首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using specific anti-BiP/Kar2 antibody as the probe, we have developed an efficient purification method of BiP/Kar2 protein from the total cell extract of Saccharomyces cerevisiae. Overproduction of BiP/Kar2 protein was achieved by the cloning of the KAR2 gene on multicopy plasmids and the treatment of cells harboring the cloned KAR2 gene with tunicamycin. Freeze-thaw treatment, hydroxyapatite high pressure liquid chromatography, and ATP-agarose column chromatography of crude extract yielded homogeneous BiP/Kar2 protein (including less than 0.2% of degradative derivative) with a 430-fold purification and 28% recovery. Edman degradation of purified BiP/Kar2 suggests that the mature protein corresponds to a processed product with the removal of a 42-amino acid presequence. It is active as a homodimer and exhibits ATPase activity with a specific activity of 2 pmol/min/micrograms of protein. Protease susceptibility indicated that the ADP form of BiP/Kar2 is more resistant than the ATP form to the chymotrypsin digestion and that BiP/Kar2 required the presence of ATP to avoid the irreversible denaturation. Synthesis of BiP/Kar2 was induced by the inducible expression of an aberrant heterologous protein, yeast killer prepro-signal mouse alpha-amylase fusion protein.  相似文献   

2.
3.
Seppä L  Makarow M 《Eukaryotic cell》2005,4(12):2008-2016
We described earlier a novel mode of regulation of Hsp104, a cytosolic chaperone directly involved in the refolding of heat-denatured proteins, and designated it delayed upregulation, or DUR. When Saccharomyces cerevisiae cells grown at the physiological temperature of 24 degrees C, preconditioned at 37 degrees C, and treated briefly at 50 degrees C were shifted back to 24 degrees C, Hsp104 expression was strongly induced after 2.5 h of recovery and returned back to normal after 5 h. Here we show that the endoplasmic reticulum (ER) chaperones BiP/Kar2p and Lhs1p and the mitochondrial chaperone Hsp78 were also upregulated at the physiological temperature during recovery from thermal insult. The heat shock element (HSE) in the KAR2 promoter was found to be sufficient to drive DUR. The unfolded protein element could also evoke DUR, albeit weakly, in the absence of a functional HSE. BiP/Kar2p functions in ER translocation and assists protein folding. Here we found that the synthesis of new BiP/Kar2p molecules was negligible for more than an hour after the shift of the cells from 50 degrees C to 24 degrees C. Concomitantly, ER translocation was blocked, suggesting that preexisting BiP/Kar2p molecules or other necessary proteins were not functioning. Translocation resumed concomitantly with enhanced synthesis of BiP/Kar2p after 3 h of recovery, after which ER exit and protein secretion also resumed. For a unicellular organism like S. cerevisiae, conformational repair of denatured proteins is the sole survival strategy. Chaperones that refold proteins in the cytosol, ER, and mitochondria of S. cerevisiae appear to be subject to DUR to ensure survival after thermal insults.  相似文献   

4.
Bax inhibitor-1 (BI-1) is an anti-apoptotic gene whose expression is upregulated in a wide range of human cancers. Studies in both mammalian and plant cells suggest that the BI-1 protein resides in the endoplasmic reticulum and is involved in the unfolded protein response (UPR) that is triggered by ER stress. It is thought to act via a mechanism involving altered calcium dynamics. In this paper, we provide evidence that the Saccharomyces cerevisiae protein encoded by the open reading frame, YNL305C, is a bona fide homolog for BI-1. First, we confirm that yeast cells from two different strain backgrounds lacking YNL305C, which we have renamed BXI1, are more sensitive to heat-shock induced cell death than wildtype controls even though they have indistinguishable growth rates at 30°C. They are also more susceptible both to ethanol-induced and to glucose-induced programmed cell death. Significantly, we show that Bxi1p-GFP colocalizes with the ER localized protein Sec63p-RFP. We have also discovered that Δbxi1 cells are not only more sensitive to drugs that induce ER stress, but also have a decreased unfolded protein response as measured with a UPRE-lacZ reporter. Finally, we have discovered that deleting BXI1 diminishes the calcium signaling response in response to the accumulation of unfolded proteins in the ER as measured by a calcineurin-dependent CDRE-lacZ reporter. In toto, our data suggests that the Bxi1p, like its metazoan homologs, is an ER-localized protein that links the unfolded protein response and programmed cell death.  相似文献   

