首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In hybrid striped bass aquaculture ponds, dinoflagellate blooms were found on 10 of 14 occasions to co-occur with concentrations of urea in excess of 1.5 μM nitrogen. When urea levels were <1.5 μM nitrogen, on seven occasions, no evidence of dinoflagellate blooms was observed in these ponds.  相似文献   

2.
Cochlodinium polykrikoides was the species responsible for the discoloration that occurred between September 15th and 27th, 2000 in a shallow coastal lagoon located in the southern part of the Bahia de La Paz, on the west side of the Gulf of California. Blooms of C. polykrikoides were observed four days after two rainy days with a seawater temperature of 29 to 31 degrees C. Nutrient concentration ranges during the bloom were 0.165-0.897 microM NO2+NO3, 0.16-3.25 microM PO4, and 1.0-35.36 microM SiO4. Abundance of C. polykrikoides ranged from 360 x 10(3) to 7.05 x 10(6)/cells l(-1). Biomass expressed in terms of chlorophyll a was high, ranging from 2.7 to 56.8 mg/m3. A typical dinoflagellate pigment profile (chlorophyll a and c, peridinin, diadinoxantin, and beta-carotene) was recorded. In this study, the red tide occurred in front of several fish and shrimp-culture ponds. No PST toxins were found in the samples. However, 180 fish were found dead in the infected fish-pond; the gills were the most affected part. C. polykrikoides is a cyst-forming species that recurs in this area. New blooms were observed in November 2000 and September-November 2001 in the same area. Anthropogenic activities, such as eutrophication caused by water discharge in this shallow lagoon, and nutrient enrichment in the culture ponds, as well as effects from precipitation and wind stress, could have favored the outbreak of this dinoflagellate.  相似文献   

3.
The paper presents data on primary productivity and phytoplankton communities in new experimental ponds which received the following treatments; ammonium nitrate and triplesuperphosphate, triplesuperphosphate, cracked corn (10% crude protein) and Auburn No. 3 fish feed (36% crude protein). Comparative data on algal communities were also obtained from production ponds which received feeds or fertilizers. Basic ecological data on macro-algae are also presented.
  1. All nutrient additions to experimental ponds resulted in higher levels of gross photosynthesis and greater concentrations of chlorophyll a than were found in the control treatments. Fertilization with both nitrogen and phosphorus gave the highest values. Chlorophyll a and gross photosynthesis were higher in ponds receiving high protein content feed (Auburn No. 3) than in ponds to which low protein content feed (corn) was applied.
  2. Persistent blooms of blue-green algae occurred in ponds receiving nitrogen and phosphorus fertilization. Phosphorus only fertilization produced blooms of blue-greens, but these blooms did not persist as in the ponds to which nitrogen was also added. Control ponds were dominated by green algae. Blue-green algae were seldom abundant in feed treatments.
  3. Production ponds had high level of gross photosynthesis and large concentrations of chlorophyll a.
  4. Many of the production ponds which received feed applications developed heavy blooms of blue-green algae.
  5. The major species of blue-green algae observed in the present study were Oscillatoria sp., Raphidiopsis curvata, Anacystis nidulans, A. aeruginosa, Spirulina sp., and Anabaena circinalis. Heterocyst bearing forms, which can presumably fix nitrogen, were seldom noted in ponds that received continuous additions of nitrogen from fish feeds.
  6. Macro-algae are abundant in many fish ponds. Data illustrating the competition of macro-algae with phytoplankton are presented.
  相似文献   

4.
The relative role of the organic nitrogen source, urea, versus ammonium as a nitrogen source for two species of dinoflagellates was compared with one species of cyanobacteria. Experiments were conducted opportunistically in nutrient-rich marine water during blooms of 34either cyanobacteria or dinoflagellates in outdoor mesocosms. These replicate mesocosms, which were stocked with shrimp fed high-protein formulated feeds, contained high biomasses of phytoplankton (mean chlorophyll a concentrations, 439.2–811.2 μg l−1). 15N-urea and ammonium uptake rates for dinoflagellate-dominated blooms (Gymnodinium pulchellum-complex (Larsen), Karlodinium micrum (Larsen) (Dinophyceae)) were compared with blooms of the cyanobacterium, Romeria sp. (Cyanophyceae) in mesocosms with mean urea and ammonium concentrations ranging from 2.32 to 3.24 μM, and 7.39 to 64.85 μM, respectively. Urea uptake rates were significantly (p < 0.005) lower than ammonium uptake rates irrespective of which algal species dominated the bloom. Additionally urea uptake rates were not significantly higher in G. pulchellum-complex or K. micrum-dominated blooms than in Romeria sp. blooms. These results suggest that G pulchellum complex and K. micrum may not be gaining a competitive advantage in waters high in dissolved organic matter simply by preferentially utilizing urea. The periodic dominance of these species in highly organic environments, such as shrimp ponds, is likely to have a more complex explanation.  相似文献   

