首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Between September 2001 to June 2002, 145 samples of bovine caecal content were collected at slaughter for verocytotoxin-producing Escherichia coli (VTEC) serogroups O157 and non-O157 detection. For E. coli O157 the immunomagnetic-separation technique was performed. The enterohaemolytic phenotype was the target for non-O157 VTEC identification. The vero cell assay (VCA) was performed for toxic activity detection. The genomic sequence for VT1, VT2 and intimin (vt1, vt2, eae genes) were identified by PCR analysis. Eight VTEC O157 and eight non-O157 VTEC isolates were detected. VTEC O157, eae-positive strains were shed by 9.7% of feedlot cattle and by 2.5% of dairy cows. Non-O157 VTEC, eae-negative isolates were detected in the intestinal content of 12.5% dairy cows and of 2.1% feedlot cattle. VTEC-shedding cattle came from 18.1% of the farms included in the study. From cattle faeces, VTEC O91:H- (VT2-positive, eae-negative), responsible of human diarrhoeal disease in Europe, was recovered. Other VTEC serogroups identified in the present study were O74, O109, O110, O116, and O117.  相似文献   

2.
This study evaluated three different analytical methods for identification of Verocytotoxin-producing E. coli O157:H7 (VTEC) strains. A total of 34 E. coli O157:H7 strains isolated from bovine faeces and bovine carcasses were comparatively tested with Vero cell assay (VCA), PCR and the sandwich ELISA "RIDASCREEN Verotoxin" test. The VCA, performed without a neutralization assay, gave a false positive result because a VCA-positive E. coli O157:H7 strain did not possess the VT-coding genes when tested with PCR. The lack of specificity of the VCA could be avoided by testing for neutralization of cytotoxicity. The commercial ELISA system was as sensitive and specific as PCR, with the advantages of being a more rapid and easier procedure which could be employed in all first level diagnostic laboratories.  相似文献   

3.
AIMS: The aim of this study was to isolate Escherichia coli O26, O103, O111 and O145 from 745 samples of bovine faeces using (i) immunomagnetic separation (IMS) beads coated with antibodies to lipopolysaccharide, and slide agglutination (SA) tests and (ii) PCR and DNA probes for the detection of the Verocytotoxin (VT) genes. METHODS AND RESULTS: IMS-SA tests detected 132 isolates of presumptive E. coli O26, 112 (85%) were confirmed as serogroup O26 and 102 had the VT genes. One hundred and twenty-two strains of presumptive E. coli O103 were isolated by IMS-SA, 45 (37%) were confirmed as serogroup O103 but only one of these strains was identified as Verocytotoxin-producing E. coli (VTEC). Using the PCR/DNA probe method, 40 strains of VTEC O26 and three strains of VTEC O103 were isolated. IMS-SA identified 21 strains of presumptive E. coli O145, of which only four (19%) were confirmed as serogroup O145. VTEC of this serogroup was not detected by either IMS-SA or PCR/DNA probes. E. coli O111 was not isolated by either method. CONCLUSION: IMS beads were 2.5 times more sensitive than PCR/DNA probe methods for the detection of VTEC O26 in bovine faeces. SIGNIFICANCE AND IMPACT OF THE STUDY: IMS-SA is a sensitive method for detecting specific E. coli serogroups. However, the specificity of this method would be enhanced by the introduction of selective media and the use of tube agglutination tests for confirmation of the preliminary SA results.  相似文献   

4.
AIMS: Strains of Verocytotoxin-producing Escherichia coli (VTEC) from Scottish beef cattle on the same farm were isolated during four visits over a period of eight months. Characteristics of these strains were examined to allow comparisons with strains of VTEC associated with human infection. METHODS AND RESULTS: Strains were characterized to investigate the relationship between these bovine isolates with respect to serotype, Verocytotoxin (VT) type, intimin-type, and presence or absence of the enterohaemolysin genes. VT genes were detected in 176 of 710 (25%) faecal samples tested using PCR, although only 94 (13%) VTEC strains were isolated using DNA probes on cultures. Forty-five different serotypes were detected. Commonly isolated serotypes included O128ab:H8, O26:H11 and O113:H21. VTEC O26:H11 and O113:H21 have been associated with human disease. Strains harbouring the VT2 genes were most frequently isolated during the first three visits to the farm and those with both VT1 and VT2 genes were the major type during the final visit. Of the 94 strains of non-O157 VTEC isolated, 16 (17%) had the intimin gene; nine had the gene encoding beta-intimin and seven strains had an eta/zeta-intimin gene. Forty-one (44%) of 94 strains carried enterohaemolysin genes. CONCLUSIONS: Different serotypes and certain transmissible characteristics, such as VT-type and the enterohaemolysin phenotype, appeared to be common throughout the VTEC population at different times. SIGNIFICANCE AND IMPACT OF THE STUDY: Detailed typing and subtyping strains of VTEC as described in this study may improve our understanding of the relationship between bovine VTEC and those found in the human population.  相似文献   

