, are almost quantitatively degraded and excreted in the urine as the corresponding CEHCs. All rac alpha-tocopherol compared to RRR-alpha-tocopherol is preferentially degraded to alpha-CEHC. Thus, there must be a specific, molecular role of RRR-alpha-tocopherol that is regulated by a system that sorts, distributes, and degrades the different forms of vitamin E, but has not yet been identified. In this article we try to summarize current knowledge on the function of vitamin E, with emphasis on its antioxidant vs. other properties, the preference of the organism for RRR-alpha-tocopherol, and its metabolism to CEHCs.  相似文献   

4.
《Free radical research》2013,47(4):229-246
Vitamin E includes eight naturally occurring fat-soluble nutrients called tocopherols and dietary intake of vitamin E activity is essential in many species. α-Tocopherol has the highest biological activity and the highest molar concentration of lipid soluble antioxidant in man. Deficiency of vitamin E may cause neurological dysfunction, myopathies and diminished erythrocyte life span. α-Tocopherol is absorbed via the lymphatic pathway and transported in association with chylomicrons. In plasma α-tocopherol is found in all lipoprotein fractions, but mostly associated with apo B-containing lipoproteins in man. In rats approximately 50% of α-tocopherol is bound to high density lipoproteins (HDL). After intestinal absorption and transport with chylomicrons α-tocopherol is mostly transferred to parenchymal cells of the liver were most of the fat-soluble vitamin is stored. Little vitamin E is stored in the non-parenchymal cells (endothelial, stellate and Kupffer cells). α-Tocopherol is secreted in association with very low density lipoprotein (VLDL) from the liver. In the rat about 90% of total body mass of α-tocopherol is recovered in the liver, skeletal muscle and adipose tissue. Most α-tocopherol is located in the mitochondrial fractions and in the endoplasmic reticulum, whereas little is found in cytosol and peroxisomes. Clinical evidence from heavy drinkers and from experimental work in rats suggests that alcohol may increase oxidation of α-tocopherol, causing reduced tissue concentrations of α-tocopherol. Increased demand for vitamin E has also been observed in premature babies and patients with malabsorption, but there is little evidence that the well balanced diet of the healthy population would be improved by supplementation with vitamin E.  相似文献   

5.
Paradoxically, meta-analysis of human randomized controlled trials revealed that natural but not synthetic α-tocopherol supplementation significantly increases all-cause mortality at 95% confidence interval. The root cause was that natural α-tocopherol supplementation significantly depressed bioavailability of other forms of vitamin E that have better chemo-prevention capability. Meta-analysis outcome demonstrated flaws in the understanding of vitamin E. Reinterpretation of reported data provides plausible explanations to several important observations. While α-tocopherol is almost exclusively secreted in chylomicrons, enterocytes secrete tocotrienols in both chylomicrons and small high-density lipoproteins. Vitamin E secreted in chylomicrons is discriminately repacked by α-tocopherol transfer protein into nascent very low-density lipoproteins in the liver. Circulating very low-density lipoproteins undergo delipidation to form intermediate-density lipoproteins and low-density lipoproteins. Uptake of vitamin E in intermediate-density lipoproteins and low-density lipoproteins takes place at various tissues via low-density lipoproteins receptor-mediated endocytosis. Small high-density lipoproteins can deliver tocotrienols upon maturation to peripheral tissues independent of α-tocopherol transfer protein action, and uptake of vitamin E takes place at selective tissues by scavenger receptor-mediated direct vitamin E uptake. Dual absorption pathways for tocotrienols are consistent with human and animal studies. α-Tocopherol depresses the bioavailability of α-tocotrienol and has antagonistic effect on tocotrienols in chemo-prevention against degenerative diseases. Therefore, it is an undesirable component for chemo-prevention. Future research directions should be focused on tocotrienols, preferably free from α-tocopherol, for optimum chemo-prevention and benefits to mankind.  相似文献   