5.
《Harmful algae》2009,8(1):158-166
Links between eutrophication, plankton community structure, microzooplankton grazing and dinoflagellate abundance were investigated in two tributaries of the Chesapeake Bay, the Choptank and Patuxent Rivers (MD, USA). Sampling and experiments were conducted during the spring of consecutive dry (below average freshwater flow) and wet (above average freshwater flow) years. During the wet year (2003), dissolved inorganic nitrogen, phytoplankton, and copepod biomass, but not microzooplankton abundance, were greater than in the dry year. In 2003, but not 2002, small cell size photosynthetic dinoflagellates were abundant and blooms occurred in both rivers. Average potential microzooplankton grazing pressure on small dinoflagellates was spatially and temporally variable, but was not significantly different between years. Our data suggest that the variability in microzooplankton grazing pressure provided “windows of opportunity” for net growth of dinoflagellates in response to nutrient loading. The lack of net population growth of micrograzers in response to increases in dinoflagellate prey allowed dinoflagellate blooms to reach relatively high densities, however grazing also appeared to be important in limitation or demise of some blooms. We hypothesize that uncoupling of micrograzer–prey dynamics was partly due to strong top-down control by copepods of microzooplankton in the proportionately more eutrophic year, and perhaps also due to inhibition of microzooplankton grazing/growth once dinoflagellate densities are high.  相似文献   

6.
Diatom blooms in Thau lagoon are always related to rain events leading to inputs of inorganic nutrients such as phosphate, ammonium and nitrate through the watershed with time lags of about 1 week. In contrast, blooms of Alexandrium catenella/tamarense can occur following periods of 3 weeks without precipitation and no significant input of conventional nutrients such as nitrate and phosphate. Field results also indicate a significant drop (from 22–25 to 15–16 μM over 3 days) in dissolved organic nitrogen (DON) at the bloom peak, as well as a significant inverse relationship between A. catenella/tamarense cell density and DON concentrations that is not apparent for diatom blooms. Such dinoflagellate blooms are also associated with elevated (6–9 μM) ammonium concentrations, a curious feature also observed by other investigators, possibly the results of ammonium excretion by this organism during urea or other organic nitrogen assimilation.The potential use of DON by this organism represents short cuts in the nitrogen cycle between plants and nutrients and requires a new model for phytoplankton growth that is different from the classical diatom bloom model. In contrast to such diatom blooms that are due to conventional (nitrate, phosphate) nutrient pulses, Alexandrium catenella/tamarense blooms on the monthly time scale are due to organic nutrient enrichment, a feature that allows net growth rates of about 1.3 d−1, a value higher than that generally attributed to such organisms.  相似文献   

7.
Prorocentrum minimum is a planktonic dinoflagellate known to produce red tides that can be harmful. To recognize localities and understand occurrences of Prorocentrum minimum blooms in Mexico, published data of plankton from 1942 to present, as well as unpublished data from the authors, were reviewed. Studies and reports covered marine and coastal waters of México during different periods. Presence of P. minimum were reported in the Pacific coast, Gulf of California, Gulf of México, and the Caribbean, but blooms have been only reported since 1990. Thirteen bloom events were recorded. Six occurred in shrimp ponds and seven near aquaculture regions or coastal areas where intensive agriculture is practiced. Most of the blooms can be associated with damage to the surrounding marine biota either in aquaculture ponds or open waters. Direct toxicity has not been fully evaluated, but data suggest that low oxygen may not easily explain all of the damage. Interestingly, for yet unknown reasons, cells belonging to the triangular morphotype have seldom been reported in México.  相似文献   