5.
In the autumn of 1995 the first outbreaks of enterohemorrhagic Escherichia coli O157:H7 including ca 100 human cases were reported in Sweden. From outbreaks in other countries it is known that cattle may carry these bacteria and in many cases is the source of infection. Therefore, the present study was performed to survey the Swedish bovine population for the presence of verotoxin-producing E. coli (VTEC) of serotype O157:H7. Individual faecal samples were collected at the 16 main Swedish abattoirs from April 1996 to August 1997. Of 3071 faecal samples, VTEC O157 were found in 37 samples indicating a prevalence of 1.2% (CI95% 0.8–1.6). All 37 isolates carried genes encoding for verotoxin (VT1 and/or VT2), intimin, EHEC-haemolysin and flagellin H7 as determined by PCR. Another 3 strains were of serotype O157:H7 but did not produce verotoxins. The 37 VTEC O157:H7 strains were further characterised by phage typing and pulsed-field gel electrophoresis. The results clearly show that VTEC O157:H7 is established in the Swedish bovine population and indicate that the prevalence of cattle carrying VTEC O157:H7 is correlated to the overall geographical distribution of cattle in Sweden. Results of this study have formed the basis for specific measures recommended to Swedish cattle farmers, and furthermore, a permanent monitoring programme was launched for VTEC O157:H7 in Swedish cattle at slaughter.  相似文献   

6.
In Spain, as in many other countries, verotoxin-producing Escherichia coli (VTEC) strains have been frequently isolated from cattle, sheep, and foods. VTEC strains have caused seven outbreaks in Spain (six caused by E. coli O157:H7 and one by E. coli O111:H- [nonmotile]) in recent years. An analysis of the serotypes indicated serological diversity. Among the strains isolated from humans, serotypes O26:H11, O111:H-, and O157:H7 were found to be more prevalent. The most frequently detected serotypes in cattle were O20:H19, O22:H8, O26:H11, O77:H41, O105:H18, O113:H21, O157:H7, O171:H2, and OUT (O untypeable):H19. Different VTEC serotypes (e.g., O5:H-, O6:H10, O91:H-, O117:H-, O128:H-, O128:H2, O146:H8, O146:H21, O156:H-, and OUT:H21) were found more frequently in sheep. These observations suggest a host serotype specificity for some VTEC. Numerous bovine and ovine VTEC serotypes detected in Spain were associated with human illnesses, confirming that ruminants are important reservoirs of pathogenic VTEC. VTEC can produce one or two toxins (VT1 and VT2) that cause human illnesses. These toxins are different proteins encoded by different genes. Another virulence factor expressed by VTEC is the protein intimin that is responsible for intimate attachment of VTEC and effacing lesions in the intestinal mucosa. This virulence factor is encoded by the chromosomal gene eae. The eae gene was found at a much less frequency in bovine (17%) and ovine (5%) than in human (45%) non-O157 VTEC strains. This may support the evidence that the eae gene contributes significantly to the virulence of human VTEC strains and that many animal non-O157 VTEC strains are less pathogenic to humans.  相似文献   

7.
PCR for verocytotoxin-producing Escherichia coli (VTEC) was positive in 4.6% of 2,440 raw meat samples; only beef, sheep, and venison samples were positive. None of the isolated VTEC strains belonged to serogroup O157. Additional virulence factors were detected in only a minority of strains, suggesting that most of these meat VTEC isolates are not pathogenic.  相似文献   