6.
It is generally believed that vitamin E is absorbed along with chylomicrons. However, we previously reported that human colon carcinoma Caco-2 cells use dual pathways, apolipoprotein B (apoB)-lipoproteins and HDLs, to transport vitamin E. Here, we used primary enterocytes and rodents to identify in vivo vitamin E absorption pathways. Uptake of [(3)H]alpha-tocopherol by primary rat and mouse enterocytes increased with time and reached a maximum at 1 h. In the absence of exogenous lipid supply, these cells secreted vitamin E with HDL. Lipids induced the secretion of vitamin E with intermediate density lipoproteins, and enterocytes supplemented with lipids and oleic acid secreted vitamin E with chylomicrons. The secretion of vitamin E with HDL was not affected by lipid supply but was enhanced when incubated with HDL. Microsomal triglyceride transfer protein inhibition reduced vitamin E secretion with chylomicrons without affecting its secretion with HDL. Enterocytes from Mttp-deficient mice also secreted less vitamin E with chylomicrons. In vivo absorption of [(3)H]alpha-tocopherol by mice after poloxamer 407 injection to inhibit lipoprotein lipase revealed that vitamin E was associated with triglyceride-rich lipoproteins and small HDLs containing apoB-48 and apoA-I. These studies indicate that enterocytes use two pathways for vitamin E absorption. Absorption with chylomicrons is the major pathway of vitamin E absorption. The HDL pathway may be important when chylomicron assembly is defective and can be exploited to deliver vitamin E without increasing fat consumption.  相似文献   

7.
The term vitamin E denotes a family of tocopherols and tocotrienols, plant lipids that are essential for vertebrate fertility and health. The principal form of vitamin E found in humans, RRR-alpha-tocopherol (TOH), is thought to protect cells by virtue of its ability to quench free radicals, and functions as the main lipid-soluble antioxidant. Regulation of vitamin E homeostasis occurs in the liver, where TOH is selectively retained while other forms of vitamin E are degraded. Through the action of tocopherol transfer protein (TTP), TOH is then secreted from the liver into circulating lipoproteins that deliver the vitamin to target tissues. Presently, very little is known regarding the intracellular transport of vitamin E. We utilized biochemical, pharmacological, and microscopic approaches to study this process in cultured hepatocytes. We observe that tocopherol-HDL complexes are efficiently internalized through scavenger receptor class B type I. Once internalized, tocopherol arrives within approximately 30 min at intracellular vesicular organelles, where it co-localizes with TTP, and with a marker of the lysosomal compartment (LAMP1), before being transported to the plasma membrane in a TTP-dependent manner. We further show that intracellular processing of tocopherol involves a functional interaction between TTP and an ABC-type transporter.  相似文献   

8.
To study the mechanisms of discrimination between various forms of vitamin E, four normal subjects, one patient with lipoprotein lipase deficiency, and three patients with abnormal apolipoprotein B-100 production were given an oral dose containing three tocopherols labeled with differing amounts of deuterium (2R,4'R,8'R-alpha-(5,7-(C2H3)2)tocopheryl acetate (d6-RRR-alpha-tocopheryl acetate), 2S,4'R,8'R-alpha-5-(C2H3)tocopheryl acetate (d3-SRR-alpha-tocopheryl acetate), and 2R,4'R,8'R-gamma-(3,4-2H)tocopherol (d2-RRR-gamma-tocopherol). The tocopherol contents of plasma, red cells, and lipoproteins were measured up to 76 h after the dose. In normal subjects all three tocopherols were absorbed and secreted in chylomicrons with equal efficiencies. Both d2-gamma- and d3-SRR-alpha-tocopherols peaked at similar concentrations in the other lipoprotein fractions, then decreased similarly, but 2-4 times more rapidly than did d6-RRR-alpha-tocopherol. A lipoprotein lipase-deficient patient and a patient with prolonged production of chylomicrons with absent apolipoprotein B-100 also demonstrated the lack of discrimination between tocopherols during absorption. Despite abnormal apolipoprotein B-100 production in two patients, the "VLDL" was preferentially enriched in d6-RRR-alpha-tocopherol. Our results show that there is no discrimination between the three tocopherols during absorption and secretion in chylomicrons, but subsequently there is a preferential enrichment of very low density lipoprotein (VLDL) with RRR-alpha-tocopherol. Catabolism of this VLDL results in the maintenance of plasma RRR-alpha-tocopherol concentrations.  相似文献   