8.
During the late spring and early summer of 1998, an extensive bloom of the dinoflagellate Prorocentrum minimum (>93% of phytoplankton cell density) developed in several tributaries of the Chesapeake Bay, USA. In January 1999, a bloom of mixed dinoflagellates (Heterocapsa rotundata, H. triquetra and P. minimum, with P. minimum forming 21% of total phytoplankton cells and 39% of the total biovolume) developed in the mesohaline Neuse Estuary, North Carolina, USA. During these blooms, experiments were carried out to characterize the nitrogen uptake kinetics of these assemblages with 15N isotopic techniques. Four nitrogenous substrates (NO3, NH4+, urea, and a mixed amino acids substrate) were used to determine uptake rate and substrate preference. Rates of nitrogen uptake were also measured in P. minimum cultures grown on varying growth nitrogen substrates. The calculated kinetic parameters determined for the P. minimum-dominated field assemblages and the cultures indicated a preference for NH4+. NH4+ was also the primary nitrogen source supporting the blooms. In addition, a high affinity for urea was also found, and urea contributed significantly to the Neuse Estuary bloom. Furthermore, results showed that the regulation of uptake for each of the substrates was different: strong positive relationships between affinity and temperature were found for NH4+ and amino acids, while a negative response was found for NO3, and very little response to temperature was noted for urea. These differences suggest that a diversity of nitrogen uptake mechanisms may aid the development and maintenance of P. minimum blooms.  相似文献   

9.
The effects of the pesticide hexachlorocyclohexane (HCH) on the nitrogen fixing blue-green algae Anabaenopsis raciborskii and Anabaena aphanizomenoides commonly found as blooms in fish ponds were studied. These algae were very sensitive to HCH, and a distinct decrease in growth rate was observed on prolonged incubation. Lower concentrations (10 microgram/ml) were algistatic and higher concentrations (60 microgram/ml) were algicidal. The inhibition of nitrogen fixation indicated that the presence of HCH might affect overall nitrogen economy of inland waters.  相似文献   

10.
In highly eutrophic ponds, buoyancy of the gas-vacuolate blue-green alga Anabaenopsis Elenkinii (Miller) was regulated by complex interactions between chemical and physical parameters, as well as by biological interactions between various trophic levels. Algal buoyancy and surface bloom formation were enhanced markedly by decreased light intensity, and to a lesser extent by decreased CO2 availability and increased availability of inorganic nitrogen. In the absence of dense populations of large-bodied Cladocera, early season blooms of diatoms and green algae reduced light availability in the ponds thus creating conditions favorable for increased buoyancy and bloom formation by A. Elenkinii. The appearance of blue-green algal blooms could be prevented by a reduced density of planktivorous fish, which allowed development of dense cladoceran populations. The cladocerans limited the growth of precursory blooms of diatoms and green algae, and given the resulting clear-water conditions, buoyancy of A. Elenkinii was reduced, and blue-green algal blooms never appeared.  相似文献   

11.
Dinoflagellate blooms are frequently observed under temporary eutrophication of coastal waters after heavy rains. Growth of these opportunistic microalgae is believed to be promoted by sudden input of nutrients and the absence or inefficiency of their natural enemies, such as grazers and parasites. Here, numerical simulations indicate that increasing nutrient availability not only promotes the formation of dinoflagellate blooms but can also stimulate their control by protozoan parasites. Moreover, high abundance of phytoplankton other than dinoflagellate hosts might have a significant dilution effect on the control of dinoflagellate blooms by parasites, either by resource competition with dinoflagellates (thus limiting the number of hosts available for infection) or by affecting numerical-functional responses of grazers that consume free-living parasite stages. These outcomes indicate that although both dinoflagellates and their protozoan parasites are directly affected by nutrient availability, the efficacy of the parasitic control of dinoflagellate blooms under temporary eutrophication depends strongly on the structure of the plankton community as a whole.  相似文献   

12.
A monitoring program with a weekly sampling frequency over a 15-month period indicates that urea concentrations above a certain threshold level may trigger the blooms of Alexandrium catenella in Thau lagoon. However, urea concentrations were also sometimes related to ammonium and dissolved organic nitrogen concentrations, indicating that the role of urea may not be a direct one. An original approach is used to assess the relative contribution of several nitrogen sources (nitrate, nitrite, ammonium, urea) to growth of A. catenella by comparing nitrogen uptake rates to nitrogen-based growth rates estimated from dilution experiments during four blooms over a 4-year period (2001–2004) in Thau lagoon. Nitrate and nitrite contributed 0.1–14% and 0.1–5% respectively of growth requirements. Ammonium and urea were the main N sources fueling growth of A. catenella (30–100% and 2–59%, respectively). Indirect estimates indicated that an unidentified N source could also contribute significantly to growth at specific times. Concerning ammonium and urea uptake kinetics, half-saturation constants varied between 0.2 and 20 μgat N L−1 for ammonium and between 0.1 and 44 μgat N L−1 over the 4-year period, indicating that A. catenella can have a competitive advantage over other members of the phytoplankton even under low concentrations of ammonium and urea. However, the observed large changes in ammonium and urea uptake kinetics on a short time scale (days) during blooms preclude more precise estimates of those contributions to growth and require further investigation.  相似文献   