8.
AIMS: To determine the prevalence and characteristics of verotoxigenic Escherichia coli (VTEC), enteropathogenic E. coli (EPEC) and necrotoxigenic E. coli (NTEC) in healthy cattle. METHODS AND RESULTS: Faecal samples from 412 healthy cattle were screened for the presence of VTEC, EPEC and NTEC. Four isolates from each sample were studied. VTEC, EPEC and NTEC were isolated in 8.7%, 8.2% and 9.9% of the animals, respectively. VTEC and NTEC were isolated more frequently from calves and heifers than from adults. Seventy (4.2%), 69 (4.2%) and 74 (4.5%) of the 1648 E. coli isolates were VTEC, EPEC and NTEC, respectively. Seventeen (24.3%) of the VTEC strains were eae-positive. Thirty-six (51.4%) of VTEC strains belonged to E. coli serogroups associated with haemorrhagic colitis and haemolytic uraemic syndrome in humans. The serogroups most prevalent among the EPEC strains were O10, O26, O71, O145 and O156. CONCLUSIONS: Healthy cattle are a reservoir of VTEC, EPEC and NTEC. SIGNIFICANCE AND IMPACT OF THE STUDY: Although most of the VTEC strains were eae-negative, a high percentage of VTEC strains belonged to serogroups associated with severe disease in humans.  相似文献   

9.
Verocytotoxin-producing Escherichia coli O157 (VTEC) is an important food-borne pathogen of humans. The serious complications of VTEC infection and the established reservoir of VTEC in cattle used for mass food production are a public health concern. In this study 500 samples of hamburger and minced meat were examined for presence of E. coli O157. For E. coli detection, Tryptic Soy Broth supplemented (with novobiocin and bile salts) and Sorbitol Mc Conkey agar were used; an automated rapid enzyme linked fluorescent immunoassay (VIDAS E. coli O157) was also evaluated. E. coli O157 was found in 5 samples of hamburger, 2 strains were found to be positive for verocytotoxin production on Vero cells.  相似文献   

10.
The ability of verocytotoxin-producing Escherichia coli (VTEC) O157:H7 to enter selected human (RPMI-4788 and HeLa) and bovine (MAC-T, mammary secretory; MDBK, kidney) epithelial cell lines was evaluated. All VTEC evaluated efficiently entered RPMI-4788 and MAC-T cell lines. VTEC entered MDBK cells at approximately 4% of MAC-T cells. VTEC were not able to invade HeLa cells. Presence of plasmid had no influence on efficiency of entry, nor did production of shiga-like toxin (SLT I or SLT II). Internalization required microfilaments, but not microtubules. Two types of adherence, localized and diffuse, were exhibited depending on isolate and cell line evaluated. Ability of VTEC to invade bovine mammary epithelial cells may be important in pathogenesis in the bovine, may indicate a route by which raw milk may potentially become contaminated, and may provide a reservoir of bacteria for the contamination of workers, equipment and carcass at time of slaughter.  相似文献   

11.
Subtilase cytotoxin (SubAB) from verotoxin (VT)-producing Escherichia coli (VTEC) strains was first described in the 98NK2 strain and has been associated with human disease. However, SubAB has recently been found in two VT-negative E. coli strains (ED 591 and ED 32). SubAB is encoded by two closely linked, cotranscribed genes (subA and subB). In this study, we investigated the presence of subAB genes in 52 VTEC strains isolated from cattle and 209 strains from small ruminants, using PCR. Most (91.9%) VTEC strains from sheep and goats and 25% of the strains from healthy cattle possessed subAB genes. The presence of subAB in a high percentage of the VTEC strains from small ruminants might increase the pathogenicity of these strains for human beings. Some differences in the results of PCRs and in the association with some virulence genes suggested the existence of different variants of subAB. We therefore sequenced the subA gene in 12 strains and showed that the subA gene in most of the subAB-positive VTEC strains from cattle was almost identical (about 99%) to that in the 98NK2 strain, while the subA gene in most of the subAB-positive VTEC strains from small ruminants was almost identical to that in the ED 591 strain. We propose the terms subAB1 to describe the SubAB-coding genes resembling that in the 98NK2 strain and subAB2 to describe those resembling that in the ED 591 strain.  相似文献   

12.
AIMS: The aims of the present study were to determine VTEC prevalence in manure, slurry and sewage sludge in France and to characterize the VTEC strains isolated (virulence genes and serotype). METHODS AND RESULTS: Seven hundred and fifty-two samples from 55 farmyard manures, 136 bovine and porcine faeces, 114 slurries, 10 composts, and 437 samples from outflows of sewage wastewater treatment plants were analysed. Twenty-four percent contained isolates which were PCR positive for stx gene. Twenty-one VTEC strains were recovered from positive samples by colony hybridization: 76% of them were positive for stx(2) gene, 33% for stx(1) gene,and 19% for eae gene. One strain belonged to serotype O157:H7 and two others to serogroups O26 and O55, respectively. CONCLUSIONS: Some of the VTEC strains isolated from environments in France should be considered as potentially pathogenic for humans. SIGNIFICANCE AND IMPACT OF THE STUDY: Appropriate handling or use of manure, slurry and sewage sludge is necessary so that contamination of the environment and food by VTEC can be prevented.  相似文献   

