首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
pSV2gpt-Transformed and wild-type Chinese hamster ovary (CHO) cell lines have been used to study radiation-induced mutation at the molecular level. The transformant, designated AS52, was constructed from a hypoxanthine-guanine phosphoribosyl transferase (HPRT)-deficient CHO cell line and contains a single, functional copy of the Escherichia coli xanthine-guanine phosphoribosyl transferase (XPRT) gene (gpt) stably integrated into the Chinese hamster genome. AS52 and wild-type CHO-K1-BH4 cells exhibit similar cytotoxic responses to uv light and X rays; however, significant differences occur in mutation induction at the gpt and hprt loci. A number of HPRT and XPRT mutants which arose following irradiation were analyzed by Southern-blot hybridization. Most XPRT (21/26) and all HPRT (23/23) mutants induced by uv light exhibited hybridization patterns indistinguishable from their parental cell lines. In contrast, all XPRT (26/26) and most HPRT mutants (15/21) induced by X irradiation contained deletion mutations affecting some or all of the gpt and hprt loci, respectively. These results indicate that X rays induce predominantly deletion mutations, while uv light is likely to induce point mutations at both loci.  相似文献   

2.
Analyses of mutation in pSV2gpt-transformed CHO cells   总被引:3,自引:0,他引:3  
We have developed a system to study mutations which affect expression of the E. coli xanthine-guanine phosphoribosyl transferase (XPRT) gene (gpt) in hypoxanthine-guanine phosphoribosyl transferase-deficient (HPRT-) Chinese hamster ovary (CHO) cells that have been transformed by the plasmid pSV2gpt. Several gpt-transformed cell lines have been isolated and characterized with respect to integrated pSV2gpt sequences, expression of the gpt gene, and cytotoxic and mutagenic responses to UV light. While the gpt-transformed CHO and wild-type CHO-K1-BH4 cell lines have similar cytotoxic responses to UV light, the gpt-transformed cell lines respond differently from the parental CHO-K1-BH4 cell line in terms of mutation induction. As with CHO-K1-BH4 HPRT mutants, spontaneous or induced XPRT mutants derived from the gpt+ cell lines can be selected for 6-thioguanine resistance (TGr). Analysis of cell-free extracts from a number of these TGr clones indicates that the mutant phenotype is due to the absence of XPRT activity. One transformant, designated AS52, has previously been described in limited detail. Here we describe additional characteristics of this cell line, as well as several related transformants.  相似文献   

3.
AS52 cells are Chinese hamster ovary (CHO) cells that carry a single functional copy of the bacterial gpt gene and allow the isolation of 6-thioguanine-resistant (6TGr)mutants arising from mutation at the chromosally integrated gpt locus. The gpt locus in AS52 cells is extremely stable, giving rise to 6TGr mutants at frequencies comparable to the endogenous CHO hprt locus. In this study, we describe the spectrum of spontaneous mutations observed in AS52 cells by Southern blot and DNA sequence analyses. Using the polymerase chain reaction (PCR) and the Thermus aquaticus (Taq) polymerase, we have enzymatically amplified 6TGr mutant gpt sequences in vitro. The PCR product was then sequenced without further cloning manipulations to directly identify gpt structural gene mutations. Deletions predominant among the 62 spontaneous 6TGr-AS52 mutant clones analyzed in this study. Of these, 79% (49/62) of the mutations were identified as deletions either by Southern blotting, PCR amplification or DNA sequence analysis. Among these deletions is a predominant 3-base deletion that was observed in 31% (19/62) of the mutants. These data provide a basis for future comparisons of induced point mutational spectra derived in the AS52 cell line, and demonstrate the utility of PCR in the generation of DNA sequence spectra derived from chromosomally integrated mammalian loci.  相似文献   

4.
Meng Z  Zhang B 《Mutation research》1999,425(1):81-85
In this study, we have examined the mutagenicity of bisulfite (sulfur dioxide) at the xathine-guanine phosphoribosyl transferase locus (gpt) in the pSV2 gpt-transformed CHO cell line, AS52. Our results provide evidence for bisulfite as a weak gene mutagen because the chemical at high doses and at high cytotoxicity causes a 4-fold increase in mutant frequency (MF) and less than a doubling of the gpt gene deletion frequency compared to control. We suggest that the increase of MF in bisulfite-treated cells results from bisulfite activity,as a comutagen, enhancing the induction effect of unknown endogenous or exogenous factors on spontaneous mutagenesis of AS52 cells. For the spontaneous, 5 mM bisulfite- and 10 mM bisulfite-enhanced spontaneous mutants in AS52 cells, the percentage of total deletion mutations of the gpt gene is 36%, 44% and 65%, respectively Copyright 1999 Elsevier Science B.V.  相似文献   