13.
有害甲藻孢囊主要是指能产生毒素和(或)能引起有害藻华发生并对水生态系统产生各种危害效应的甲藻孢囊。我国沿海共记录了10属18种,占全球有害甲藻孢囊的3/4。这些有害甲藻孢囊广泛分布于我国沿海,会对水产养殖业造成严重的经济损失,甚至会威胁人类的身体健康。因此,有害甲藻孢囊的多样性及分布越来越受到人们的关注。对有害甲藻孢囊的准确判断不仅对研究其多样性及分布至关重要,而且有助于水产品的安全检验和有害藻华的早期预警。对有害甲藻孢囊的分类主要存在鉴定困难、鉴定不准确等问题。本文综述了有害甲藻孢囊的危害、中国沿海有害甲藻孢囊的种类和分布,以及有害甲藻孢囊的鉴定等3个方面的研究进展,并提出利用孢囊及营养细胞的形态学特征、分子生物学、毒理学等多学科研究手段准确鉴定有害甲藻孢囊的建议。  相似文献   

14.
Nutrient enrichment of aquatic ecosystems caused dramatic increase in the frequency, magnitude and duration of cyanobacterial blooms. Such blooms may cause fish kills, have adverse health effects on humans and contribute to the loss of biodiversity in aquatic ecosystems. Some 50 eutrophic to hypereutrophic ponds from the Brussels Capital Region (Belgium) were studied between 2003 and 2009. A number of the ponds studied are prone to persistent cyanobacterial blooms. Because of the related health concerns and adverse effects on ecological quality of the affected ponds, a tool for assessment of the risk of cyanobacterial bloom occurrence was needed. The data acquired showed that cyanobacteria have threshold relationships with most of the environmental factors that control them. This is negatively reflected on the predictive capacity of conventional statistical methods based on linear relationships. Therefore, classification trees designed for the treatment of complex data and non-linear relationships were used to assess the risk of cyanobacterial bloom occurrence. The main factors determining cyanobacterial bloom development appeared to be phytoplankton biomass, pH and, to a lesser degree, nitrogen availability. These results suggest that to outcompete eukaryotic phytoplankters cyanobacteria need the presence of environmental constraints: carbon limitation, light limitation and nitrogen limitation, for which they developed a number of adaptations. In the absence of constraints, eukaryotic phytoplankters appear to be more competitive. Therefore, prior build up of phytoplankton biomass seems to be essential for cyanobacterial dominance. Classification trees proved to be an efficient tool for the bloom risk assessment and allowed the main factors controlling bloom development to be identified as well as the risk of bloom occurrence corresponding to the conditions determined by these factors to be quantified. The results produced by the classification trees are consistent with those obtained earlier by probabilistic approach to bloom risk assessment. They can facilitate planning management interventions and setting restoration priorities.  相似文献   

15.
Oysters, Crassostrea virginica, from two populations, one from a coastal pond experiencing repeated dinoflagellate blooms (native), and the other from another site where blooms have not been observed (non-native), were analyzed for cellular immune system profiles before and during natural and simulated (by adding cultured algae to natural plankton) blooms of the dinoflagellate Prorocentrum minimum. Significant differences in hemocytes between the two oyster populations, before and after the blooms, were found with ANOVA, principal components analysis (PCA) and ANOVA applied to PCA components. Stress associated with blooms of P. minimum included an increase in hemocyte number, especially granulocytes and small granulocytes, and an increase in phagocytosis associated with a decrease in aggregation and mortality of the hemocytes, as compared with oysters in pre-bloom analyses. Non-native oysters constitutively had a hemocyte profile more similar to that induced by P. minimum than that of native oysters, but this profile did not impart increased resistance. The effect of P. minimum on respiratory burst was different according to the origin of the oysters, with the dinoflagellate causing a 35% increase in the respiratory burst of the native oysters but having no effect on that of the non-native oysters. Increased respiratory burst in hemocytes of native oysters exposed to P. minimum in both simulated and natural blooms may represent an adaptation to annual blooms whereby surviving native oysters protect themselves against tissue damage from ingested P. minimum.  相似文献   