9.
The transport and secretion of vitamin E in lipoproteins have been studied in cynomolgus monkeys fed tocopherols labeled with different amounts of deuterium. The animals were fed a single dose of vitamin E containing 60 mumol of each 2R,4'R,8'R-alpha-(5,7-(C2H3)2)tocopheryl acetate (d6-RRR-alpha-tocopheryl acetate; alpha-tocopherol with natural stereochemistry), 2S,4'R,8'R-alpha-5-(C2H3)tocopheryl acetate (d3-SRR-alpha-tocopheryl acetate; alpha-tocopherol with unnatural stereochemistry), and 2R,4'R,8'R-gamma-(3,4-2H)tocopherol (d2-RRR-gamma-tocopherol; gamma-tocopherol with natural stereochemistry). Chylomicrons, as well as the other plasma lipoproteins, contained equal concentrations of all three tocopherols at the earliest time points after feeding suggesting that all three tocopherols were absorbed equally. At later times plasma lipoproteins became preferentially enriched in d6-RRR-alpha-tocopherol. This is likely to be due to hepatic secretion of VLDL (very low density lipoproteins) and other lipoproteins, which were enriched in d6-RRR-alpha-tocopherol, as demonstrated in the lipoproteins isolated from perfused livers that had been obtained 24 h following the administration of the deuterated tocopherols. Taken together these data demonstrate that the liver, not the intestine, is the likely site of discrimination between tocopherol isomers and that the liver secretes nascent lipoproteins preferentially enriched in d6-RRR-alpha-tocopherol.  相似文献   

10.
Lipoprotein lipase (LPL) bound to the lumenal surface of vascular endothelial cells is responsible for the hydrolysis of triglycerides in plasma lipoproteins. Studies were performed to investigate whether human plasma lipoproteins and/or free fatty acids would release LPL which was bound to endothelial cells. Purified bovine milk LPL was incubated with cultured porcine aortic endothelial cells resulting in the association of enzyme activity with the cells. When the cells were then incubated with media containing chylomicrons or very low density lipoproteins (VLDL), a concentration-dependent decrease in the cell-associated LPL enzymatic activity was observed. In contrast, incubation with media containing low density lipoproteins or high density lipoproteins produced a much smaller decrease in the cell-associated enzymatic activity. The addition of increasing molar ratios of oleic acid:bovine serum albumin to the media also reduced enzyme activity associated with the endothelial cells. To determine whether the decrease in LPL activity was due to release of the enzyme from the cells or inactivation of the enzyme, studies were performed utilizing radioiodinated bovine LPL. Radiolabeled LPL protein was released from endothelial cells by chylomicrons, VLDL, and by free fatty acids (i.e. oleic acid bound to bovine serum albumin). The release of radiolabeled LPL by VLDL correlated with the generation of free fatty acids from the hydrolysis of VLDL triglyceride by LPL bound to the cells. Inhibition of LPL enzymatic activity by use of a specific monoclonal antibody, reduced the extent of release of 125I-LPL from the endothelial cells by the added VLDL. These results demonstrated that LPL enzymatic activity and protein were removed from endothelial cells by triglyceride-rich lipoproteins (chylomicrons and VLDL) and oleic acid. We postulate that similar mechanisms may be important in the regulation of LPL activity at the vascular endothelium.  相似文献   