5.
A new Saccharomyces cerevisiae gene, XPT1, was isolated as a multicopy suppressor of a hypoxanthine phosphoribosyl transferase (HPRT) defect. Disruption of XPT1 affects xanthine utilization in vivo and results in a severe reduction of xanthine phosphoribosyl transferase (XPRT) activity while HPRT is unaffected. We conclude that XPT1 encodes XPRT in yeast.  相似文献   

6.
Detection of deletion mutations in pSV2gpt-transformed cells.   总被引:12,自引:4,他引:8       下载免费PDF全文
We have developed a system to study mutations that affect xanthine-guanine phosphoribosyltransferase gene (gpt) expression in hypoxanthine-guanine phosphoribosyltransferase-deficient CHO cells that have been transformed by the plasmid vector pSV2gpt. One isolated transformant, designated AS52, carries a single copy of the Escherichia coli gpt gene stably integrated into the high-molecular-weight DNA and expresses the bacterial gene for the enzyme xanthine-guanine phosphoribosyltransferase. Mutants deficient in this enzyme can be induced in the AS52 cell line by a variety of mutagens, and spontaneous or induced mutants can be selected for resistance to 6-thioguanine (Tgr). Two Tgr clones derived from the AS52 line were analyzed by Southern blot hybridization and were found to contain deletions involving at least a portion of the gpt gene. Because of the small size and stability of the integrated pSV2gpt plasmid, and the well-defined selection protocol for mutant isolation, the AS52 line offers promise as a system suitable for the study of mutation at the molecular level in CHO cells.  相似文献   

7.
This paper (1) presents an analysis of published data on the molecular nature of spontaneously arising and radiation-induced mutations in mammalian somatic cell systems and (2) examines whether the molecular nature and mechanisms of origin of radiation-induced mutations, in mammalian in vivo and in vitro systems, as currently understood, are consistent with expectations based on the biophysical and microdosimetric properties of ionizing radiation. Depending on the test system (CHO cells, human T lymphocytes and human lymphoid cell line TK6), 80-97% of spontaneous HPRT mutations show normal Southern patterns; the remainder is due to gross changes, predominantly partial (intragenic) deletions. Total gene deletions at the HPRT locus are rare except in the TK6 cell line. At the APRT locus in CHO cells, 80-97% of spontaneous mutations are due to base-pair changes, the remainder being, mostly, partial deletions. The latter can extend upstream in the 5' direction but not beyond the APRT gene in the 3' direction. At the human HLA-A locus (T lymphocytes), the percentage of mutations with normal Southern patterns is lower than that for HPRT, and in the range of 50-60%. At the HLA-A locus, mitotic recombination contributes substantially to the mutation spectrum (approximately 30% of mutations recovered) and this is likely to be true of the TK locus in the TK6 cell line as well. With a few exceptions, most of the radiation-induced mutations show altered Southern patterns and are consistent with their being deletions and/or other gross changes (HPRT, 70-90% (CHO); 50-85% (TK6); 50-75% (T lymphocytes); TK, 60-80% (TK6); HLA-A, 80% (T lymphocytes); DHFR, 100% (CHO]. The exceptions are APRT mutations in CHO cells (16-20% of mutants with deletions or other changes) and HPRT mutations in T lymphocytes from A-bomb survivors (15-25%); the latter finding is consistent with the occurrence of in vivo selection against HPRT mutant cells. In cases of HPRT intragenic deletions analyzed (CHO cells and V79 Chinese hamster cells), there is evidence for a non-random distribution of breakpoints. The spontaneous mutation frequencies vary widely, from about 0.04/10(6) cells (sickle cell mutations at the human HBB locus) to 30.8/10(6) cells (HLA-A mutations in T lymphocytes) and are dependent on the locus, the system employed and a number of other factors. Those for the other loci fall between these limits.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Independent spontaneous or ethyl methanesulphonate (EMS)-induced mutants lacking HPRT enzyme activity were analysed for changes in hprt gene structure. Of 21 spontaneous mutants, 6 had total gene deletions, 2 had partial gene deletions, and 13 were indistinguishable from wild-type by Southern analysis. In contrast a sample of 23 EMS-induced mutants, each of which showed potentially interesting characteristics (e.g. high reversion frequency, X-chromosome rearrangement), showed no detectable hprt gene changes. RNA isolated from 59 mutants with presumptive point mutations (13 spontaneous, 46 EMS-induced) was analysed on dot blots for changes in the amount of hprt mRNA. A wide range of mRNA levels was found, from mutants with undetectable amounts to those with more than wild-type amounts. However, Northern blots of all these mutant RNAs revealed only one (EMS-induced) mutation with a change in hprt mRNA size. Taken with our previously-published data on these mutants, it is argued that they represent a broad range of mutational types, and that the hprt gene mutation system provides a sensitive means of distinguishing mutational spectra of different DNA-damaging agents.  相似文献   

