首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis are a few examples of debilitating neurological/neurodegenerative diseases for which there are currently no curative treatments. Recent evidence has strongly suggested a role for neuroinflammation in both the onset and progression of these diseases. However, the mechanisms that initiate neuroinflammation are presently unclear. Mounting evidence suggests that environmental factors are likely involved. One proposed mechanism linking both genetic and environmental factors is dysregulation of the antiviral response. Indeed, many mutations that have been linked to neurological conditions occur in genes related to the antiviral response. Although the products of these genes may have potent antiviral activities – they can also have deleterious effects when their expression is not appropriately regulated. For that reason, expression of antiviral genes is a tightly controlled process. Herein, we review the various antiviral genes that have been linked to neurological conditions. We focus specifically on type I interferonopathies, the symptoms of which are often evident at birth, and neurodegenerative diseases, which frequently onset later in life.  相似文献   

2.
畜禽养殖过程中雌激素的排放及其环境行为   总被引:13,自引:0,他引:13  
李艳霞  韩伟  林春野  李帷  杨明  张丰松 《生态学报》2010,30(4):1058-1065
由于存在广泛和较强的内分泌干扰性,环境雌激素越来越受到关注,其中人与动物排放的天然类固醇雌激素(雌酮、雌二醇和雌三醇)具有最强的干扰性。综述了畜禽养殖过程中天然雌激素的排放、危害以及其物化性质,并结合国内外近期研究阐明了天然雌激素的吸附、降解和迁移转化等环境行为。在目前雌激素研究现状的基础上,对未来的研究方向及目标提出了建议。  相似文献   

3.
Over the last 20 years, there have been remarkably few FDA-approved first-in-class drugs for neurodegenerative diseases. Debilitating conditions such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis have no effective disease-modifying therapeutics on the market, signifying an area of high unmet medical need where novel approaches are needed. Using a phenotypic screening approach, two separate groups discovered small molecule non-antisense oligonucleotide splice modulators for spinal muscular atrophy, a severe monogenetic disease that causes the degeneration of alpha motor neurons in the spinal cord. These compounds function by a novel mechanism: selective stabilization of the interaction of U1 small nuclear ribonucleic protein (snRNP), a core component of the spliceosome, with the 5′ splice site of a pre-mRNA. The ability of the phenotypic screening approach to uncover a previously unknown mechanism and reveal a new druggable target class has broader implications for other neurodegenerative diseases.  相似文献   

4.
Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis, are a group of incurable neurological disorders, characterized by the chronic progressive loss of different neuronal subtypes. However, despite its increasing prevalence among the ever-increasing aging population, little progress has been made in the coincident immense efforts towards development of therapeutic agents. Research interest has recently turned towards stem cells including stem cells-derived exosomes, neurotrophic factors, and their combination as potential therapeutic agents in neurodegenerative diseases. In this review, we summarize the progress in therapeutic strategies based on stem cells combined with neurotrophic factors and mesenchymal stem cells-derived exosomes for neurodegenerative diseases, with an emphasis on the combination therapy.  相似文献   

5.
The two most generally diagnosed Neurodegenerative diseases are the Alzheimer and Parkinson diseases. So this paper presents a fully automated early screening system based on the Capsule network for the classification of these two Neurodegenerative diseases. In this study, we hypothesized that the Neurodegenerative diseases-Caps system based on the Capsule network architecture accurately performs the multiclass i.e. three class classification into either the Alzheimer class or Parkinson class or Healthy control and delivers better results in comparison other deep transfer learning models. The real motivation behind choosing the capsule network architecture is its more resilient nature towards the affine transformations as well as rotational & translational invariance, which commonly persists in the medical image datasets. Apart from this, the capsule networks overcomes the pooling layers related deficiencies from which conventional CNNs are mostly affected and unable to delivers accurate results especially in the tasks related to image classification. The various Computer aided systems based on machine learning for the classification of brain tumors and other types of cancers are already available. Whereas for the classification of Neurodegenerative diseases, the amount of research done is very limited and the number of persons suffering from this type of diseases are increasing especially in developing countries like India, China etc. So there is a need to develop an early screening system for the correct multiclass classification into Alzheimer’s, Parkinson’s and Normal or Healthy control cases. The Alzheimer disease and Parkinson progression (ADPP) dataset is used in this research study for the training of the proposed Neurodegenerative diseases-Caps system. This ADPP dataset is developed with the aid of both the Parkinson''s Progression Markers Initiative (PPMI) and Alzheimer’s disease Neuroimaging Initiative (ADNI) databases. There is no such early screening system exist yet, which can perform the accurate classification of these two Neurodegenerative diseases. For the sake of genuine comparison, other popular deep transfer learning models like VGG19, VGG16, ResNet50 and InceptionV3 are implemented and also trained over the same ADPP dataset. The proposed Neurodegenerative diseases-Caps system deliver accuracies of 97.81, 98, 96.81% for the Alzheimer, Parkinson and Healthy control or Normal cases with 70/30 (training/validation split) and performs way better as compare to the other popular Deep transfer learning models.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11571-022-09787-1.  相似文献   

