首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Thirteen near-isogenic lines (NILs) of japonica rice were developed via a backcross method using the recurrent parent Chucheong, which is of good eating quality but is susceptible to Magnaporthe grisea, and three blast resistant japonica donors, Seolak, Daeseong and Bongkwang. The agro-morphological traits of these NILs, such as heading date, culm length, and panicle length, were similar to those of Chucheong. In a genome-wide scan using 158 SSR markers, chromosome segments of Chucheong were identified in most polymorphic regions of the 13 NIL plants, and only a few chromosome segments were found to have been substituted by donor alleles. The genetic similarities of the 13 NILs to the recurrent parent Chucheong averaged 0.961, with a range of 0.932-0.984. Analysis of 13 major blast resistance (R) genes in these lines using specific DNA markers showed that each NIL appeared to contain some combination of the four R genes, Pib, Pii, Pik-m and Pita-2, with the first three genes being present in each line. Screening of nine M. grisea isolates revealed that one NIL M7 was resistant to all nine isolates; the remaining NILs were each resistant to between three and seven isolates, except for NIL M106, which was resistant to only two isolates. In a blast nursery experiment, all the NILs proved to be more resistant than Chucheong. These newly developed NILs have potential as commercial rice varieties because of their increased resistance to M. grisea combined with the desirable agronomic traits of Chucheong. They also provide material for studying the genetic basis of blast resistance.  相似文献   

3.
Kim KH  Kang YJ  Kim DH  Yoon MY  Moon JK  Kim MY  Van K  Lee SH 《DNA research》2011,18(6):483-497
Bacterial leaf pustule (BLP) disease is caused by Xanthomonas axonopodis pv. glycines (Xag). To investigate the plant basal defence mechanisms induced in response to Xag, differential gene expression in near-isogenic lines (NILs) of BLP-susceptible and BLP-resistant soybean was analysed by RNA-Seq. Of a total of 46 367 genes that were mapped to soybean genome reference sequences, 1978 and 783 genes were found to be up- and down-regulated, respectively, in the BLP-resistant NIL relative to the BLP-susceptible NIL at 0, 6, and 12h after inoculation (hai). Clustering analysis revealed that these genes could be grouped into 10 clusters with different expression patterns. Functional annotation based on gene ontology (GO) categories was carried out. Among the putative soybean defence response genes identified (GO:0006952), 134 exhibited significant differences in expression between the BLP-resistant and -susceptible NILs. In particular, pathogen-associated molecular pattern (PAMP) and damage-associated molecular pattern (DAMP) receptors and the genes induced by these receptors were highly expressed at 0 hai in the BLP-resistant NIL. Additionally, pathogenesis-related (PR)-1 and -14 were highly expressed at 0 hai, and PR-3, -6, and -12 were highly expressed at 12 hai. There were also significant differences in the expression of the core JA-signalling components MYC2 and JASMONATE ZIM-motif. These results indicate that powerful basal defence mechanisms involved in the recognition of PAMPs or DAMPs and a high level of accumulation of defence-related gene products may contribute to BLP resistance in soybean.  相似文献   

4.
We analysed pathogenesis-related expression of genes, that are assumed to be involved in ubiquitous plant defence mechanisms like the oxidative burst, the hypersensitive cell death reaction (HR) and formation of localized cell wall appositions (papillae). We carried out comparative northern blot and RT-PCR studies with near-isogenic barley (Hordeum vulgareL. cv. Pallas) lines (NILs) resistant or susceptible to the powdery mildew fungus race A6 (Blumeria graminis f.sp. hordei, BghA6). The NILs carrying one of the R-genes Mla12, Mlg or the mlo mutant allele mlo5 arrest fungal development by cell wall appositions (mlo5) or a HR (Mla12) or both (Mlg). Expression of an aspartate protease gene, an ascorbate peroxidase gene and a newly identified cysteine protease gene was up-regulated after inoculation with BghA6, whereas the constitutive expression-level of a BAS gene, that encodes an alkyl hydroperoxide reductase, was reduced. Expression of a newly identified barley homologue of a mammalian cell death regulator, Bax inhibitor 1, was enhanced after powdery mildew inoculation. An oxalate oxidase-like protein was stronger expressed in NILS expressing penetration resistance. A so far unknown gene that putatively encodes the large subunit of a superoxide generating NADPH oxidases was constitutively expressed in barley leaves and its expression pattern did not change after inoculation. A newly identified barley Rac1 homologue was expressed constitutively, such as the functionally linked NADPH oxidase gene. Gene expression patterns are discussed with regard to defence mechanisms and signal transduction.  相似文献   

