首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Fibroblast growth factor (FGF)-2 and parathyroid hormone (PTH) are potent inducers of osteoclast (OCL) formation, and PTH increases FGF-2 mRNA and protein expression in osteoblasts. To elucidate the role of endogenous FGF-2 in PTH responses, we examined PTH-induced OCL formation in bone marrow cultures from wild type and mice with a disruption of the Fgf2 gene. FGF-2-induced OCL formation was similar in marrow culture from both genotypes. In contrast, PTH-stimulated OCL formation in bone marrow cultures or co-cultures of osteoblast-spleen cells from Fgf2-/mice was significantly impaired. PTH increased RANKL mRNA expression in osteoblasts cultures from both genotypes. After 6 days of treatment, osteoprotegerin protein in cell supernatants was 40-fold higher in vehicle-treated and 30-fold higher in PTH-treated co-cultures of osteoblast and spleen cells from Fgf2-/mice compared with Fgf2+/+ mice. However, a neutralizing antibody to osteoprotegerin did not rescue reduced OCL formation in response to PTH. Injection of PTH caused hypercalcemia in Fgf2+/+ but not Fgf2-/mice. We conclude that PTH stimulates OCL formation and bone resorption in mice in part by endogenous FGF-2 synthesis by osteoblasts. Because RANKL- and interleukin-11-induced OCL formation was also reduced in bone marrow cultures from Fgf2-/mice, we further conclude that endogenous FGF-2 is necessary for maximal OCL formation by multiple bone resorbing factors.  相似文献   

3.
Parathyroid hormone (PTH) increases fibroblast growth factor receptor‐1 (FGFR1) and fibroblast growth factor‐2 (FGF‐2) expression in osteoblasts and the anabolic response to PTH is reduced in Fgf2?/? mice. This study examined whether candidate factors implicated in the anabolic response to PTH were modulated in Fgf2?/? osteoblasts. PTH increased Runx‐2 protein expression in Fgf2+/+ but not Fgf2?/? osteoblasts. By immunocytochemistry, PTH treatment induced nuclear accumulation of Runx‐2 only in Fgf2+/+ osteoblasts. PTH and FGF‐2 regulate Runx‐2 via activation of the cAMP response element binding proteins (CREBs). Western blot time course studies showed that PTH increased phospho‐CREB within 15 min that was sustained for 24 h in Fgf2+/+ but had no effect in Fgf2?/? osteoblasts. Silencing of FGF‐2 in Fgf2+/+ osteoblasts blocked the stimulatory effect of PTH on Runx‐2 and CREBs phosphorylation. Studies of the effects of PTH on proteins involved in osteoblast precursor proliferation and apoptosis showed that PTH increased cyclinD1‐cdk4/6 protein in Fgf2+/+ but not Fgf2?/? osteoblasts. Interestingly, PTH increased the cell cycle inhibitor p21/waf1 in Fgf2?/? osteoblasts. PTH increased Bcl‐2/Bax protein ratio in Fgf2+/+ but not Fgf2?/? osteoblasts. In addition PTH increased cell viability in Fgf2+/+ but not Fgf2?/? osteoblasts. These data suggest that endogenous FGF‐2 is important in PTH effects on osteoblast proliferation, differentiation, and apoptosis. Reduced expression of these factors may contribute to the reduced anabolic response to PTH in the Fgf2?/? mice. Our results strongly indicate that the anabolic PTH effect is dependent in part on FGF‐2 expression. J. Cell. Physiol. 219: 143–151, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
We previously reported that deletion of the Fgf2 gene (Fgf2-/-) resulted in decreased bone mass in adult mice. This study examines the effect of haplo-insuffiency (Fgf2+/-) on bone loss in vertebrae from these mutant mice. Fgf2+/+ mice attained peak bone mass at 8-9 months of age. In contrast BMD was significantly reduced in vertebrae from adult (8-9) Fgf2+/- mice. Exogenous FGF-2 rescued reduced bone nodule formation in Fgf2+/- and Fgf2-/- cultures. Runx2 mRNA was reduced in cultures from Fgf2+/- and Fgf2-/- mice. FGF receptor2 mRNA and protein were markedly reduced in Fgf2+/- and Fgf2-/- mice. Decreased bone formation in Fgf2 mutant mice may correlate with impaired FGFR signaling, decreased Runx2 gene expression.  相似文献   