6.
Reactive oxygen species (ROS), chemically reactive molecules containing oxygen, can form as a natural byproduct of the normal metabolism of oxygen and also have their crucial roles in cell homeostasis. Of note, the major intracellular sources including mitochondria, endoplasmic reticulum (ER), peroxisomes and the NADPH oxidase (NOX) complex have been identified in cell membranes to produce ROS. Interestingly, autophagy, an evolutionarily conserved lysosomal degradation process in which a cell degrades long-lived proteins and damaged organelles, has recently been well-characterized to be regulated by different types of ROS. Accumulating evidence has demonstrated that ROS-modulated autophagy has numerous links to a number of pathological processes, including cancer, ageing, neurodegenerative diseases, type-II diabetes, cardiovascular diseases, muscular disorders, hepatic encephalopathy and immunity diseases. In this review, we focus on summarizing the molecular mechanisms of ROS-regulated autophagy and their relevance to diverse diseases, which would shed new light on more ROS modulators as potential therapeutic drugs for fighting human diseases.  相似文献   

7.
8.
类固醇雌激素(steroidal estrogens, SEs)作为典型的内分泌干扰物,在环境介质中被广泛检出,其进入生物体后可模拟细胞内源性激素作用对生物体生长、发育、生殖等产生不利影响,因此越来越引起关注。目前关于SEs的研究报道多集中于粪便、土壤、水体等介质中的检出及环境行为,以及SEs在水生生物体内的迁移和转化,其累积效应及其机制研究较为系统和全面。相较而言,SEs在土壤-植物体系中的迁移累积报道较少,但是对于掌握农田系统中SEs迁移转化的需求更为迫切。结合现有的国内外相关研究,总结了SEs在土壤-植物体系中的吸收累积和迁移转化行为特征,概述了植物吸收代谢SEs的影响因素以及SEs对植物生长发育的毒理效应。目前针对SEs的植物体吸收大多数仍基于室内模拟实验,对于其在土壤-植物多相态体系中迁移转化机理尚不清楚。因此,对今后的研究方向提出以下几点建议:(1)除室内模拟实验外,对实际土壤-植物系统中的研究更具价值,特别是SEs土壤-土壤水-植物多相态体系中的迁移转化等过程;(2)应结合SEs的来源,探究畜禽粪便、城市污泥及污水等不同源SEs对植物吸收、累积污染物的影响及污染风险;(3)加强对农作物体内SEs残留的监测和风险评估,制定SEs农作物检出及人体摄入的相关标准。  相似文献   

9.
The observational studies of hormone users are compromised by systematic biases that lead to an overestimation of benefit and an underestimation of risk. Studies of mechanism could support either benefit or harm. The results of clinical trials of oral hormone therapy in women with existing coronary heart disease (CHD) have been uniformly disappointing. The largest trial found an early increased risk for CHD and for venous thromboembolism. Postmenopausal hormone therapy should not be considered for CHD prevention until methods for excluding high-risk women have been established, and until the results of the long-term trials have shown benefit. There is a need for clinical trials of nonoral estrogens.  相似文献   