13.
Serotypes and antibiotic resistance of 51 Verotoxigenic (VTEC) and 33 Necrotizing (NTEC) bovine Escherichia coli strains were determined and compared with those shown by 205 non-VTEC non-NTEC strains isolated from the same batch of calves. E. coli untypable for O-antigen represented 47% of the VTEC, 12% of the NTEC and 8.8% of the non-VTEC non-NTEC. Typable VTEC belonged to serotypes 02:K?, 0103:K-, 0104:K?, 0128:K?, 0153:K- and O157:K-:H7, whereas typable NTEC were of serotypes 08:K87, 015:K14, 015:K-, 054:K?, 076:K-, 078:K(80), 088:K?, 0123:K-, 0139:K- and 0153:K-. Non-VTEC non-NTEC showed a wide variety of serotypes which were generally unrelated to those found in VTEC and NTEC. VTEC were resistant to antibiotics at higher rates than NTEC and non-VTEC non-NTEC, and showed also the highest multidrug-resistant pattern. Our results show that bovine VTEC strains belonged to O-groups usually found in human VTEC causing sporadic diarrhoea, haemorrhagic colitis and/or haemolytic uraemic syndrome, such as 02, 0103, 0104, 0153 and especially 0128 and O157. In contrast, bovine NTEC strains belonged to serotypes different from those previously found in necrotizing E. coli strains of human origin.  相似文献   

14.
Wild animals living close to cattle and pig farms (four each) were examined for verocytotoxin-producing Escherichia coli (VTEC; also known as Shiga toxin-producing E. coli). The prevalence of VTEC among the 260 samples from wild animals was generally low. However, VTEC isolates from a starling (Sturnus vulgaris) and a Norway rat (Rattus norvegicus) were identical to cattle isolates from the corresponding farms with respect to serotype, virulence profile, and pulsed-field gel electrophoresis type. This study shows that wild birds and rodents may become infected from farm animals or vice versa, suggesting a possible role in VTEC transmission.  相似文献   

15.
Cattle can be a reservoir of sorbitol-fermenting Escherichia coli O157 (SF E. coli O157) and a source of human diseases. In this study, six strains of SF E. coli O157 were isolated and characterized from cattle using an immunomagnetic separation procedure. PCR analysis of the SF E. coli O157 virulence markers showed that all six isolates tested positive for sfpA, rfbE and eaeA, and negative for terA, ureA, katP and espP. Two of the isolates contained the stx genes. Four isolates tested positive for enterohemorrhagic E. coli hlyA (EhlyA) by PCR but were nonhemolytic on the blood agar. Five isolates tested positive for the cdtA gene. The possession of these virulence factors was an indication of their pathogenic potential. The random amplified polymorphic DNA patterns, which were generated by the arbitrarily primed PCR of the SF E. coli O157 isolates from the cattle, were significantly different from those of the non-sorbitol-fermenting E. coli O157 (NSF E. coli O157) strains originating from cattle or humans. GelCompar analysis showed that the SF E. coli O157 isolates had only a 57% genetic similarity with the NSF E. coli strains. The minimal inhibitory concentration assay showed that imipenem inhibited the growth of the six isolates at a concentration of <4 microg/ml.  相似文献   

16.
AIM: To study the diversity of commensal Escherichia coli populations shed in faeces of cattle fed on different diets. METHODS AND RESULTS: Thirty Brahman-cross steers were initially fed a high grain (80%) diet and then randomly allocated into three dietary treatment groups, fed 80% grain, roughage, or roughage + 50% molasses. Up to eight different E. coli isolates were selected from primary isolation plates of faecal samples from each animal. Fifty-two distinct serotypes, including nine different VTEC strains, were identified from a total of 474 E. coli isolates. Cattle fed a roughage + molasses diet had greater serotype diversity (30 serotypes identified) than cattle fed roughage or grain (21 and 17 serotypes identified respectively). Cluster analysis showed that serotypes isolated from cattle fed roughage and roughage + molasses diets were more closely associated than serotypes isolated from cattle fed grain. Resistance to one or more of 11 antimicrobial agents was detected among isolates from 20 different serotypes. Whilst only 2.3% of E. coli isolates produced enterohaemolysin, 25% were found to produce alpha-haemolysin. CONCLUSIONS: Diverse non-VTEC populations of E. coli serotypes are shed in cattle faeces and diet may affect population diversity. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides new information on the serotype diversity and phenotypic traits of predominant E. coli populations in cattle faeces, which could be sources of environmental contamination.  相似文献   