9.
The purpose of this paper is to compare the result of testing a diverse group of chemicals in the CHO/HPRT and AS52/XPRT mutation assays. The AS52/XPRT system was as sensitive as the more widely used CHO/HPRT system in the case of the antitumor agents, and gave qualitatively similar results in all cases. On the basis of this and other experiments (Aaron et al., 1989) it appears that the AS52/XPRT system may be most useful in addressing mechanistic questions in mutagenesis. We recommend that the AS52/XPRT assay be used as the mammalian cell test system of choice in batteries used for identifying mutagens and genotoxic carcinogens.  相似文献   

10.
The aim of the present investigation was to screen for rare types of spontaneously occurring mutational events in order to provide information on the organization of the mammalian genome. For this purpose a hierarchical sequence of analyses is used with a first step utilizing a forward reverse mutation approach. The present paper deals with the characterization of 22 isolated mutants from 2 groups, 11 spontaneously appearing mutants and, in comparison, 11 ethyl methanesulfonate-induced mutants at the HPRT locus in V79 Chinese hamster cells, by means of reverse mutation analyses using selection with medium containing L-azaserine. Nine out of the 11 mutant clones of each group could be reverted either spontaneously or induced by treatments with ethyl nitrosourea (ENU), ICR191 or 5-azacytidine (5AC), which indicates that they were caused by point mutations. Two of the revertible mutant clones of spontaneous origin were found to be resistant to HAT but not HAsT medium. These 2 6TGrHATr mutants were the only mutants isolated which could be affected by 5AC with a significant increase in reversion frequency. Chromosome aberration analysis did not indicate any enhancement in aberration frequency in the X-chromosome by 5AC treatment. Studies on the mutagenicity at the OUA locus indicated that the 5AC- and ENU-induced mutation frequencies in these 2 mutants were comparable to the effects in the parent wild-type cell line. Their cellular incorporation of 3H-hypoxanthine was enhanced in the presence of aminopterin, but decreased with L-azaserine indicating that they were phosphoribosyl pyrophosphate (PRPP) mutants. On the basis of these results, it is hypothesized that reversion of these 2 6TGrHATr mutants may occur by a gene amplification mechanism and that this process may be facilitated by 5AC treatment.  相似文献   

11.
Spontaneous and X-ray-induced mutants at the hypoxanthine phosphoribosyl transferase (HPRT) locus have been isolated from V79 Chinese hamster cells and characterized at the biochemical and cytogenetic levels. Fourteen spontaneous and 24 X-ray-induced clones were azaguanine and thioguanine resistant, did not grow in HAT medium (AZRTGRHATS) and failed to incorporate significant levels of [14C]hypoxyanthine. Cytogenetic analysis of two spontaneous and eight X-ray-induced mutants revealed no major X chromosome rearrangements. In two induced mutants, one of which was hypotetraploid (mode 35-39) with 2 X chromosomes, the short arm of the chromosome (Xp) was slightly shorter than normal. A third mutant was hyperdiploid (mode 22-23) compared with the parental clone (mode 21). When compared with wild-type clones, no other cytogenetic changes were evident in the remaining mutants. Analysis at the DNA level using a Chinese hamster HPRT cDNA probe showed major deletion of HPRT sequences in two and partial deletion in another two induced mutants. In two of the mutants with deletions of HPRT sequences there was a visible shortening of the Xp arm. In the other six mutants two spontaneous and four induced) no karyotypic changes or alterations in restriction fragment patterns were detected suggesting that they carry small deletions or point mutations at the HPRT locus.  相似文献   