11.
Lipoprotein lipase (LPL)-mediated hydrolysis of triglycerides (TG) contained in chylomicrons requires the presence of a cofactor, apolipoprotein (apo) C-II. The physiological mechanism by which chylomicrons gain apoC-II necessary for LPL activation in whole plasma is not known. Using a gum arabic stabilized TG emulsion, activation of LPL by lipoprotein apoC-II was studied. Hydrolysis of TG by LPL was greater in the presence of serum than with addition of either high density lipoproteins (HDL) or very low density lipoproteins (VLDL). LPL activation by either VLDL or HDL increased with addition of the lipoprotein-free fraction of plasma. A similar increase in LPL activity by addition of the lipoprotein-free fraction together with HDL or VLDL was observed when another TG emulsion (Intralipid) or TG-rich lipoproteins from an apoC-II deficient subject were used as a substrate. Human apoA-IV, apoA-I, apoE, and cholesteryl ester transfer protein were assessed for their ability to increase LPL activity in the presence of VLDL. At and below physiological concentrations, only apoA-IV increased LPL activity. One hundred percent of LPL activity measured in the presence of serum was achieved using VLDL plus apoA-IV. In the absence of an apoC-II source, apoA-IV had no effect on LPL activity. Removal of greater than 80% of the apoA-IV from the nonlipoprotein-containing fraction of plasma by incubation with Intralipid markedly reduced its ability to activate LPL in the presence of VLDL or HDL. Gel filtration chromatography demonstrated that incubation of the nonlipoprotein-containing fraction of plasma with HDL and the TG emulsion caused increased transfer of apoC-II to the emulsion and association of apoA-IV with HDL. Our studies demonstrate that apoA-IV increases LPL activation in the presence of lipoproteins. We hypothesize that apoA-IV is required for efficient release of apoC-II from either HDL or VLDL, which then allows for LPL-mediated hydrolysis of TG in nascent chylomicrons.  相似文献   

12.
Vitamin E is a fat-soluble vitamin that consists of a group of tocols and tocotrienols with hydrophobic character, but possessing a hydroxyl substituent that confers an amphipathic character on them. The isomers of biological importance are the tocopherols, of which alpha-tocopherol is the most potent vitamin. Vitamin E partitions into lipoproteins and cell membranes, where it represents a minor constituent of most membranes. It has a major function in its action as a lipid antioxidant to protect the polyunsaturated membrane lipids against free radical attack. Other functions are believed to be to act as membrane stabilizers by forming complexes with the products of membrane lipid hydrolysis, such as lysophospholipids and free fatty acids. The main experimental approach to explain the functions of vitamin E in membranes has been to study its effects on the structure and stability of model phospholipid membranes. This review describes the function of vitamin E in membranes and reviews the current state of knowledge of the effect of vitamin E on the structure and phase behaviour of phospholipid model membranes.  相似文献   

13.
Five subjects ingested in a single oral dose containing 50 mg each of 2R,4'R,8'R-alpha-(5,7-(C2H3)2)tocopheryl acetate (d6-RRR-alpha-tocopheryl acetate) with natural stereochemistry, and of 2S,4'R,8'R-alpha-(5-C2H3)tocopheryl acetate (d3-SRR-alpha-tocopheryl acetate). These are two of eight stereoisomers in synthetic vitamin E. By day 1 the plasma and red blood cells were enriched fourfold with d6-RRR-alpha-tocopherol (P less than 0.004). The ratio of d6-RRR-/d2-SRR- further increased over the succeeding 4 days, because the d3-SRR- decreased at a faster rate than did the d6-RRR-stereoisomer. Plasma and lipoproteins were isolated at intervals during the first day, and daily for 3 days, from four additional subjects fed a mixture of equal amounts of the deuterated tocopherols. The plasma contained similar concentrations of the two forms until 11 h, when the d6-RRR-alpha-tocopherol concentration became significantly greater (P less than 0.05). The chylomicrons contained similar concentrations of the two deuterated tocopherols, but the VLDL (very low density lipoproteins) became preferentially enriched in d6-RRR-alpha-tocopherol by 11 h. The pattern of the deuterated tocopherols shows that during chylomicron catabolism all of the plasma lipoproteins were labeled equally with both tocopherols, but that during the subsequent VLDL catabolism the low and high density lipoproteins became enriched in d6-RRR-alpha-tocopherol. These results suggest the existence of a mechanism in the liver for assembling VLDL preferentially enriched in RRR- relative to SRR-alpha-tocopherol.  相似文献   