5.
Although transiently associated with numerous newly synthesized proteins, BiP has not been shown to be an essential component directly linked to the folding and oligomerization of newly synthesized proteins in the endoplasmic reticulum. To determine whether it is needed as a molecular chaperone, we analyzed the maturation of an endogenous yeast glycoprotein, carboxypeptidase Y (CPY) in several yeast strains with temperature-sensitive mutations in BiP. These kar2 mutant strains have previously been found to be defective in translocation at the nonpermissive temperature (Vogel, J. P., L. M. Misra, and M. D. Rose, 1990. J. Cell Biol, 110:1885-1895). To circumvent the translocation block, we used DTT at permissive temperature to delay folding and intracellular transport. We then followed the maturation of the ER- retained CPY after shifting to the nonpermissive temperature and dilution of the DTT. Without the functional chaperone, CPY aggregated, failed to be oxidized, and remained in the ER. In contrast to wild-type cells, in which BiP binding was transient with no more than 10-15% of labeled CPY associated at any time, 30-100% of the CPY remained associated with BiP in the mutant strains. In a heterozygous diploid strain, CPY matured and exited the ER normally. Taken together, the results provide clear evidence that BiP plays a critical role as a molecular chaperone in CPY folding.  相似文献   

6.
Fiori A  Mason TL  Fox TD 《Eukaryotic cell》2003,2(3):651-653
The 5′-untranslated leaders of mitochondrial mRNAs appear to localize translation within the organelle. VAR1 is the only yeast mitochondrial gene encoding a major soluble protein. A chimeric mRNA bearing the VAR1 untranslated regions and the coding sequence for pre-Cox2p appears to be translated at the inner membrane surface. We propose that translation of the ribosomal protein Var1p is also likely to occur in close proximity to the inner membrane.  相似文献   

7.
The Sigma-1 receptor (S1R) is a transmembrane protein with important roles in cellular homeostasis in normal physiology and in disease. Especially in neurodegenerative diseases, S1R activation has been shown to provide neuroprotection by modulating calcium signaling, mitochondrial function and reducing endoplasmic reticulum (ER) stress. S1R missense mutations are one of the causes of the neurodegenerative Amyotrophic Lateral Sclerosis and distal hereditary motor neuronopathies. Although the S1R has been studied intensively, basic aspects remain controversial, such as S1R topology and whether it reaches the plasma membrane. To address these questions, we have undertaken several approaches. C-terminal tagging with a small biotin-acceptor peptide and BirA biotinylation in cells suggested a type II membrane orientation (cytosolic N-terminus). However, N-terminal tagging gave an equal probability for both possible orientations. This might explain conflicting reports in the literature, as tags may affect the protein topology. Therefore, we studied untagged S1R using a protease protection assay and a glycosylation mapping approach, introducing N-glycosylation sites. Both methods provided unambiguous results showing that the S1R is a type II membrane protein with a short cytosolic N-terminal tail. Assessments of glycan processing, surface fluorescence-activated cell sorting, and cell surface biotinylation indicated ER retention, with insignificant exit to the plasma membrane, in the absence or presence of S1R agonists or of ER stress. These findings may have important implications for S1R-based therapeutic approaches.  相似文献   

8.
Accurate positioning of the mitotic spindle is important for the genetic material to be distributed evenly in dividing cells, but little is known about the mechanisms that regulate this process. Here we report that two microtubule-associated proteins important for spindle positioning interact with several proteins in the sumoylation pathway. By two-hybrid analysis, Kar9p and Bim1p interact with the yeast SUMO Smt3p, the E2 enzyme Ubc9p, an E3 Nfi1p, as well as Wss1p, a weak suppressor of a temperature-sensitive smt3 allele. The physical interaction between Kar9p and Ubc9p was confirmed by in vitro binding assays. A single-amino-acid substitution in Kar9p, L304P disrupted its two-hybrid interaction with proteins in the sumoylation pathway, but retained its interactions with the spindle positioning proteins Bim1p, Stu2p, Bik1p, and Myo2p. The kar9-L304P mutant showed defects in positioning the mitotic spindle, with the spindle located more distally than normal. Whereas wild-type Kar9p-3GFP normally localizes to only the bud-directed spindle pole body (SPB), Kar9p-L304P-3GFP was mislocalized to both SPBs. Using a reconstitution assay, Kar9p was sumoylated in vitro. We propose a model in which sumoylation regulates spindle positioning by restricting Kar9p to one SPB. These findings raise the possibility that sumoylation could regulate other microtubule-dependent processes.  相似文献   