12.
In vivo hprt mutant frequencies in T-cells of normal human newborns   总被引:3,自引:0,他引:3  
Mutation at the hypoxanthine-guanine phosphoribosyl transferase locus (hprt; HPRT enzyme) in the human fetus was studied by clonal assay of placental cord blood samples from full-term newborns. Conditions for determining hprt mutant frequencies, as defined for adults, were also optimal for studies in newborns. The mean mutant frequency for 45 normal human newborns (37 male, 8 female) was 0.64 X 10(-6) (SD = 0.41 X 10(-6); median value = 0.58 X 10(-6). These values are approx. 10-fold lower than corresponding adult hprt mutant frequency values. Factors such as limiting-dilution cloning efficiencies, delay prior to study of sample, sex, cryopreservation or technician performing the assay did not significantly affect assay results. Maternal smoking did not result in elevated mutant frequency values. Most wild-type and mutant clones studied were CD4 surface antigen positive (helper/inducer). All hprt mutants analyzed lacked HPRT activity.  相似文献   

13.
The Y5606 mouse tumor synthesizing an IgG3, lambda immunoglobulin (Ig) was adapted to continuous growth in tissue culture. The spontaneous mutation rate at the Ig locus (approximately 3 X 10(-5)/cell/generation) in this cell line was found to be less than that in other cultured mouse myeloma lines. Treatment with either ICR-191 or ethyl methanesulfonate (EMS) increased the mutation rate approx. 100-fold. Spontaneous and ICR-191 induced mutants were synthetic variants that is they synthesized either heavy (H) or light (L) chains alone instead of the H and L chains synthesized by the parent. Following EMS treatment assembly variants which were synthesizing structurally altered H chains were isolated in addition to synthetic variants. The assembly variants appear to be a unique consequence of EMS mutagenesis.  相似文献   

14.
The cell line E2 is a SV40-transformed human fibroblast cell line containing a single integrated copy of the bacterial guanine phosphoribosyl transferase (gpt) gene. Treatment of E2 with ultraviolet light (UV) or ethyl methanesulphonate (EMS) induced the formation of Gpt- derivatives. Several induced derivatives have been isolated, and the structure, expression and revertibility of the gpt gene have been analysed. In the majority of cases the Gpt- phenotype resulted from switching off the gpt gene, in most instances by methylation, but in a few cases by phenotypic switching. Thus mutagenic treatment can result in the inactivation of gene expression in human cells. In a small proportion of Gpt- derivatives the gpt sequences were deleted.  相似文献   

15.
The induction of mutation by a variety of mutagens has been measured utilizing the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus in Chinese hamster ovary (CHO) cells (CHO/HGPRT) system). These mutagens include physical agents such as UV light and X-rays, and chemicals such as alkylating agents, ICR-191, and metallic compounds. This system can also be modified for study of the mutagenicity of promutagens such as dimethylnitrosamine (DMN) which require biotransformation for mutagenic action, either through the addition of a rat liver microsomal activation preparation or through a host-mediated activation step using Balb/c athymic mice.  相似文献   

16.
An assay is described for the measurement of mutation induction at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus in Chinese hamster ovary (CHO) cells utilizing resistance to 6-thioguanine (TG). Optimal selection conditions are defined for such parameters as phenotypic expression time prior to selection, and TG concentration and cell density which permits maximum mutant recovery. The nature of the TG-resistant mutants is characterized by several physiological and biochemical methods. The data demonstrate that more than 98% of the mutant clones isolated by this selection procedure contain altered HGPRTase activity. The CHO/HGPRT system thus shows the specificity necessary for a specific gene locus mutational assay.  相似文献   