5.
The movement of barley yellow dwarf luteovirus (BYDV) was evaluated in susceptible and resistant barley and bread wheat genotypes. After leaf inoculation, the virus infected the root system and the growing point of susceptible earlier than resistant, barley genotypes. No difference in virus movement occurred in resistant and susceptible wheat genotypes. It was possible to reliably differentiate susceptible from resistant genotypes when root extracts of 41 barley genotypes were tested by DAS-ELISA 3 or 4 days after inoculation at the oneleaf stage. When barley plants inoculated at the two- or three-leaf stage were assayed by tissue-blot ELISA on nitrocellulose membrane, virus was detected in the phloem vessels of the growing points of the susceptible, but not of the resistant genotype, 4–6 days after inoculation. Our results thus suggest that screening for BYDV resistance in barley could be done quickly and cheaply especially when assays are made by the tissue-blot test.  相似文献   

6.
7.
8.
9.
10.
An in vitro technique was used to determine the reaction of 10 barley genotypes to Pyrenophora graminea, the seed‐borne pathogen causing barley leaf stripe disease. Determination was based on the percentage of inoculated seeds that produced fungal hyphae when cultured on potato dextrose agar. The technique allows low, intermediate and absolute levels of resistance to leaf stripe to be determined. Genotypes CI‐5791 and Banteng were resistant, Thibaut, Igri and PK (30‐531) were moderately resistant, Gollf was moderately susceptible, and WI2291, Arabi Abiad, Furat 1 and Arrivate were susceptible. The in vitro and in field assessments were significant (correlation coefficient r=0.96), results indicating that repeated measurements for infected seeds by this in vitro method were very similar to those of field assessments.  相似文献   

11.
Distinct biphasic mRNA changes in response to Asian soybean rust infection   总被引:4,自引:0,他引:4  
Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is now established in all major soybean-producing countries. Currently, there is little information about the molecular basis of ASR-soybean interactions, which will be needed to assist future efforts to develop effective resistance. Toward this end, abundance changes of soybean mRNAs were measured over a 7-day ASR infection time course in mock-inoculated and infected leaves of a soybean accession (PI230970) carrying the Rpp2 resistance gene and a susceptible genotype (Embrapa-48). The expression profiles of differentially expressed genes (ASR-infected compared with the mock-inoculated control) revealed a biphasic response to ASR in each genotype. Within the first 12 h after inoculation (hai), which corresponds to fungal germination and penetration of the epidermal cells, differential gene expression changes were evident in both genotypes. mRNA expression of these genes mostly returned to levels found in mock-inoculated plants by 24 hai. In the susceptible genotype, gene expression remained unaffected by rust infection until 96 hai, a time period when rapid fungal growth began. In contrast, gene expression in the resistant genotype diverged from the mock-inoculated control earlier, at 72 h, demonstrating that Rpp2-mediated defenses were initiated prior to this time. These data suggest that ASR initially induces a nonspecific response that is transient or is suppressed when early steps in colonization are completed in both soybean genotypes. The race-specific resistance phenotype of Rpp2 is manifested in massive gene expression changes after the initial response prior to the onset of rapid fungal growth that occurs in the susceptible genotype.  相似文献   