5.
6.
Secreted frizzled-related protein (sFRP)-1 is a Wnt antagonist that when deleted in mice leads to increased trabecular bone formation in adult animals after 13 weeks of age. Treatment of mice with parathyroid hormone (PTH) also increases trabecular bone formation, and some of the anabolic actions of this hormone may result from altered expression of Wnt pathway components. To test this hypothesis, we treated +/+ and -/- female sFRP-1 mice with PTH 1-34 for 30 days and measured distal femur trabecular bone parameters by peripheral quantitative computed tomography (pQCT) and high-resolution micro-computed tomography. During the course of the 32-week study, volumetric bone mineral density (vBMD) declined 41% in vehicle-treated +/+ mice, but increased 24% in vehicle-treated -/- animals. At 8 weeks of age when vBMD was not altered by deletion of sFRP-1, treatment of +/+ and -/- mice with PTH increased vBMD by 147 and 163%, respectively. In contrast, at 24 weeks of age when vBMD was 75% higher in -/- mice than in +/+ controls, treatment with PTH increased vBMD 164% in +/+ animals, but only 58% in -/- mice. Furthermore, at 36 weeks of age when vBMD was 117% higher in -/- mice than in +/+ controls, treatment with PTH increased vBMD 74% in +/+ animals, while no increase was observed in -/- mice. At each of these time points, PTH treatment increased vBMD to a similar level in +/+ and -/- mice, and this level declined with age. In addition, at 36 weeks of age, the vBMD level reached by PTH treatment of +/+ mice was the same as that achieved solely by deletion of sFRP-1. These results indicate that loss of sFRP-1 and PTH treatment increase vBMD to a similar extent. Moreover, as the effects of sFRP-1 deletion on vBMD increase, the ability of PTH to enhance vBMD declines suggesting that there are overlapping mechanisms of action.  相似文献   

7.
We previously reported that the ability of continuously elevated PTH to stimulate osteoblastic differentiation in bone marrow stromal cell cultures was abrogated by an osteoclastic factor secreted in response to cyclooxygenase-2 (Cox2)-produced prostaglandin E2. We now examine the impact of Cox2 (Ptgs2) knockout (KO) on the anabolic response to continuously elevated PTH in vivo. PTH (40 μg/kg/d) or vehicle was infused for 12 or 21 days in 3-mo-old male wild type (WT) and KO mice in the outbred CD-1 background. Changes in bone phenotype were assessed by bone mineral density (BMD), μCT and histomorphometry. PTH infusion for both 12 and 21 days increased femoral BMD in Cox2 KO mice and decreased BMD in WT mice. Femoral and vertebral trabecular bone volume fractions were increased in KO mice, but not in WT mice, by PTH infusion. In the femoral diaphysis, PTH infusion increased cortical area in Cox2 KO, but not WT, femurs. PTH infusion markedly increased trabecular bone formation rate in the femur, serum markers of bone formation, and expression of bone formation-related genes, growth factors, and Wnt target genes in KO mice relative to WT mice, and decreased gene expression of Wnt antagonists only in KO mice. In contrast to the differential effects of PTH on anabolic factors in WT and KO mice, PTH infusion increased serum markers of resorption, expression of resorption-related genes, and the percent bone surface covered by osteoclasts similarly in both WT and KO mice. We conclude that Cox2 inhibits the anabolic, but not the catabolic, effects of continuous PTH. These data suggest that the bone loss with continuously infused PTH in mice is due largely to suppression of bone formation and that this suppression is mediated by Cox2.  相似文献   