17.
A microbiological study of the mycoplasma flora in the respiratory tracts of cattle and goats in selected regions of Tanzania is described. In the examination of cattle, mycoplasmas were isolated from 60 (17.8%) of the 338 examined lung samples, 8 (47.1%) of the 17 lymph nodes, 4 (13.3%) of the 30 pleural fluid samples and 4 (3.9%) of the 103 nasal swabs examined. All the isolates were identified as Mycoplasma mycoides subsp. mycoides, Small Colony type except for one isolate from pleural fluid which was identified as Mycoplasma arginini. M. mycoides subsp. mycoides, Small Colony type was isolated from samples originating from Dodoma, Iringa, Mbeya, Morogoro and Shinyanga regions where outbreaks of contagious bovine pleuropneumonia had been reported. In the examination of goats, mycoplasmas were isolated from 54 (34.0%) of the 159 examined lung samples, 41 (18.1%) of the 226 nasal swabs and 4 (40.0%) of the 10 pleural fluid samples. The species demonstrated were Mycoplasma capricolum subsp. capripneumoniae, M. mycoides subsp. mycoides, Small Colony type Mycoplasma ovipneumoniae and M. Capricolum subsp. arginini. The isolation of M. capripneumoniae in the Coast and Morogoro regions confirmed the presence of contagious caprine pleuropneumonia in the regions.  相似文献   

18.
AIMS: To determination the prevalence of VTEC in pork products and the surrounding environment of the pork plant (slaughterhouse and cutting plant), and characterization of the VTEC strains isolated (virulence genes and serotype). METHODS AND RESULTS: Among the 2146 carcass and pork samples and 876 environmental samples (swabs of surfaces or materials), 328 (15%) and 170 (19%) were PCR-positive for stx genes respectively. VTEC strains were recovered from positive samples by colony hybridization or immunoconcentration, serotyped and genetically characterized. Strains of E. coli O157:H7 were not isolated from 3 uidA-positive samples detected by PCR. The VTEC isolates did not harbour eae, ehx and uidA genes. CONCLUSIONS: Pigs and pork meat may contain VTEC strains but characterization of the strains based on virulence factors showed that the potential danger of pork meat appears to be low since although all strains harboured a stx gene, they did not have other virulence genes. SIGNIFICANCE OF THE STUDY: General hygiene measures appear to be sufficient and specific hygiene measures for VTEC are not necessary at this time. The porcine VTEC strains isolated in our study probably do not present a hazard.  相似文献   

19.
The distribution of Escherichia coli O157 in bovine feces was examined by testing multiple samples from fecal pats and determining the density of E. coli O157 in immunomagnetic separation (IMS)-positive fecal samples. The density of E. coli O157 in bovine feces was highly variable, differing by as much as 76,800 CFU g(-1) between samples from the same fecal pat. The density in most positive samples was <100 CFU g(-1), the limit of reliable detection by IMS. Testing only one 1-g sample of feces per pat with IMS may result in a sensitivity of detection as low as 20 to 50%. It is therefore probable that most surveys have greatly underestimated the prevalence of E. coli O157 shedding in cattle and the proportion of farms with shedding cattle. The sensitivity of the detection of E. coli O157 in bovine feces can be as much as doubled by testing two 1-g samples per pat rather than one 1-g sample.  相似文献   

20.
Fifty-four of 310 (17%) samples of raw beef products contained Vero cytotoxin (VT)-producing Escherichia coli (VTEC) detected by DNA probes for the VT genes. VTEC strains examined in detail from a selection of the positive samples belonged to several O serogroups, some of which have been associated with human diarrhoea or haemolytic uraemic syndrome. Some of the strains possessed properties that may contribute to virulence in man. None of the food samples contained VT-producing E. coli O157 when tested by a combination of VT probe tests and colony immunoblotting with commercially available anti-O157 serum. Quantification of the immunoblotting technique indicated that O157 VTEC could be recovered from artificially-inoculated meat samples at a level of less than one organism per gram. Five of the food samples carried E. coli O157 strains that did not produce VT and differed in other properties from O157 VTEC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号