14.
15.
Vitamin E: non-antioxidant roles   总被引:33,自引:0,他引:33  
  相似文献   

16.
A distinctive feature of HCV is that its life cycle depends on lipoprotein metabolism. Viral morphogenesis and secretion follow the very low-density lipoprotein (VLDL) biogenesis pathway and, consequently, infectious HCV in the serum is associated with triglyceride-rich lipoproteins (TRL). Lipoprotein lipase (LPL) hydrolyzes TRL within chylomicrons and VLDL but, independently of its catalytic activity, it has a bridging activity, mediating the hepatic uptake of chylomicrons and VLDL remnants. We previously showed that exogenously added LPL increases HCV binding to hepatoma cells by acting as a bridge between virus-associated lipoproteins and cell surface heparan sulfate, while simultaneously decreasing infection levels. We show here that LPL efficiently inhibits cell infection with two HCV strains produced in hepatoma cells or in primary human hepatocytes transplanted into uPA-SCID mice with fully functional human ApoB-lipoprotein profiles. Viruses produced in vitro or in vivo were separated on iodixanol gradients into low and higher density populations, and the infection of Huh 7.5 cells by both virus populations was inhibited by LPL. The effect of LPL depended on its enzymatic activity. However, the lipase inhibitor tetrahydrolipstatin restored only a minor part of HCV infectivity, suggesting an important role of the LPL bridging function in the inhibition of infection. We followed HCV cell entry by immunoelectron microscopy with anti-envelope and anti-core antibodies. These analyses demonstrated the internalization of virus particles into hepatoma cells and their presence in intracellular vesicles and associated with lipid droplets. In the presence of LPL, HCV was retained at the cell surface. We conclude that LPL efficiently inhibits HCV infection by acting on TRL associated with HCV particles through mechanisms involving its lipolytic function, but mostly its bridging function. These mechanisms lead to immobilization of the virus at the cell surface. HCV-associated lipoproteins may therefore be a promising target for the development of new therapeutic approaches.  相似文献   

17.
Lipoprotein lipase (LPL), synthesized by adipocytes and myocytes, must be transported to the luminal endothelial cell surface where it then interacts with circulating lipoproteins. The first step in this extracellular LPL transport pathway is LPL release from the surface of LPL-synthesizing cells. Because hydrolysis of triglyceride (TG)-rich lipoproteins releases LPL from the apical surface of endothelial cells, we hypothesized that the same substances dissociate LPL from adipocytes. 125I-LPL was bound to the surface of brown adipocytes (BFC-1 beta). LPL binding to the adipocyte surface was greater than to endothelial cell surfaces. Using low concentrations of heparin, more LPL was released from endothelial cells than BFC-1 beta, suggesting that the affinity of LPL binding to the adipocytes was greater than LPL affinity for endothelial cells. Greater than 3-fold more LPL was released from the cell surface when very low density lipoproteins (VLDL) were added to culture medium containing 3% bovine serum albumin. LPL remaining on the cell surface decreased with VLDL addition. Endogenously produced LPL activity was also released from the cells by VLDL. Low and high density lipoproteins did not release 125I-LPL or LPL activity from the adipocytes. To assess whether lipolysis was necessary for LPL release, BFC-1 beta were incubated with TG-rich lipoproteins from a patient with apoCII deficiency. The apoCII-deficient lipoproteins did not release LPL unless an exogenous source of apoCII was added. Apolipoproteins E and Cs and high molar ratios of oleic acid:bovine serum albumin did not release surface-associated LPL. Lysolecithin (25 and 100 microM), but not lecithin, monoglycerides, or diglycerides, released adipocyte surface LPL. Because lysolecithin also released LPL during a 4 degrees C incubation, cellular metabolic functions are not required for LPL dissociation from the cells. Lysolecithin also inhibited LPL binding to endothelial cells; however, this effect was abrogated by addition of bovine serum albumin. We hypothesize that lipolysis products from TG-rich lipoproteins release adipocyte surface LPL, which can then be transported to the luminal endothelial cell surface.  相似文献   

