首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An approach to assay proteolytic activity in vivo by altering the subcellular localization of a labelled substrate was demonstrated. The assay included a protein shuttling between different cellular compartments and a site-specific recombinant protease. The shuttle protein used was the human immunodeficiency virus type 1 (HIV-1) Rev protein tandemly fused to the enhanced green fluorescent protein (EGFP) and the red fluorescent protein (RFP), while the protease was the site-specific protease VP24 from the herpes simplex virus type 1 (HSV-1). The fluorescent proteins in the Rev fusion protein were separated by a cleavage site specific for the VP24 protease. When co-expressed in COS-7 cells proteolysis was observed by fluorescence microscopy as a shift from a predominantly cytoplasmic localization of the fusion protein RevEGFP to a nuclear localization while the RFP part of the fusion protein remained in the cytoplasm. The cleavage of the fusion protein by VP24 was confirmed by Western blot analysis. The activity of VP24, when tagged N-terminally by the Myc-epitope, was found to be comparable to VP24. These results demonstrates that the activity and localization of a recombinantly expressed protease can be assessed by protease-mediated cleavage of fusion proteins containing a specific protease cleavage site.  相似文献   

2.
Most protease-substrate assays rely on short, synthetic peptide substrates consisting of native or modified cleavage sequences. These assays are inadequate for interrogating the contribution of native substrate structure distal to a cleavage site that influences enzymatic cleavage or for inhibitor screening of native substrates. Recent evidence from HIV-1 isolates obtained from individuals resistant to protease inhibitors has demonstrated that mutations distal to or surrounding the protease cleavage sites in the Gag substrate contribute to inhibitor resistance. We have developed a protease-substrate cleavage assay, termed the cleavage enzyme- cytometric bead array (CE-CBA), which relies on native domains of the Gag substrate containing embedded cleavage sites. The Gag substrate is expressed as a fluorescent reporter fusion protein, and substrate cleavage can be followed through the loss of fluorescence utilizing flow cytometry. The CE-CBA allows precise determination of alterations in protease catalytic efficiency (k(cat)/K(M)) imparted by protease inhibitor resistance mutations in protease and/or gag in cleavage or noncleavage site locations in the Gag substrate. We show that the CE-CBA platform can identify HIV-1 protease present in cellular extractions and facilitates the identification of small molecule inhibitors of protease or its substrate Gag. Moreover, the CE-CBA can be readily adapted to any enzyme-substrate pair and can be utilized to rapidly provide assessment of catalytic efficiency as well as systematically screen for inhibitors of enzymatic processing of substrate.  相似文献   

3.
A novel method for discovery of HIV-1 protease inhibitors in complex biological samples has been developed. The assay is based on two specific reagents: a recombinant protein constituted by a portion of the HIV-1 Gag polyprotein comprising the p17-p24 cleavage site, fused to E. coli beta-galactosidase, and a monoclonal antibody which binds the fusion protein in the Gag region. Binding occurs only if the fusion protein has not been cleaved by the HIV-1 protease. The assay has been adapted for the screening of large numbers of samples in standard 96-well microtiter plates. Using this method about 12000 microbial fermentation broths have been tested and several HIV-1 protease inhibitory activities have been detected. One of these has been studied in detail.  相似文献   

4.
A solid phase assay for the protease of human immunodeficiency virus   总被引:1,自引:0,他引:1  
A solid phase assay for human immunodeficiency virus (HIV) protease using an immobilized substrate, Affi Gel 10-Gly-Gly-Gly-Gly-Val-Ser-Gln-Asn-Tyr-Pro-Ile-Val-Gln-[3H]Gly-OH has been devised. The Tyr-Pro bond of the substrate was hydrolyzed by the protease, releasing the radiolabeled cleavage product, Pro-Ile-Val-Gln-[3H]Gly-OH, into the supernatant. The pH optimum was found to be 6.0, and a high ionic strength was required for maximal activity. The solid phase assay is usable for convenient monitoring of purification procedures, and rapid screening of inhibitors of HIV protease.  相似文献   