8.
Maintenance of normal mineral ion homeostasis is crucial for many biological activities, including proper mineralization of the skeleton. Parathyroid hormone (PTH), Klotho, and FGF23 have been shown to act as key regulators of serum calcium and phosphate homeostasis through a complex feedback mechanism. The phenotypes of Fgf23(-/-) and Klotho(-/-) (Kl(-/-)) mice are very similar and include hypercalcemia, hyperphosphatemia, hypervitaminosis D, suppressed PTH levels, and severe osteomalacia/osteoidosis. We recently reported that complete ablation of PTH from Fgf23(-/-) mice ameliorated the phenotype in Fgf23(-/-)/PTH(-/-) mice by suppressing serum vitamin D and calcium levels. The severe osteomalacia in Fgf23(-/-) mice, however, persisted, suggesting that a different mechanism is responsible for this mineralization defect. In the current study, we demonstrate that deletion of PTH from Kl(-/-) (Kl(-/-)/PTH(-/-) or DKO) mice corrects the abnormal skeletal phenotype. Bone turnover markers are restored to wild-type levels; and, more importantly, the skeletal mineralization defect is completely rescued in Kl(-/-)/PTH(-/-) mice. Interestingly, the correction of the osteomalacia is accompanied by a reduction in the high levels of osteopontin (Opn) in bone and serum. Such a reduction in Opn levels could not be observed in Fgf23(-/-)/PTH(-/-) mice, and these mice showed sustained osteomalacia. This significant in vivo finding is corroborated by in vitro studies using calvarial osteoblast cultures that show normalized Opn expression and rescued mineralization in Kl(-/-)/PTH(-/-) mice. Moreover, continuous PTH infusion of Kl(-/-) mice significantly increased Opn levels and osteoid volume, and decreased trabecular bone volume. In summary, our results demonstrate for the first time that PTH directly impacts the mineralization disorders and skeletal deformities of Kl(-/-), but not of Fgf23(-/-) mice, possibly by regulating Opn expression. These are significant new perceptions into the role of PTH in skeletal and disease processes and suggest FGF23-independent interactions of PTH with Klotho.  相似文献   

9.
The cell surface receptor, low-density lipoprotein receptor-related protein 5 (LRP5) is a key regulator of bone mass. Loss-of-function mutations in LRP5 cause the human skeletal disease osteoporosis-pseudoglioma syndrome, an autosomal recessive disorder characterized by severely reduced bone mass and strength. We investigated the role of LRP5 on bone strength using mice engineered with a loss-of-function mutation in the gene. We then tested whether the osteogenic response to mechanical loading was affected by the loss of Lrp5 signaling. Lrp5-null (Lrp5-/-) mice exhibited significantly lower bone mineral density and decreased strength. The osteogenic response to mechanical loading of the ulna was reduced by 88 to 99% in Lrp5-/- mice, yet osteoblast recruitment and/or activation at mechanically strained surfaces was normal. Subsequent experiments demonstrated an inability of Lrp5-/- osteoblasts to synthesize the bone matrix protein osteopontin after a mechanical stimulus. We then tested whether Lrp5-/- mice increased bone formation in response to intermittent parathyroid hormone (PTH), a known anabolic treatment. A 4-week course of intermittent PTH (40 microg/kg/day; 5 days/week) enhanced skeletal mass equally in Lrp5-/- and Lrp5+/+ mice, suggesting that the anabolic effects of PTH do not require Lrp5 signaling. We conclude that Lrp5 is critical for mechanotransduction in osteoblasts. Lrp5 is a mediator of mature osteoblast function following loading. Our data suggest an important component of the skeletal fragility phenotype in individuals affected with osteoporosis-pseudoglioma is inadequate processing of signals derived from mechanical stimulation and that PTH might be an effective treatment for improving bone mass in these patients.  相似文献   