18.
Vitamin E and its function in membranes   总被引:10,自引:0,他引:10  
Vitamin E is a fat-soluble vitamin. It is comprised of a family of hydrocarbon compounds characterised by a chromanol ring with a phytol side chain referred to as tocopherols and tocotrienols. Tocopherols possess a saturated phytol side chain whereas the side chain of tocotrienols have three unsaturated residues. Isomers of these compounds are distinguished by the number and arrangement of methyl substituents attached to the chromanol ring. The predominant isomer found in the body is alpha-tocopherol, which has three methyl groups in addition to the hydroxyl group attached to the benzene ring. The diet of animals is comprised of different proportions of tocopherol isomers and specific alpha-tocopherol-binding proteins are responsible for retention of this isomer in the cells and tissues of the body. Because of the lipophilic properties of the vitamin it partitions into lipid storage organelles and cell membranes. It is, therefore, widely distributed in throughout the body. Subcellular distribution of alpha-tocopherol is not uniform with lysosomes being particularly enriched in the vitamin compared to other subcellular membranes. Vitamin E is believed to be involved in a variety of physiological and biochemical functions. The molecular mechanism of these functions is believed to be mediated by either the antioxidant action of the vitamin or by its action as a membrane stabiliser. alpha-Tocopherol is an efficient scavenger of lipid peroxyl radicals and, hence, it is able to break peroxyl chain propagation reactions. The unpaired electron of the tocopheroxyl radical thus formed tends to be delocalised rendering the radical more stable. The radical form may be converted back to alpha-tocopherol in redox cycle reactions involving coenzyme Q. The regeneration of alpha-tocopherol from its tocopheroxyloxyl radical greatly enhances the turnover efficiency of alpha-tocopherol in its role as a lipid antioxidant. Vitamin E forms complexes with the lysophospholipids and free fatty acids liberated by the action of membrane lipid hydrolysis. Both these products form 1:1 stoichiometric complexes with vitamin E and as a consequence the overall balance of hydrophobic:hydrophillic affinity within the membrane is restored. In this way, vitamin E is thought to negate the detergent-like properties of the hydrolytic products that would otherwise disrupt membrane stability. The location and arrangement of vitamin E in biological membranes is presently unknown. There is, however, a considerable body of information available from studies of model membrane systems consisting of phospholipids dispersed in aqueous systems. From such studies using a variety of biophysical methods, it has been shown that alpha-tocopherol intercalates into phospholipid bilayers with the long axis of the molecule oriented parallel to the lipid hydrocarbon chains. The molecule is able to rotate about its long axis and diffuse laterally within fluid lipid bilayers. The vitamin does not distribute randomly throughout phospholipid bilayers but forms complexes of defined stoichiometry which coexist with bilayers of pure phospholipid. alpha-Tocopherol preferentially forms complexes with phosphatidylethanolamines rather than phosphatidylcholines, and such complexes more readily form nonlamellar structures. The fact that alpha-tocopherol does not distribute randomly throughout bilayers of phospholipid and tends to form nonbilayer complexes with phosphatidylethanolamines would be expected to reduce the efficiency of the vitamin in its action as a lipid antioxidant and to destabilise rather than stabilise membranes. The apparent disparity between putative functions of vitamin E in biological membranes and the behaviour in model membranes will need to be reconciled.  相似文献   