5.
Under drug selection pressure, emerging mutations render HIV-1 protease drug resistant, leading to the therapy failure in anti-HIV treatment. It is known that nine substrate cleavage site peptides bind to wild type (WT) HIV-1 protease in a conserved pattern. However, how the multidrug-resistant (MDR) HIV-1 protease binds to the substrate cleavage site peptides is yet to be determined. MDR769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, and 90) was selected for present study to understand the binding to its natural substrates. MDR769 HIV-1 protease was co-crystallized with nine substrate cleavage site hepta-peptides. Crystallographic studies show that MDR769 HIV-1 protease has an expanded substrate envelope with wide open flaps. Furthermore, ligand binding energy calculations indicate weaker binding in MDR769 HIV-1 protease-substrate complexes. These results help in designing the next generation of HIV-1 protease inhibitors by targeting the MDR HIV-1 protease.  相似文献   

6.
Various constructs of the human immunodeficiency virus, type 1 (HIV-1) protease containing flanking Pol region sequences were expressed as fusion proteins with the maltose-binding protein of the malE gene of Escherichia coli. The full-length fusion proteins did not exhibit self-processing in E. coli, thereby allowing rapid purification by affinity chromatography on cross-linked amylose columns. Denaturation of the fusion protein in 5 M urea, followed by renaturation, resulted in efficient site-specific autoprocessing to release the 11-kDa protease. Rapid purification involving two column steps gave an HIV-1 protease preparations of greater than 95% purity (specific activity approximately 8500 pmol.min-1.micrograms protease-1) with an overall yield of about 1 mg/l culture. Incubation of an inactive mutant protease fusion protein with the purified wild-type protease resulted in specific trans cleavage and release of the mutant protease. Analysis of products of the HIV-1 fusion proteins containing mutations at either the N- or the C-terminal protease cleavage sites indicated that blocking one of the cleavage sites influences the cleavage at the non-mutated site. Such mutated full-length and truncated protease fusion proteins possess very low levels of proteolytic activity (approximately 5 pmol.min-1.micrograms protein-1).  相似文献   

7.
Bihani S  Das A  Prashar V  Ferrer JL  Hosur MV 《Proteins》2009,74(3):594-602
HIV-1 protease is an effective target for design of different types of drugs against AIDS. HIV-1 protease is also one of the few enzymes that can cleave substrates containing both proline and nonproline residues at the cleavage site. We report here the first structure of HIV-1 protease complexed with the product peptides SQNY and PIV derived by in situ cleavage of the oligopeptide substrate SQNYPIV, within the crystals. In the structure, refined against 2.0-A resolution synchrotron data, a carboxyl oxygen of SQNY is hydrogen-bonded with the N-terminal nitrogen atom of PIV. At the same time, this proline nitrogen atom does not form any hydrogen bond with catalytic aspartates. These two observations suggest that the protonation of scissile nitrogen, during peptide bond cleavage, is by a gem-hydroxyl of the tetrahedral intermediate rather than by a catalytic aspartic acid.  相似文献   

8.
A rapid, high-throughput radiometric assay for HIV-1 protease has been developed using ion-exchange chromatography performed in 96-well filtration plates. The assay monitors the activity of the HIV-1 protease on the radiolabeled form of a heptapeptide substrate, [tyrosyl-3,5-3H]Ac-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2, which is based on the p17-p24 cleavage site found in the viral polyprotein substrate Pr55gag. Specific cleavage of this uncharged heptapeptide substrate by HIV-1 protease releases the anionic product [tyrosyl-3,5-3H]Ac-Ser-Gln-Asn-Tyr, which is retained upon minicolumns of the anion-exchange resin AG1-X8. Protease activity is determined from the recovery of this radiolabeled product following elution with formic acid. This facile and highly sensitive assay may be utilized for steady-state kinetic analysis of the protease, for measurements of enzyme activity during its purification, and as a routine assay for the evaluation of protease inhibitors from natural product or synthetic sources.  相似文献   