12.
13.
Late leaf spot is a serious disease of peanut caused by the imperfect fungus, Phaeoisariopsis personata. Wild diploid species, Arachis diogoi. is reported to be highly resistant to this disease and asymptomatic. The objective of this study is to investigate the molecular responses of the wild peanut challenged with the late leaf spot pathogen using cDNA-AFLP and 2D proteomic study. A total of 233 reliable, differentially expressed genes were identified in Arachis diogoi. About one third of the TDFs exhibit no significant similarity with the known sequences in the data bases. Expressed sequence tag data showed that the characterized genes are involved in conferring resistance in the wild peanut to the pathogen challenge. Several genes for proteins involved in cell wall strengthening, hypersensitive cell death and resistance related proteins have been identified. Genes identified for other proteins appear to function in metabolism, signal transduction and defence. Nineteen TDFs based on the homology analysis of genes associated with defence, signal transduction and metabolism were further validated by quantitative real time PCR (qRT-PCR) analyses in resistant wild species in comparison with a susceptible peanut genotype in time course experiments. The proteins corresponding to six TDFs were differentially expressed at protein level also. Differentially expressed TDFs and proteins in wild peanut indicate its defence mechanism upon pathogen challenge and provide initial breakthrough of genes possibly involved in recognition events and early signalling responses to combat the pathogen through subsequent development of resistivity. This is the first attempt to elucidate the molecular basis of the response of the resistant genotype to the late leaf spot pathogen, and its defence mechanism.  相似文献   

14.
AGO蛋白是RNA诱导沉默复合体的核心分子,在植物的生长、发育及胁迫响应中起重要作用.为探索青稞AGO基因在青稞抗条纹病病原菌过程中的作用机制,该研究以抗条纹病青稞品种‘昆仑14号’和感病品种‘Z1141’为材料,利用条纹病原菌侵染两品种,从感病前后的转录组测序结果中获得一个差异表达基因,克隆验证了该基因为HvtAGO...  相似文献   

15.
Increasing evidence shows that sugars can act as signals affecting plant metabolism and development. Some of the effects of sugars on plant growth and development suggest an interaction of sugar signals with hormonal regulation. We investigated the effects of sugars on the induction of [alpha]-amylase by gibberellic acid in barley embryos and aleurone layers. Our results show that sugar and hormonal signaling interact in the regulation of gibberellic acid-induced gene expression in barley grains. The induction of [alpha]-amylase by gibberellic acid in the aleurone layer is unaffected by the presence of sugars, but repression by carbohydrates is effective in the embryo. [alpha]-Amylase expression in the embryo is localized to the scutellar epithelium and is hormone and sugar modulated. The effects of glucose are independent from the effects of sugars on gibberellin biosynthesis. They are not due to an osmotic effect, they are independent of abscisic acid, and only hexokinase-phosphorylatable glucose analogs are able to trigger gene repression. Overall, the results suggest the existence of an interaction between the hormonal and metabolic regulation of [alpha]-amylase genes in barley grains.  相似文献   

16.

Background

Leaf stripe disease on barley (Hordeum vulgare) is caused by the seed-transmitted hemi-biotrophic fungus Pyrenophora graminea. Race-specific resistance to leaf stripe is controlled by two known Rdg (Resistance to Drechslera graminea) genes: the H. spontaneum-derived Rdg1a and Rdg2a, identified in H. vulgare. The aim of the present work was to isolate the Rdg2a leaf stripe resistance gene, to characterize the Rdg2a locus organization and evolution and to elucidate the histological bases of Rdg2a-based leaf stripe resistance.