10.
11.
We previously reported that targeted overexpression of the fibroblast growth factor 2 (FGF2) high molecular weight (HMW) isoforms in osteoblastic lineage cells in mice resulted in phenotypic changes, including dwarfism, rickets, osteomalacia, hypophosphatemia, increased serum parathyroid hormone, and increased levels of the phosphatonin FGF23 in serum and bone. This study examined the effects of genetically knocking out the FGF2HMW isoforms (HMWKO) on bone and phosphate homeostasis. HMWKO mice were not dwarfed and had significantly increased bone mineral density and bone mineral content in femurs and lumbar vertebrae when compared with the wild-type (WT) littermates. Micro-computed tomography analysis of femurs revealed increased trabecular bone volume, thickness, number, and connective tissue density with decreased trabecular spacing compared with WT. In addition, there was significantly decreased cortical porosity and increased cortical thickness and sub-periosteal area in femurs of HMWKO. Histomorphometric analysis demonstrated increased osteoblast activity and diminished osteoclast activity in the HMWKO. In vitro bone marrow stromal cell cultures showed there was a significant increase in alkaline phosphatase-positive colony number at 1 week in HMWKO. At 3 weeks of culture, the mineralized area was also significantly increased. There was increased expression of osteoblast differentiation marker genes and reduced expression of genes associated with impaired mineralization, including a significant reduction in Fgf23 and Sost mRNA. Normal serum phosphate and parathyroid hormone were observed in HMWKO mice. This study demonstrates a significant negative impact of HMWFGF2 on biological functions in bone and phosphate homeostasis in mice.  相似文献   

12.
Prostaglandin E2 (PGE2) can stimulate bone resorption by a cyclic AMP-dependent pathway. Two PGE2 receptors, EP2 and EP4 have been shown to play a role in PGE2 stimulation of osteoclast formation. In primary osteoblastic cell cultures from EP2 wild type (EP2 +/+) mice, PGE2 (0.1 microM) increased cyclic AMP production 3.5-fold, but PGE2 had no effect on cells from mice in which the EP2 receptor had been deleted (EP2 -/-). To examine the role of the EP2 receptor in the resorption response in vivo we injected PGE2 in EP2 -/- mice, and compared them with EP2 +/+ mice. Injection of PGE2 (3 mg/kg, four times daily for three days) in 9- to 12-month-old male mice on a 129 SvEv background increased serum calcium from 9.8 +/- 0.5 to 10.7 +/- 0.3 mg/dl (P < 0.01) in EP2 +/+ mice but not in EP2 -/- mice (10.1 +/- 0.3 vs. 10.2 +/- 0.3 mg/dl). PGE2 injection (6 mg/kg twice a day for three days) in 3-4 month old male mice on a C57 BL/6 X 129 SvEv background increased calcium from 8.2 +/- 0.1 to 9.0 +/- 0.3 mg/dl (P < 0.05) in EP2 +/+ mice but had no effect in EP2-/- mice (8.4 +/- 0.1 vs. 8.3 +/- 0.2 mg/dl). Injection of PGE2 over the calvariae of EP2 +/+ and EP2-/- mice increased the expression of receptor activator of nuclear factor kappaB ligand (RANKL) both locally and in the tibia, but RANKL responses were lower in EP2 -/- mice. We conclude that EP2 receptor plays a role in the hypercalcemic response to PGE2. This impaired response in EP2 -/- mice may be due to decreased ability to stimulate cyclic AMP and in part, to a smaller increase in the expression of RANKL mRNA.  相似文献   

13.
Autosomal recessive hypophosphatemic rickets (ARHR), which is characterized by renal phosphate wasting, aberrant regulation of 1alpha-hydroxylase activity, and rickets/osteomalacia, is caused by inactivating mutations of dentin matrix protein 1 (DMP1). ARHR resembles autosomal dominant hypophosphatemic rickets (ADHR) and X-linked hypophosphatemia (XLH), hereditary disorders respectively caused by cleavage-resistant mutations of the phosphaturic factor FGF23 and inactivating mutations of PHEX that lead to increased production of FGF23 by osteocytes in bone. Circulating levels of FGF23 are increased in ARHR and its Dmp1-null mouse homologue. To determine the causal role of FGF23 in ARHR, we transferred Fgf23 deficient/enhanced green fluorescent protein (eGFP) reporter mice onto Dmp1-null mice to create mice lacking both Fgf23 and Dmp1. Dmp1(-/-) mice displayed decreased serum phosphate concentrations, inappropriately normal 1,25(OH)(2)D levels, severe rickets, and a diffuse form of osteomalacia in association with elevated Fgf23 serum levels and expression in osteocytes. In contrast, Fgf23(-/-) mice had undetectable serum Fgf23 and elevated serum phosphate and 1,25(OH)(2)D levels along with severe growth retardation and focal form of osteomalacia. In combined Dmp1(-/-)/Fgf23(-/-), circulating Fgf23 levels were also undetectable, and the serum levels of phosphate and 1,25(OH)(2)D levels were identical to Fgf23(-/-) mice. Rickets and diffuse osteomalacia in Dmp1-null mice were transformed to severe growth retardation and focal osteomalacia characteristic of Fgf23-null mice. These data suggest that the regulation of extracellular matrix mineralization by DMP1 is coupled to renal phosphate handling and vitamin D metabolism through a DMP1-dependent regulation of FGF23 production by osteocytes.  相似文献   