9.
The muscle and heart lactate dehydrogenase (LDHs) of rabbit and pig are specifically cleaved at a single position by HIV-1 protease, resulting in the conversion of 36-kDa subunits of the oligomeric enzymes into 21- and 15-kDa protein bands as analyzed by SDS-PAGE. While the proteolysis was observed at neutral pH, it became more pronounced at pH 6.0 and 5.0. The time courses of the cleavage of the 36-kDa subunits were commensurate with the time-dependent loss of both quaternary structure and enzymatic activity. These results demonstrated that deoligomerization of rabbit muscle LDH at acidic pH rendered its subunits more susceptible to proteolysis, suggesting that a partially denatured form of the enzyme was the actual substrate. Proteolytic cleavage of the rabbit muscle enzyme occurred at a decapeptide sequence, His-Gly-Trp-Ile-Leu*Gly-Glu-His-Gly-Asp (scissile bond denoted throughout by an asterisk), which constitutes a "strand-loop" element in the muscle and heart LDH structures and contains the active site histidyl residue His-193. The kinetic parameters Km, Vmax/KmEt, and Vmax/Et for rabbit muscle LDH and the synthetic decapeptide Ac-His-Gly-Trp-Ile-Leu*Gly-Glu-His-Gly-Asp-NH2 were nearly identical, suggesting that the decapeptide within the protein substrate is conformationally mobile, as would be expected for the peptide substrate in solution. Insertion of part of this decapeptide sequence into bacterial galactokinase likewise rendered this protein susceptible to proteolysis by HIV-1 protease, and site-directed mutagenesis of this peptide in galactokinase revealed that the Glu residue at the P2' was important to binding to HIV-1 protease. Crystallographic analysis of HIV-1 protease complexed with a tight-binding peptide analogue inhibitor derived from this decapeptide sequence revealed that the "strand-loop" structure of the protein substrate must adopt a beta-sheet structure upon binding to the protease. The Glu residue in the P2' position of the inhibitor likely forms hydrogen-bonding interactions with both the alpha-amide and gamma-carboxylic groups of Asp-30 in the substrate binding site.  相似文献   

10.
Abstract Processing of human immunodeficiency virus (HIV) proteins by the HIV-1 protease is essential for HIV infectivity. In addition, several studies have revealed cleavage of human proteins by this viral protease during infection; however, no large-scale HIV-1 protease degradomics study has yet been performed. To identify putative host substrates in an unbiased manner and on a proteome-wide scale, we used positional proteomics to identify peptides reporting protein processing by the HIV-1 protease, and a catalogue of over 120 cellular HIV-1 protease substrates processed in vitro was generated. This catalogue includes previously reported substrates as well as recently described interaction partners of HIV-1 proteins. Cleavage site alignments revealed a specificity profile in good correlation with previous studies, even though the ELLE consensus motif was not cleaved efficiently when incorporated into peptide substrates due to subsite cooperativity. Our results are further discussed in the context of HIV-1 infection and the complex substrate recognition by the viral protease.  相似文献   

11.
A 99-amino acid protein having the deduced sequence of the protease from human immunodeficiency virus type 2 (HIV-2) was synthesized by the solid phase method and tested for specificity. The folded peptide catalyzes specific processing of a recombinant 43-kDa GAG precursor protein (F-16) of HIV-1. Although the protease of HIV-2 shares only 48% amino acid identity with that of HIV-1, the HIV-2 enzyme exhibits the same specificity toward the HIV-1 GAG precursor. Fragments of 34, 32, 24, 10, and 9 kDa were generated from F-16 GAG incubated with the protease. N-terminal amino acid sequence analysis of proteolytic fragments indicate that cleavage sites recognized by HIV-2 protease are identical to those of HIV-1 protease. The verified cleavage sites in F-16 GAG appear to be processed independently, as indicated by the formation of the intermediate fragments P32 and P34 in nearly equal ratios. The site nearest the amino terminus is quite conserved between the two viral GAG proteins (...VSQNY-PIVQN...in HIV-1,...KGGNY-PVQHV...in HIV-2). In contrast, the putative second site (...IPFAA-AQQKG...) of HIV-2 GAG shares minimal sequence identity with site 2 of HIV-1 GAG (...SATIM-MQRGN...). These sequence variations in the substrates suggest higher order structural features that may influence recognition by the proteases. Pepstatin A inhibits HIV-2 protease, whereas 1,10-phenanthroline and phenylmethylsulfonylfluoride do not; these results are in agreement with the finding that proteases of HIV and other retroviruses are aspartyl proteases.  相似文献   