19.
Suckling rat plasma contains (in mg/dl): chylomicrons (85 +/- 12); VLDL (50 +/- 6); LDL (200 +/- 23); HDL1 (125 +/- 20); and HDL2 (220 +/- 10), while lymph contains (in mg/dl): chylomicrons (9650 +/- 850) and VLDL (4570 +/- 435) and smaller amounts of LDL and HDL. The lipid composition of plasma and lymph lipoproteins are similar to those reported for adults, except that LDL and HDL1 have a somewhat higher lipid content. The apoprotein compositions of plasma lipoproteins are similar to those of adult lipoproteins except for the LDL fraction, which contains appreciable quantities of apoproteins other than apoB. Although the LDL fraction was homogeneous by analytical ultracentrifugation and electrophoresis, the apoprotein composition suggests the presence of another class of lipoproteins, perhaps a lipid-rich HDL1. The lipoproteins of lymph showed low levels of apoproteins E and C. The triacylglycerols in chylomicrons and VLDL of both lymph and plasma are rich in medium-chain-length fatty acids, whereas those in LDL and HDL have little or none. Phospholipids in all lipoproteins lack medium-chain-length fatty acids. The cholesteryl esters of the high density lipoproteins are enriched in arachidonic acid, whereas those in chylomicrons, VLDL, and LDL are enriched in linoleic acid, suggesting little or no exchange of cholesteryl esters between these classes of lipoproteins. The fatty acid composition of phosphatidylcholine, sphingomyelin, and lysophosphatidylcholine were relatively constant in all lipoprotein fractions, suggesting ready exchange of these phospholipids. However, the fatty acid composition of phosphatidylethanolamine in plasma chylomicrons and VLDL differed from that in plasma LDL, HDL1, and HDL2. LDL, HDL1, and HDL2 were characterized by analytical ultracentrifugation and shown to have properties similar to that reported for adult lipoproteins. The much higher concentration of triacylglycerol-rich lipoproteins in lymph, compared to plasma, suggests rapid clearance of these lipoproteins from the circulation.  相似文献   

20.
Like rat C apolipoproteins, each of the C apolipoproteins from human blood plasma (C-I, C-II, C-III-1, and C-III-2) bound to small chylomicrons from mesenteric lymph of estradiol-treated rats and inhibited their uptake by the isolated perfused rat liver. This inhibitory effect of the C apolipoproteins was independent of apolipoprotein E, which is present only in trace amounts in these chylomicrons. Addition of rat apolipoprotein E to small chylomicrons from mesenteric lymph of normal rats did not displace C apolipoproteins and had no effect on the uptake of these particles by the perfused liver, indicating that an increased ratio of E apolipoproteins to C apolipoproteins on chylomicron particles, unaccompanied by depletion of the latter, may not promote recognition by the chylomicron remnant receptor. The hepatic uptake of remnants of rat hepatic very low density lipoproteins (VLDL) and small chylomicrons, which had been produced in functionally eviscerated rats, was also inhibited by addition of C apolipoproteins. These observations are consistent with the hypothesis that the addition of all of the C apolipoproteins to newly secreted chylomicrons and VLDL inhibits premature uptake of these particles by the liver and that depletion of all of these apolipoproteins from remnant particles facilitates their hepatic uptake. Remnants of chylomicrons and VLDL incubated with rat C apolipoproteins efficiently took up C-III apolipoproteins, but not apolipoprotein C-II (the activator protein for lipoprotein lipase). Preferential loss of apolipoprotein C-II during remnant formation may regulate the termination of triglyceride hydrolysis prior to complete removal of triglycerides from chylomicrons and VLDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号