14.
15.
Type 1 diabetic osteoporosis results from impaired osteoblast activity and death. Therefore, anti-resorptive treatments may not effectively treat bone loss in this patient population. Intermittent parathyroid hormone (PTH) treatment stimulates bone remodeling and increases bone density in healthy subjects. However, PTH effects may be limited in patients with diseases that interfere with its signaling. Here, we examined the ability of 8 and 40 μg/kg intermittent PTH to counteract diabetic bone loss. PTH treatment reduced fat pad mass and blood glucose levels in non-diabetic PTH-treated mice, consistent with PTH-affecting glucose homeostasis. However, PTH treatment did not significantly affect general body parameters, including the blood glucose levels, of type 1 diabetic mice. We found that the high dose of PTH significantly increased tibial trabecular bone density parameters in control and diabetic mice, and the lower dose elevated trabecular bone parameters in diabetic mice. The increased bone density was due to increased mineral apposition and osteoblast surface, all of which are defective in type 1 diabetes. PTH treatment suppressed osteoblast apoptosis in diabetic bone, which could further contribute to the bone-enhancing effects. In addition, PTH treatment (40 μg/kg) reversed preexisting bone loss from diabetes. We conclude that intermittent PTH may increase type 1 diabetic trabecular bone volume through its anabolic effects on osteoblasts.  相似文献   

16.
Based on remarkable success of PTH as an anabolic drug for osteoporosis, case reports of off-label use of teriparatide (1-34 PTH) in patients with complicated fractures and non-unions are emerging. We investigated the mechanisms underlying PTH accelerated fracture repair. Bone marrow cells from 7 days 40 microg/kg of teriparatide treated or saline control mice were cultured and Osx and osteoblast phenotypic gene expression assessed by real-time RT-PCR in these cells. Fractured animals injected daily with either saline or 40 microg/kg of teriparatide for up to 21 days were X-rayed and histological assessment performed, as well as immunohistochemical analyses of the Osx expression in the fracture callus. Osx, Runx2 and osteoblast or chondrocyte phenotypic gene expression was also assessed in fracture calluses. Our data shows that Osx and Runx2 are up-regulated in marrow-derived MSCs isolated from mice systemically treated with teriparatide. Furthermore, these MSCs undergo accelerated osteoblast maturation compared to saline injected controls. Systemic teriparatide treatments also accelerated fracture healing in these mice concomitantly with increased Osx expression in the PTH treated fracture calluses compared to controls. Collectively, these data suggest a mechanism for teriparatide mediated fracture healing possibly via Osx induction in MSCs.  相似文献   