12.
We report here the preparation of ratiometric luminescent probes that contain two well-separated emission peaks produced by a sequential bioluminescence resonance energy transfer (BRET)–fluorescence resonance energy transfer (FRET) process. The probes are single soluble fusion proteins consisting of a thermostable firefly luciferase variant that catalyze yellow-green (560 nm maximum) bioluminescence and a red fluorescent protein covalently labeled with a near-infrared fluorescent dye. The two proteins are connected by a decapeptide containing a protease recognition site specific for factor Xa, thrombin, or caspase 3. The rates of protease cleavage of the fusion protein substrates were monitored by recording emission spectra and plotting the change in peak ratios over time. Detection limits of 0.41 nM for caspase 3, 1.0 nM for thrombin, and 58 nM for factor Xa were realized with a scanning fluorometer. Our results demonstrate for the first time that an efficient sequential BRET–FRET energy transfer process based on firefly luciferase bioluminescence can be employed to assay physiologically important protease activities.  相似文献   

13.
HIV-1 protease has a broad and complex substrate specificity. The discovery of an accurate, robust, and rapid method for predicting the cleavage sites in proteins by HIV protease would greatly expedite the search for inhibitors of HIV protease. During the last two decades, various methods have been developed to explore the specificity of HIV protease cleavage activity. However, because little advancement has been made in the understanding of HIV-1 protease cleavage site specificity, not much progress has been reported in either extracting effective methods or maintaining high prediction accuracy. In this article, a theoretical framework is developed, based on the kernel method for dimensionality reduction and prediction for HIV-1 protease cleavage site specificity. A nonlinear dimensionality reduction kernel method, based on manifold learning, is proposed to reduce the high dimensions of protease specificity. A support vector machine is applied to predict the protease cleavage. Superior performance in comparison to that previously published in literature is obtained using numerical simulations showing that the basic specificities of the HIV-1 protease are maintained in reduction feature space, and by combining the nonlinear dimensionality reduction algorithm with a support vector machine classifier.  相似文献   

14.
HIV-1 protease is a small homodimeric enzyme that ensures maturation of HIV virions by cleaving the viral precursor Gag and Gag-Pol polyproteins into structural and functional elements. The cleavage sites in the viral polyproteins share neither sequence homology nor binding motif and the specificity of the HIV-1 protease is therefore only partially understood. Using an extensive data set collected from 16 years of HIV proteome research we have here created a general and predictive rule-based model for HIV-1 protease specificity based on rough sets. We demonstrate that HIV-1 protease specificity is much more complex than previously anticipated, which cannot be defined based solely on the amino acids at the substrate's scissile bond or by any other single substrate amino acid position only. Our results show that the combination of at least three particular amino acids is needed in the substrate for a cleavage event to occur. Only by combining and analyzing massive amounts of HIV proteome data it was possible to discover these novel and general patterns of physico-chemical substrate cleavage determinants. Our study is an example how computational biology methods can advance the understanding of the viral interactomes.  相似文献   

15.
The processing of precursor proteins (Gag and Gag-pol) by the viral protease is absolutely required in order to generate infectious particles. This prompted us to consider novel strategies that target viral maturation. Towards this end, we have engineered an HIV-1 virion associated protein, Vpr, to contain protease cleavage signal sequences from Gag and Gag-pol precursor proteins. We previously reported that virus particles derived from HIV-1 proviral DNA, encoding chimeric Vpr, showed a lack of infectivity, depending on the fusion partner. As an extension of that work, the potential of chimeric Vpr as a substrate for HIV-1 protease was tested utilizing an epitope-based assay. Chimeric Vpr molecules were modified such that the Flag epitope is removed following cleavage, thus allowing us to determine the efficiency of protease cleavage. Following incubation with the protease, the resultant products were analyzed by radioimmunoprecipitation using antibodies directed against the Flag epitope. Densitometric analysis of the autoradiograms showed processing to be both rapid and specific. Further, the analysis of virus particles containing chimeric Vpr by immunoblot showed reactivities to antibodies against the Flag epitope similar to the data observed in vitro. These results suggest that the pseudosubstrate approach may provide another avenue for developing antiviral agents.  相似文献   