9.
Cells have evolved molecular mechanisms for the efficient transmission of organelles during cell division. Little is known about how peroxisomes are inherited. Inp1p is a peripheral membrane protein of peroxisomes of Saccharomyces cerevisiae that affects both the morphology of peroxisomes and their partitioning during cell division. In vivo 4-dimensional video microscopy showed an inability of mother cells to retain a subset of peroxisomes in dividing cells lacking the INP1 gene, whereas cells overexpressing INP1 exhibited immobilized peroxisomes that failed to be partitioned to the bud. Overproduced Inp1p localized to both peroxisomes and the cell cortex, supporting an interaction of Inp1p with specific structures lining the cell periphery. The levels of Inp1p vary with the cell cycle. Inp1p binds Pex25p, Pex30p, and Vps1p, which have been implicated in controlling peroxisome division. Our findings are consistent with Inp1p acting as a factor that retains peroxisomes in cells and controls peroxisome division. Inp1p is the first peroxisomal protein directly implicated in peroxisome inheritance.  相似文献   

10.
Molecular chaperones prevent aggregation of denatured proteins in vitro and are thought to support folding of diverse proteins in vivo. Chaperones may have some selectivity for their substrate proteins, but knowledge of particular in vivo substrates is still poor. We here show that yeast Rot1, an essential, type-I ER membrane protein functions as a chaperone. Recombinant Rot1 exhibited antiaggregation activity in vitro, which was partly impaired by a temperature-sensitive rot1-2 mutation. In vivo, the rot1-2 mutation caused accelerated degradation of five proteins in the secretory pathway via ER-associated degradation, resulting in a decrease in their cellular levels. Furthermore, we demonstrate a physical and probably transient interaction of Rot1 with four of these proteins. Collectively, these results indicate that Rot1 functions as a chaperone in vivo supporting the folding of those proteins. Their folding also requires BiP, and one of these proteins was simultaneously associated with both Rot1 and BiP, suggesting that they can cooperate to facilitate protein folding. The Rot1-dependent proteins include a soluble, type I and II, and polytopic membrane proteins, and they do not share structural similarities. In addition, their dependency on Rot1 appeared different. We therefore propose that Rot1 is a general chaperone with some substrate specificity.  相似文献   

11.
The role of glucose trimming in the endoplasmic reticulum of Saccharomyces cerevisiae was investigated using glucosidase inhibitors and mutant strains devoid of glucosidases I and II. These glucosidases are responsible for removing glucose residues from the N-linked core oligosaccharides attached to newly synthesized polypeptide chains. In mammalian cells they participate together with calnexin, calreticulin and UDP-glucose:glycoprotein glucosyltransferase in the folding and quality control of newly synthesized glycoproteins. In S.cerevisiae, glucosidase II is encoded by the GLS2 gene, and glucosidase I, as suggested here, by the CWH41 gene. Using castanospermine (an alpha-glucosidase inhibitor) and yeast strains defective in glucosidase I, glucosidase II and BiP/Kar2p, it was demonstrated that cell wall synthesis depends on the two glucosidases and BiP/Kar2p. In double mutants with defects in both BiP/Kar2p and either of the glucosidases the phenotype was particularly clear: synthesis of 1,6-beta-glucan_a cell wall component_was reduced; the cell wall displayed abnormal morphology; the cells aggregated; and their growth was severely inhibited. No defects in protein folding or secretion could be detected. We concluded that glucose trimming in S.cerevisiae is necessary for proper cell wall synthesis, and that the glucosidases function synergistically with BiP/Kar2p in this process.  相似文献   

12.
Eukaryotic cells contain multiple Hsp70 proteins and DnaJ homologues. The partnership between a given Hsp70 and its interacting DnaJ could, in principle, be determined by their cellular colocalization or by specific protein-protein interactions. The yeast SCJ1 gene encodes one of several homologues of the bacterial chaperone DnaJ. We show that Scj1p is located in the lumen of the endoplasmic reticulum (ER), where it can function with Kar2p (the ER-lumenal BiP/Hsp70 of yeast). The region common to all DnaJ homologues (termed the J domain) from Scj1p can be swapped for a similar region in Sec63p, which is known to interact with Kar2p in the ER lumen, to form a functional transmembrane protein component of the secretory machinery. Thus, Kar2p can interact with two different DnaJ proteins. On the other hand, J domains from two other non-ER DnaJs, Sis1p and Mdj1p, do not function when swapped into Sec63p. However, only three amino acid changes in the Sis1p J domain render the Sec63 fusion protein fully functional in the ER lumen. These results indicate that the choice of an Hsp70 partner by a given DnaJ homologue is specified by the J domain.  相似文献   