10.
Preimplantation genetic diagnosis (PGD) was introduced in the late 1980s and represents an option for couples at risk of transmitting an inherited, debilitating or neurological disorder to their children. From a cleavage or blastocyst stage embryo, cell(s) are collected and then genetically analyzed for disease; enabling an unaffected embryo to be transferred into the uterus cavity. Nowadays, PGD has been carried out for several hundreds of heritable conditions including myotonic dystrophy, and for susceptibility genes involved in cancers of the nervous system. Currently, advanced molecular technologies with better resolution, such as array comparative genomic hybridisation, quantitative polymerase chain reaction, and next generation sequencing, are on the verge of becoming the gold standard in embryo preimplantation screening. Given this, it may be time for neurological societies to consider the published evidence to develop new guidelines for the integration of PGD into modern preventative neurology. Therefore, the main aim of this review is to illustrate the option of PGD to enable conception of an unaffected baby, and to assist clinicians and neurologists in the counseling of the patient at risk of transmitting an inherited disease, to explore the genetic journey throughout in vitro fertilization IVF with PGD.  相似文献   

11.
Phosphoinositide 3-kinase (PI3K), a crucial signaling molecule, is regulated by various upstream regulators. Traditionally, receptor tyrosine kinases and G protein-coupled receptor are regarded as its principle upstream regulators; however, recent reports have indicated that spleen tyrosine kinase, β-arrestin2, Janus kinase, and RAS can also perform this role. Dysregulation of PI3K is common in the progression of various diseases, including, but not limited to, tumors, Alzheimer's disease, Parkinson's disease, rheumatoid arthritis, and acute myelogenous leukemia. The aim of this review is to provide a perspective on PI3K-related diseases examining both the classical and nonclassical upstream regulators of PI3K in detail.  相似文献   

12.
Thirty years after Peter Mitchell was awarded the Nobel Prize for the chemiosmotic hypothesis, which links the mitochondrial membrane potential generated by the proton pumps of the electron transport chain to ATP production by ATP synthase, the molecular players involved once again attract attention. This is so because medical research increasingly recognizes mitochondrial dysfunction as a major factor in the pathology of numerous human diseases, including diabetes, cancer, neurodegenerative diseases, and ischemia reperfusion injury. We propose a model linking mitochondrial oxidative phosphorylation (OxPhos) to human disease, through a lack of energy, excessive free radical production, or a combination of both. We discuss the regulation of OxPhos by cell signaling pathways as a main regulatory mechanism in higher organisms, which in turn determines the magnitude of the mitochondrial membrane potential: if too low, ATP production cannot meet demand, and if too high, free radicals are produced. This model is presented in light of the recently emerging understanding of mechanisms that regulate mammalian cytochrome c oxidase and its substrate cytochrome c as representative enzymes for the entire OxPhos system.  相似文献   

13.
At least eight neurodegenerative diseases, including Huntington disease, are caused by expansions in (CAG)n repeats in the affected gene and by an increase in the size of the corresponding polyglutamine domain in the expressed protein. A hallmark of several of these diseases is the presence of aberrant, proteinaceous aggregates in the nuclei and cytosol of affected neurons. Recent studies have shown that expanded polyglutamine (Qn) repeats are excellent glutaminyl-donor substrates of tissue transglutaminase, and that the substrate activity increases with increasing size of the polyglutamine domain. Tissue transglutaminase is present in the cytosol and nuclear fractions of brain tissue. Thus, the nuclear and cytosolic inclusions in Huntington disease may contain tissue transglutaminase-catalyzed covalent aggregates. The (CAG)n/Qn-expansion diseases are classic examples of selective vulnerability in the nervous system, in which certain cells/structures are particularly susceptible to toxic insults. Quantitative differences in the distribution of the brain transglutaminase(s) and its substrates, and in the activation mechanism of the brain transglutaminase(s), may explain in part selective vulnerability in a subset of neurons in (CAG)n-expansion diseases, and possibly in other neurodegenerative disease. If tissue transglutaminase is found to be essential for development of pathogenesis, then inhibitors of this enzyme may be of therapeutic benefit.  相似文献   

14.
Several novel antioxidant-iron chelators bearing 8-hydroxyoxyquinoline moiety were synthesized, and various properties related to their iron chelation, and neuroprotective action were investigated. All the chelators exhibited strong iron(III) chelating and high antioxidant properties. Chelator 9 (HLA20), having good permeability into K562 cells and moderate selective MAO-B inhibitory activity (IC50 110 microM), displayed the hightest protective effects against differentiated P19 cell death induced by 6-hydroxydopamine. EPR studies suggested that Chelator 9 also act as radical scavenger to directly scavenge hydroxyl radical.  相似文献   