16.
The specificity of HIV-1 (human immunodeficiency virus-1) protease has been evaluated relative to its ability to cleave the three-domain Pseudomonas exotoxin (PE66) and related proteins in which the first domain has been deleted or replaced by a segment of CD4. Native PE66 is not hydrolyzed by the HIV-1 protease. However, removal of its first domain produces a molecule which is an excellent substrate for the enzyme. The major site of cleavage in this truncated exotoxin, called LysPE40, occurs in a segment that connects its two major domains, the translocation domain (II), and the ADP-ribosyltransferase (III). This interdomain region contains the sequence ...Asn-Tyr-Pro-Thr... which is similar to that surrounding the scissile Tyr-Pro bond in the gag precursor polyprotein, a natural substrate of the HIV-1 protease. Nevertheless, it is not this sequence that is recognized and cleaved by the enzyme, but one 6 residues away, ...Ala-Leu-Leu-Glu... in which the Leu-Leu peptide bond is hydrolyzed. A second, slower cleavage takes place at the Leu-Ala bond 3 residues in from the NH2 terminus of LysPE40. When domain I of PE66 is replaced by a segment comprising the first two domains of CD4, the resulting chimeric protein is hydrolyzed at the same Leu-Leu bond by HIV-1 protease. Enzyme activities toward synthetic peptides modeled after the sequences defined above in LysPE40 are in complete accord, relative to specificity, kinetics, and pH optimum, with results obtained in the hydrolysis of the parent protein. These findings demonstrate that ideas concerning the specificity of the HIV-1 protease that are based solely upon its processing of natural viral polyproteins can be expanded by evaluation of other multidomain proteins as substrates. Moreover, it would appear that it is not a particular conformation, but sequence and accessibility that play the dominant role in defining sites in a protein substrate that are susceptible to hydrolysis by the enzyme.  相似文献   

17.
We have demonstrated the use of a radioimmunoassay to quantitate the peptidolytic activity of human immunodeficiency virus, type 1 (HIV-1) protease using a tetradecapeptide substrate of porcine renin, Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu-Leu-Val-Tyr-Ser. HIV-1 protease catalyzes cleavage of this substrate at the same Leu-Leu bond as does porcine renin, resulting in the formation of authentic angiotensin-I. The angiotensin-I product is then detected by use of a commercially available renin plasma assay kit, which constitutes the basis of the RIA. The radioimmunoassay provides detection of the protease-catalyzed formation of angiotensin-I at picomolar concentrations in vitro. We demonstrate the use of this assay in determining IC50 values for two HIV-1 protease inhibitors present in cell culture media and in standard assay buffer. An example of the potential development of this assay for the quantitation of these inhibitors present in ex vivo plasma samples is also presented.  相似文献   