13.
A Gtr1p GTPase, the GDP mutant of which suppresses both temperature-sensitive mutants of Saccharomyces cerevisiae RanGEF/Prp20p and RanGAP/Rna1p, was presently found to interact with Yrb2p, the S. cerevisiae homologue of mammalian Ran-binding protein 3. Gtr1p bound the Ran-binding domain of Yrb2p. In contrast, Gtr2p, a partner of Gtr1p, did not bind Yrb2p, although it bound Gtr1p. A triple mutant: yrb2delta gtr1delta gtr2delta was lethal, while a double mutant: gtr1delta gtr2delta survived well, indicating that Yrb2p protected cells from the killing effect of gtr1delta gtr2delta. Recombinant Gtr1p and Gtr2p were purified as a complex from Escherichia coli. The resulting Gtr1p-Gtr2p complex was comprised of an equal amount of Gtr1p and Gtr2p, which inhibited the Rna1p/Yrb2 dependent RanGAP activity. Thus, the Gtr1p-Gtr2p cycle was suggested to regulate the Ran cycle through Yrb2p.  相似文献   

14.
Kip1p is a mitotic spindle-associated kinesin-related protein in Saccharomyces cerevisiae that participates in spindle pole separation. Here, we define the domain arrangement and polypeptide composition of the Kip1p holoenzyme. Electron microscopy of rotary shadowed Kip1p molecules revealed two globular domains 14 nm in diameter connected by a 73-nm long stalk. When the Kip1p domain homologous to the kinesin motor domain was decorated with an unrelated protein, the diameter of the globular domains at both ends of the stalk increased, indicating that Kip1p is bipolar. Soluble Kip1p isolated from S. cerevisiae cells was homomeric, based on the similarity of the sedimentation coefficients of native Kip1p from S. cerevisiae and Kip1p which was purified after expression in insect cells. The holoenzyme molecular weight was estimated using the sedimentation coefficient and Stokes radius, and was most consistent with a tetrameric composition. Kip1p exhibited an ionic strength-dependent transition in its sedimentation coefficient, revealing a potential regulatory mechanism. The position of kinesin motor-related domains at each end of the stalk may allow Kip1p to cross-link either parallel or antiparallel microtubules during mitotic spindle assembly and pole separation.  相似文献   

15.
In the yeast Saccharomyces cerevisiae, the endoplasmic reticulum (ER) is found at the periphery of the cell and around the nucleus. The segregation of ER through the mother-bud neck may occur by more than one mechanism because perinuclear, but not peripheral ER, requires microtubules for this event. To identify genes whose products are required for cortical ER inheritance, we have used a Tn3-based transposon library to mutagenize cells expressing a green fluorescent protein-tagged ER marker protein (Hmg1p). This approach has revealed that AUX1/SWA2 plays a role in ER inheritance. The COOH terminus of Aux1p/Swa2p contains a J-domain that is highly related to the J-domain of auxilin, which stimulates the uncoating of clathrin-coated vesicles. Deletion of the J-domain of Aux1p/Swa2p leads to vacuole fragmentation and membrane accumulation but does not affect the migration of peripheral ER into daughter cells. These findings suggest that Aux1p/Swa2p may be a bifunctional protein with roles in membrane traffic and cortical ER inheritance. In support of this hypothesis, we find that Aux1p/Swa2p localizes to ER membranes.  相似文献   

16.
The Ure2 protein of Saccharomyces cerevisiae can become a prion (infectious protein). At very low frequencies Ure2p forms an insoluble, infectious amyloid known as [URE3], which is efficiently transmitted to progeny cells or mating partners that consequently lose the normal Ure2p nitrogen regulatory function. The [URE3] prion causes yeast cells to grow slowly, has never been identified in the wild, and confers no obvious phenotypic advantage. An N-terminal asparagine-rich domain determines Ure2p prion-forming ability. Since ure2Delta strains are complemented by plasmids that overexpress truncated forms of Ure2p lacking the prion domain, the existence of the [URE3] prion and the evolutionary conservation of an N-terminal extension have remained mysteries. We find that Ure2p function is actually compromised in vivo by truncation of the prion domain. Moreover, Ure2p stability is diminished without the full-length prion domain. Mca1p, like Ure2p, has an N-terminal Q/N-rich domain whose deletion reduces its steady-state levels. Finally, we demonstrate that the prion domain may affect the interaction of Ure2p with other components of the nitrogen regulation system, specifically the negative regulator of nitrogen catabolic genes, Gzf3p.  相似文献   