15.
Suppressor of cytokine signaling proteins (SOCS) are a family of intracellular cytokine inducible proteins, consisting of eight members. They are involved in the complex control of the inflammatory response through their actions on various signaling pathways, including the JAK/STAT and NF-κB pathways. A series of studies has shown that SOCS proteins are involved in the regulation and progression of immune responses in microglia cells. The accumulated data suggest that modulation of SOCS expression could be a target for drug development aimed at controlling inflammation in the brain. This review focuses on the current understanding of SOCS proteins involvement in inflammation-based neurodegenerative diseases and their role as therapeutic targets in future approaches.  相似文献   

16.
The multifactorial nature of Parkinson’s disease necessitates the development of new chemical entities with inherent ability to address key pathogenic processes. To this end, two series of new symmetrical 1,2- and 1,4-bis(2-aroyl/alkoylimino-5-(2-methoxy-2-oxoethylidene)-4-oxo-thiazolidin-3-yl)benzene derivatives (3a–g and 5a–e) were synthesized in good yields by the cyclization of 1,2- and 1,4-bis(N′-substituted thioureido)benzene intermediates with dimethyl acetylenedicarboxylate (DMAD) in methanol at ambient temperature. The bis-iminothiazolidinone compounds were investigated in vitro for their inhibition of monoamine oxidase (MAO-A & MAO-B) enzymes with the aim to identify new and distinct pharmacophores for the treatment of neurodegenerative disorders like Parkinson’s disease. Most of the designed compounds exhibited good inhibitory efficacy against monoamine oxidases. Compound 5a was identified as the most potent inhibitor of MAO-A depicting an IC50 value of 0.001 μM, a 4-fold stronger inhibitory strength compared to standard inhibitor (clorgyline: IC50 = 0.0045 μM). Molecular docking studies provided insights into enzyme-inhibitor interactions and a rationale for the observed inhibition towards monoamine oxidases.  相似文献   

17.
Aging is one of the risk factors for the development of low-grade inflammation morbidities, such as several types of cancer and neurodegenerative diseases, due to changes in the metabolism, hormonal secretion, and immunosenescence. The senescence of the immune system leads to improper control of infections and tissue damage increasing age-related diseases. One of the mechanisms that maintain cellular homeostasis is autophagy, a cell-survival mechanism, and it has been proposed as one of the most powerful antiaging therapies. Regular exercise can reestablish autophagy, probably through AMP-activated protein kinase activation, and help in reducing the age-related senescence diseases. Therefore, in this study, we discuss the effects of exercise training in immunosenescence and autophagy, preventing the two main age-related disease, cancer and neurodegeneration.  相似文献   

18.
19.
20.
Mitochondria play a key role in the maintenance of neuronal function by continuously providing energy. Here, we will give a detailed review about the recent developments in regards to dynamin-related protein 1 (Drp1) induced unbalanced mitochondrial dynamics, excessive mitochondrial division, and neuronal injury in neural system dysfunctions and neurodegenerative diseases, including the Drp1 knockout induced mice embryonic death, the dysfunction of the Drp1-dependent mitochondrial division induced neuronal cell apoptosis and impaired neuronal axonal transportation, the abnormal interaction between Drp1 and amyloid β (Aβ) in Alzheimer's disease (AD), the mutant Huntingtin (Htt) in Huntington's disease (HD), and the Drp1-associated pathogenesis of other neurodegenerative diseases such as Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Drp1 is required for mitochondrial division determining the size, shape, distribution, and remodeling as well as maintaining of mitochondrial integrity in mammalian cells. In addition, increasing reports indicate that the Drp1 is involved in some cellular events of neuronal cells causing some neural system dysfunctions and neurodegenerative diseases, including impaired mitochondrial dynamics, apoptosis, and several posttranslational modification induced increased mitochondrial divisions. Recent studies also revealed that the Drp1 can interact with Aβ, phosphorylated τ, and mutant Htt affecting the mitochondrial shape, size, distribution, axonal transportation, and energy production in the AD and HD neuronal cells. These changes can affect the health of mitochondria and the function of synapses causing neuronal injury and eventually leading to the dysfunction of memory, cognitive impairment, resting tremor, posture instability, involuntary movements, and progressive muscle atrophy and paralysis in patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号