17.
Epidemiological studies suggest a protective influence of obesity against postmenopausal bone loss. Lower risk of osteoporotic fractures was described in obese patients. However there were only a few studies which examined the effect of weight reduction on bone metabolism and results of these studies are controversial. The aim of the study was to evaluate the influence of weight reduction program using Orlistat on bone metabolism in perimenopausal women. Twenty obese women with simple obesity and without concomitant diseases (BMI 37.1 +/- 3.0 kg/m2, mean age 49.8 +/- 4.6 yrs) were enrolled into this study. The control group consisted of 20 healthy women (mean age 53.5 +/- 5.4 yrs, BMI 24.1 +/- 2.2 kg/m2). All patients have participated in a 3-month weight reduction therapy that consisted of: a 1000-1200 kcal/ day balanced diet (daily calcium consumption about 500mg), Orlistat 3 x 120mg a day and regular physical exercises. Before the weight reduction therapy and after 10% reduction of body weight, serum concentrations of PTH, 25-(OH)-D3, total calcium and phosphorus, total cholesterol were assessed. Dual energy x-ray absorptiometry (DEXA method) of lumbar spine and femoral neck, measuring BMD was performed once, after a 3-month weight reduction therapy using Lunar DPXL. All these measurements were performed only once in control subjects. After a 3-month weight reduction program in patients treated with Orlistat the mean weight loss was 11.6 +/- 5.1 kg which is 12.1 +/- 4.78 %. BMI decreased from 37.1 +/- 3.0 kg/m2 at baseline to 32.6 +/- 2.7 kg/m2 post-treatment. The body weight reduction resulted in significant decrease of body fat and total cholesterol concentration. In obese subjects serum concentration of 25-(OH)-D3 was significantly lower and serum concentration of PTH was significantly higher in comparison to healthy controls, both before and after weight reduction therapy. Serum concentration of PTH, 25-(OH)-D3, total calcium and phosphorus did not change significantly after therapy with Orlistat. Conclusion: 3-month weight reduction program using Orlistat did not influence significantly bone metabolism.  相似文献   

18.
19.
The interactions between mouse angora-Y (Fgf5go-Y) and hairless (hr) genes have been studied. Homozygous mutant gene Fgf5go-Y increases hair length starting on day 14 after birth. We obtained mice with genotypes +/+ hr/hr F2, +/Fgf5go-Y hr/hr and Fgf5go-Y/Fgf5go-Y hr/hr. Both +/Fgf5go-Y hr/hr and +/+ hr/hr mice began to loose hair from their heads on day 14. This further extended on the whole body. On day 21 the mice were completely deprived of hair. Therefore a single dose of gene Fgf5go-Y does not affect alopecia mice homozygous for hr. However in double homozygotes Fgf5go-Y/Fgf5gO-hr/hr alopecia started 4 days later, namely on day 18. It usually finished 10-12 days after detection of first bald patches. On days 28-30 double homozygotes have lost all the hair. Hair loss in double homozygous mice was 1,5-fold slower than in +/+ hr/hr mice. This resulted from a significant extension of anagen phase induced by a mutant homozygous gene Fgf5go-Y in morphogenesis of the hair follicle. In contrast, hr gene was expressed only at the transmission phase from anagen to catagen. Our data shows that the angora gene is a modifier of the hairless gene and this results in a strong repression of alopecia progression in double homozygous mice compared to +/+ hr/hr animals.  相似文献   

20.
Receptor activator of nuclear factor-κB ligand (RANKL) is a pivotal osteoclast differentiation factor. To investigate the effect of RANKL inhibition in normal mice, we prepared an anti-mouse RANKL-neutralizing monoclonal antibody (Mab, clone OYC1) and established a new mouse model with high bone mass induced by administration of OYC1. A single subcutaneous injection of 5 mg/kg OYC1 in normal mice significantly augmented the bone mineral density in the distal femoral metaphysis from day 2 to day 28. The OYC1 treatment markedly reduced the serum level of tartrate-resistant acid phosphatase-5b (TRAP-5b, a marker for osteoclasts) on day 1, and this level was undetectable from day 3 to day 28. The serum level of alkaline phosphatase (a marker for osteoblasts) declined significantly following the reduction of TRAP-5b. Histological analysis revealed few osteoclasts in femurs of the treated mice on day 4, and both osteoclasts and osteoblasts were markedly diminished on day 14. Daily injection of parathyroid hormone for 2 weeks increased the bone mineral density in trabecular and cortical bone by stimulating bone formation in the OYC1-treated mice. These results suggest that parathyroid hormone exerted its bone anabolic activity in mice with few osteoclasts. The mouse anti-RANKL neutralizing antibody OYC1 may be a useful tool to investigate unknown functions of RANKL in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号