17.
Chen XJ 《Genetics》2004,167(2):607-617
Adenine nucleotide translocase (Ant) catalyzes ADP/ATP exchange between the cytosol and the mitochondrial matrix. It is also proposed to form or regulate the mitochondrial permeability transition pore, a megachannel of high conductancy on the mitochondrial membranes. Eukaryotic genomes generally contain multiple isoforms of Ant. In this study, it is shown that the Ant isoforms are functionally differentiated in Saccharomyces cerevisiae. Although the three yeast Ant proteins can equally support respiration (the R function), Aac2p and Aac3p, but not Aac1p, have an additional physiological function essential for cell viability (the V function). The loss of V function in aac2 mutants leads to a lethal phenotype under both aerobic and anaerobic conditions. The lethality is suppressed by a strain-polymorphic locus, named SAL1 (for Suppressor of aac2 lethality). SAL1 was identified to encode an evolutionarily conserved protein of the mitochondrial carrier family. Notably, the Sal1 protein was shown to bind calcium through two EF-hand motifs located on its amino terminus. Calcium binding is essential for the suppressor activity. Finally, Sal1p is not required for oxidative phosphorylation and its overexpression does not complement the R(-) phenotype of aac2 mutants. On the basis of these observations, it is proposed that Aac2p and Sal1p may define two parallel pathways that transport a nucleotide substrate in an operational mode distinct from ADP/ATP exchange.  相似文献   

18.
In Saccharomyces cerevisiae, endocytic material is transported through different membrane-bound compartments before it reaches the vacuole. In a screen for mutants that affect membrane trafficking along the endocytic pathway, we have identified a novel mutant disrupted for the gene YJL204c that we have renamed RCY1 (recycling 1). Deletion of RCY1 leads to an early block in the endocytic pathway before the intersection with the vacuolar protein sorting pathway. Mutation of RCY1 leads to the accumulation of an enlarged compartment that contains the t-SNARE Tlg1p and lies close to areas of cell expansion. In addition, endocytic markers such as Ste2p and the fluorescent dyes, Lucifer yellow and FM4-64, were found in a similar enlarged compartment after their internalization. To determine whether rcy1Delta is defective for recycling, we have developed an assay that measures the recycling of previously internalized FM4-64. This method enables us to follow the recycling pathway in yeast in real time. Using this assay, it could be demonstrated that recycling of membranes is rapid in S. cerevisiae and that a major fraction of internalized FM4-64 is secreted back into the medium within a few minutes. The rcy1Delta mutant is strongly defective in recycling.  相似文献   

19.
Little is known about the structure of the individual nucleoporins that form eukaryotic nuclear pore complexes (NPCs). We report here in vitro physical and structural characterizations of a full-length nucleoporin, the Saccharomyces cerevisiae protein Nup2p. Analyses of the Nup2p structure by far-UV circular dichroism (CD) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, protease sensitivity, gel filtration, and sedimentation velocity experiments indicate that Nup2p is a "natively unfolded protein," belonging to a class of proteins that exhibit little secondary structure, high flexibility, and low compactness. Nup2p possesses a very large Stokes radius (79 A) in gel filtration columns, sediments slowly in sucrose gradients as a 2.9 S particle, and is highly sensitive to proteolytic digestion by proteinase K; these characteristics suggest a structure of low compactness and high flexibility. Spectral analyses (CD and FTIR spectroscopy) provide additional evidence that Nup2p contains extensive regions of structural disorder with comparatively small contributions of ordered secondary structure. We address the possible significance of natively unfolded nucleoporins in the mechanics of nucleocytoplasmic trafficking across NPCs.  相似文献   

20.
A previously uncharacterized Saccharomyces cerevisiae gene, FAL1, was found by sequence comparison as a homolog of the eukaryotic translation initiation factor 4A (eIF4A). Fal1p has 55% identity and 73% similarity on the amino acid level to yeast eIF4A, the prototype of ATP-dependent RNA helicases of the DEAD-box protein family. Although clearly grouped in the eIF4A subfamily, the essential Fal1p displays a different subcellular function and localization. An HA epitope-tagged Fal1p is localized predominantly in the nucleolus. Polysome analyses in a temperature-sensitive fal1-1 mutant and a Fal1p-depleted strain reveal a decrease in the number of 40S ribosomal subunits. Furthermore, these strains are hypersensitive to the aminoglycoside antibiotics paromomycin and neomycin. Pulse-chase labeling of pre-rRNA and steady-state-level analysis of pre-rRNAs and mature rRNAs by Northern hybridization and primer extension in the Fal1p-depleted strain show that Fal1p is required for pre-rRNA processing at sites A0, A1, and A2. Consequently, depletion of Fal1p leads to decreased 18S rRNA levels and to an overall deficit in 40S ribosomal subunits. Together, these results implicate Fal1p in the 18S rRNA maturation pathway rather than in translation initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号