18.
Highly purified, recombinant preparations of the virally encoded proteases from human immunodeficiency viruses (HIV) 1 and 2 have been compared relative to 1) their specificities toward non-viral protein and synthetic peptide substrates, and 2) their inhibition by several P1-P1' pseudodipeptidyl-modified substrate analogs. Hydrolysis of the Leu-Leu and Leu-Ala bonds in the Pseudomonas exotoxin derivative, Lys-PE40, is qualitatively the same for HIV-2 protease as published earlier for the HIV-1 enzyme (Tomasselli, A. G., Hui, J. O., Sawyer, T. K., Staples, D. J., FitzGerald, D. J., Chaudhary, V. K., Pastan, I., and Heinrikson, R. L. (1990) J. Biol. Chem. 265, 408-413). However, the rates of cleavage at these two sites are reversed for the HIV-2 protease which prefers the Leu-Ala bond. The kinetics of hydrolysis of this protein substrate by both enzymes are mirrored by those obtained from cleavage of model peptides. Hydrolysis by the two proteases of other synthetic peptides modeled after processing sites in HIV-1 and HIV-2 gag polyproteins and selected analogs thereof demonstrated differences, as well as similarities, in selectivity. For example, while the two proteases were nearly identical in their rates of cleavage of the Tyr-Pro bond in the HIV-1 gag fragment, Val-Ser-Gln-Asn-Tyr-Pro-Ile-Val, the HIV-1 protease showed a 64-fold enhancement over the HIV-2 enzyme in hydrolysis of a Tyr-Val bond in the same template. Accordingly, the HIV-2 protease appears to have a different specificity than the HIV-1 enzyme; it is better able to hydrolyze substrates with small amino acids in P1 and P1', but is variable in its rate of hydrolysis of peptides with bulky substituents in these positions. In addition to these comparisons of the two proteases with respect to substrate specificity, we present inhibitor structure-activity data for the HIV-2 protease. Relative to P1-P1' statine or Phe psi [CH2N]Pro-modified pseudopeptidyl inhibitors, compounds having Xaa psi[CH(OH)CH2]Yaa inserts were found to show significantly higher affinities to both enzymes, generally binding from 10 to 100 times stronger to HIV-1 protease than to the HIV-2 enzyme. Molecular modeling comparisons based upon the sequence homology of the two enzymes and x-ray crystal structures of HIV-1 protease suggest that most of the nonconservative amino acid replacements occur in regions well outside the catalytic cleft, while only subtle structural differences exist within the active site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Processing of the human immunodeficiency virus type 1 (HIV-1) Gag and Gag-Pro-Pol polyproteins by the HIV-1 protease (PR) is essential for the production of infectious particles. However, the determinants governing the rates of processing of these substrates are not clearly understood. We studied the effect of substrate context on processing by utilizing a novel protease assay in which a substrate containing HIV-1 matrix (MA) and the N-terminal domain of capsid (CA) is labeled with a FlAsH (fluorescein arsenical hairpin) reagent. When the seven cleavage sites within the Gag and Gag-Pro-Pol polyproteins were placed at the MA/CA site, the rates of cleavage changed dramatically compared with that of the cognate sites in the natural context reported previously. The rate of processing was affected the most for three sites: CA/spacer peptide 1 (SP1) (≈10-fold increase), SP1/nucleocapsid (NC) (≈10-30-fold decrease), and SP2/p6 (≈30-fold decrease). One of two multidrug-resistant (MDR) PR variants altered the pattern of processing rates significantly. Cleavage sites within the Pro-Pol region were cleaved in a context-independent manner, suggesting for these sites that the sequence itself was the determinant of rate. In addition, a chimera consisting of SP1/NC P4-P1 and MA/CA P1'-P4' residues (ATIM↓PIVQ) abolished processing by wild type and MDR proteases, and the reciprocal chimera consisting of MA/CA P4-P1 and SP1/NC P1'-4' (SQNY↓IQKG) was cleaved only by one of the MDR proteases. These results suggest that complex substrate interactions both beyond the active site of the enzyme and across the scissile bond contribute to defining the rate of processing by the HIV-1 PR.  相似文献   

20.
The mouse mammary tumor virus (MMTV) protease gene was cloned into pGEX-2T, an Escherichia coli expression vector containing the glutathione S-transferase coding region of Schistosoma japonicum. The chimeric protein was formed by fusion of the glutathione S-transferase with a hexapeptide which contains a thrombin cleavage site, followed by the MMTV protease. Affinity chromatography on a glutathione-Sepharose 4B column was used to isolate the chimeric protein. After thrombin cleavage, the glutathione S-transferase and the protease were separated by gel filtration chromatography on a Sephadex G-75 column. The overall yield of the protease purification procedure was about 1 mg of protease/liter of culture, and the specific activity was 380 pmol/min.micrograms of enzyme. Like other retroviral proteases, the MMTV enzyme was active as a dimer, showed maximum activity at pH between 4 and 6, and could be inhibited by pepstatin A and a phosphinic acid derivative HIV-1 protease inhibitor. Enzymatic characterization of this protease reveals its broad specificity, showing a clear preference for the oligopeptide substrate mimicking the cleavage site at the amino-terminal end of the capsid protein (kcat/Km = 9725.5 M-1.s-1). The chimeric protein was also an active dimer and showed a similar Km (17 microM) for such an oligopeptide, although its kcat was about 10 times smaller. Autocatalytic processing of the MMTV protease was observed after expression of clones containing the natural cleavage site, as it occurs at the amino-terminal end of the viral protease, instead of the thrombin-sensitive sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号