17.
2-Methoxyethanol (ethylene glycol monomethyl ether) (EGME), is one of the most commonly used solvents for industrial and consumer products. Although the solvent has been shown to be a reproductive toxin the genotoxic activities of EGME especially its metabolites, have not been adequately investigated. The mutagenicity and cytotoxicity of EGME and its major metabolites, methoxyacetaldehyde (MALD) and methoxyacetic acid (MAA) in Chinese hamster ovary (CHO) cells were therefore examined by us. We have determined the mutagenicity of these compounds at the hypoxanthine-guanine phosphoribosyltransferase (hprt) locus in CHO-K1-BH4 cells (CHO/HPRT assay) and the xanthine-guanine phosphoribosyl transferase (gpt) locus in CHO AS52 cells (AS52/GPT assay). The results show that these chemicals are not mutagenic to the hprt locus in CHO-K1-BH4 cells either with or without rat liver S9 mix as the metabolic activating system. With AS52 cells, only MALD is mutagenic in the absence of S9. It induced a dose-dependent mutagenic response. A dose-dependent cytotoxicity was induced by all compounds in both cell lines. MALD is the most and EGME is the least cytotoxic compounds. Our study shows that a metabolite of EGME, MALD, is highly cytotoxic and likely induces deletion-type mutations in AS52 cells. The genotoxic effect of EGME is, therefore, dependent upon its metabolism and its detection is dependent upon the assays used.  相似文献   

18.
The mutational effects of ionising radiation at the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus were studied in human peripheral blood G(0) phase lymphocytes irradiated in vitro with gamma rays. The presence of radiation induced mutants was assessed by selecting the HPRT mutants every week on the basis of 6-thioguanine resistance up to 1 month after irradiation. A dose-related increase of 14.25x10(-6) mutants/Gy was measured after an expression time of 7 days. After 2 weeks from culture starting the fraction of clonable cells in irradiated and control cell populations decreased, limiting the measurements of mutant frequency. The mutational spectrum of the HPRT gene was determined by PCR analyses in a total of 99 mutant clones derived from irradiated lymphocytes. The independent origin of mutant clones carrying the same mutation was assessed by analysing the TCR gamma gene rearrangements. The results showed a dose-related increase of deletion mutants up to 3Gy, whereas point mutation frequency increased only up to 2Gy. Two preferentially deleted regions were identified; one involving the HPRT exon 3, and another one the 3'-terminal and the 3'-flanking region of the gene. One complex mutation involving a non-contiguous deletion of exons 2-5 and 7/8 was observed among the mutants isolated after 3Gy irradiation.  相似文献   

19.
Fluctuation analyses of the spontaneous appearance of 6-thioguanine (TG)-resistant mutants in cultured Chinese hamster ovary (CHO) cells were performed to investigate (1) whether the resistance is induced by the selective agent or is the result of a mutation which occurs prior to the TG selection and (2) to estimate the spontaneous mutation rate at the hypoxanthine—guanine phosphoribosyl transferase (hgprt) locus. The potential problem of phenotypic delay was minimized by allowing an adequate expression time through maintenance of the cultures in a division-arrested, viable state. The results demonstrate that the TG-resistant (TGr) cells arise randomly in the cultures, independently of the selective agent, which is consistent with spontaneous mutations. The average values for mutation rate ± standard deviation, based on 4 independent determinations and 2 methods of calculation, are 3.4 ± 1.2 × 10?7 (median method) and 5.1 ± 1.8 × 10?7 (mean method) mutants/cell/generation.  相似文献   

20.
The mutation rate for the Na+/K+ ATPase locus (ouabain resistance, OuaR) in mammalian cells in culture has been reported to be 10-100-fold lower than the mutation rate of other gene loci in culture, such as the hypoxanthine phosphoribosyl transferase (HPRT) locus. Determination of the mutation rate to ouabain resistance is sensitive to culture conditions and the concentration of ouabain used to select mutants. Our improved growth conditions for human cells have permitted absolute cloning efficiencies of 70-90% and population doubling times of 16-17 h with both normal human diploid fibroblasts, KD, and their chemically induced neoplastic derivative, Hut-11A. Ouabain at 10(-7) M was found to be adequate to select for resistant (OuaR) mutants with an absolute recovery efficiency of 54-102%. Under these conditions, the mutation rates to ouabain resistance for human cells were measured and found to be 1-8.5 X 10(-7)/cell/generation for KD cells and 6-13 X 10(-7)/cell/generation for Hut-11A cells. These rates are 5-25 times higher than previously reported for human cells. Improved growth and the use of a lower concentration of ouabain for selection may allow for the increased recovery of OuaR mutants and an improved estimate of the mutation rate at this locus, which is only 2-10-fold less than the mutation rate at the HPRT locus in the same cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号