Principal Findings

We describe here the positional cloning and functional characterization of the leaf stripe resistance gene Rdg2a. At the Rdg2a locus, three sequence-related coiled-coil, nucleotide-binding site, and leucine-rich repeat (CC-NB-LRR) encoding genes were identified. Sequence comparisons suggested that paralogs of this resistance locus evolved through recent gene duplication, and were subjected to frequent sequence exchange. Transformation of the leaf stripe susceptible cv. Golden Promise with two Rdg2a-candidates under the control of their native 5′ regulatory sequences identified a member of the CC-NB-LRR gene family that conferred resistance against the Dg2 leaf stripe isolate, against which the Rdg2a-gene is effective. Histological analysis demonstrated that Rdg2a-mediated leaf stripe resistance involves autofluorescing cells and prevents pathogen colonization in the embryos without any detectable hypersensitive cell death response, supporting a cell wall reinforcement-based resistance mechanism.

Conclusions

This work reports about the cloning of a resistance gene effective against a seed borne disease. We observed that Rdg2a was subjected to diversifying selection which is consistent with a model in which the R gene co-evolves with a pathogen effector(s) gene. We propose that inducible responses giving rise to physical and chemical barriers to infection in the cell walls and intercellular spaces of the barley embryo tissues represent mechanisms by which the CC-NB-LRR-encoding Rdg2a gene mediates resistance to leaf stripe in the absence of hypersensitive cell death.  相似文献   

17.
18.
An F4-derived F6 recombinant inbred line population (n = 148) of a cross between the durable stripe (yellow) rust (caused by Puccinia striiformis) and leaf (brown) rust (caused by Puccinia triticina) resistant cultivar, Triticum aestivum 'Cook', and susceptible genotype Avocet-YrA was phenotyped at several locations in Canada and Mexico under artificial epidemics of leaf or stripe rusts and genotyped using amplified fragment length polymorphism (AFLP) and microsatellite markers. Durable adult plant resistance to stripe and leaf rusts in 'Cook' is inherited quantitatively and was based on the additive interaction of linked and (or) pleiotropic slow-rusting genes Lr34 and Yr18 and the temperature-sensitive stripe rust resistance gene, YrCK, with additional genetic factors. Identified QTLs accounted for 18% to 31% of the phenotypic variation in leaf and stripe rust reactions, respectively. In accordance with the high phenotypic associations between leaf and stripe rust resistance, some of the identified QTLs appeared to be linked and (or) pleiotropic for both rusts across tests. Although a QTL was identified on chromosome 7D with significant effects on both rusts at some testing locations, it was not possible to refine the location of Lr34 or Yr18 because of the scarcity of markers in this region. The temperature-sensitive stripe rust resistance response, conditioned by the YrCK gene, significantly contributed to overall resistance to both rusts, indicating that this gene also had pleiotropic effects.  相似文献   

19.
Callus was induced from immature and mature embryos of barley(cv. Haruna Nijo) on Murashige and Skoog medium containing 2mg l-1 2,4-D and 5 mg l-1 picloram, respectively. Paraffin sections(10 µm thick) were prepared for histology during callusinitiation and plant regeneration. Meristems were regeneratedfrom nodular compact callus (NC) derived from scutellar epidermisin immature embryos, whereas they were regenerated from NC derivedfrom epidermal cells of leaf or coleoptile bases in mature embryos.Regardless of the explant source, regeneration was predominantlythrough organogenesis, although regeneration through somaticembryogenesis infrequently occurred. Thus, the callus inducedfrom immature and mature embryos of barley was regarded as 'nodularcompact' rather than 'embryogenic'.Copyright 1995, 1999 AcademicPress Barley, callus, Hordeum vulgare, histology, immature embryo, mature embryo, regeneration  相似文献   

20.
Immature zygotic embryos from spring barley cv. Dissa were used to induce somatic embryogenenesis. Up to 158 germinated somatic embryos could be recovered per plated zygotic embryo. Critical factors for obtaining a high yield of regenerants were the size of the explant, the level of 2,4-D used for callus induction and the careful division of callus at each subculture. Use of microsections of immature embryos as explants revealed a pronounced gradient of callus formation and embryogenic response across the scutellum. Sections from the scutellar tissue at the coleoptilar end of the embryo gave the most callus and were highly embryogenic. The regeneration response of sectioned explants was comparable to that recovered from intact embryos of similar size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号