16.
Previous studies carried out in the bay of Brest on daily shell growth of Pecten maximus have demonstrated that temperature is a major control on daily shell growth in contrast to food supply. However, repeated events of slow growth have been observed during diatom and dinoflagellate blooms. The aim of this study was to determine how fluctuations in environmental parameters influence P. maximus food intake and daily shell growth rate. In 1995, P. maximus food intake and growth were highest when Cerataulina pelagica (diatom) blooms occurred and lowest during Gymnodinium cf. nagasakiense (dinoflagellate) blooms. During blooms of other diatom species, P. maximus food intake and growth were high when the algal concentration did not exceed a critical threshold, dependent upon the dominant species and sedimentation rate of diatoms. These results demonstrate that the morphological and physiological features of phytoplankton bloom species strongly affect benthic microphytophagy, a component of benthic-pelagic coupling.  相似文献   

17.
Ceratium furca is a primarily photosynthetic dinoflagellate also capable of ingesting other protists. During 1995 and 1996, we documented the abundance of C. furca in Chesapeake Bay and determined grazing rates on prey labeled with fluorescent microspheres. Abundance usually remained below 20 cells ml(-1), although the species was capable of localized late-summer blooms (< or = 478 cells ml(-1)) in the more saline lower to mid-Bay region. Feeding rates ranged from 0 to 0.11 prey dinoflagellate(-1) h(-1) or from 0 to 37 pg C dinoflagellate(-1) h(-1) and were highest at lower salinities. Clearance rates averaged 2.5 +/- 0.35 microl dinoflagellate(-1) h(-1). Impact of C. furca feeding on prey populations was higher in the lower Bay, averaging 67% of Strobilidium spp. removed d(-1). Ingestion rates were positively correlated with prey abundance and dissolved inorganic nitrogen, but negatively with salinity, depth, dissolved inorganic phosphorus, and inorganic P:N ratio. Daily consumption of prey biomass by C. furca averaged 4.6% of body carbon, 6.5% of body nitrogen, and 4.0% of body phosphorus. with maximal values of 36, 51, and 32%, respectively. Thus, the ability to exploit an organic nutrient source when inorganic nutrients are limiting may give C. furca a competitive advantage over purely photosynthetic species.  相似文献   

18.
《Harmful algae》2008,7(6):781-789
A monitoring program with a weekly sampling frequency over a 15-month period indicates that urea concentrations above a certain threshold level may trigger the blooms of Alexandrium catenella in Thau lagoon. However, urea concentrations were also sometimes related to ammonium and dissolved organic nitrogen concentrations, indicating that the role of urea may not be a direct one. An original approach is used to assess the relative contribution of several nitrogen sources (nitrate, nitrite, ammonium, urea) to growth of A. catenella by comparing nitrogen uptake rates to nitrogen-based growth rates estimated from dilution experiments during four blooms over a 4-year period (2001–2004) in Thau lagoon. Nitrate and nitrite contributed 0.1–14% and 0.1–5% respectively of growth requirements. Ammonium and urea were the main N sources fueling growth of A. catenella (30–100% and 2–59%, respectively). Indirect estimates indicated that an unidentified N source could also contribute significantly to growth at specific times. Concerning ammonium and urea uptake kinetics, half-saturation constants varied between 0.2 and 20 μgat N L−1 for ammonium and between 0.1 and 44 μgat N L−1 over the 4-year period, indicating that A. catenella can have a competitive advantage over other members of the phytoplankton even under low concentrations of ammonium and urea. However, the observed large changes in ammonium and urea uptake kinetics on a short time scale (days) during blooms preclude more precise estimates of those contributions to growth and require further investigation.  相似文献   

19.
Summary The benefit of fertilizer application during establishment of a tree plantation depends on effective nutrient uptake and the utilization of the nutrients in growth. Five urea treatments (0, 50, 75, 150, and 450 kg N/ha) were applied in a completely randomized plot design to a field planted with American sycamore (Platanus occidentalis L.) seedlings to evaluate growth responses and nitrogen use efficiency during the first season of plantation establishment. The site was in the Oak Ridge Reservation in eastern Tennessee on a highly weathered soil. Harvests were conducted on 3 occasions during a 22 week experimental period, and dry weights of stems, leaves, and large and small roots were measured. Chemical analyses were conducted on plant tissues from the 0, 75, and 450 kg N/ha treatments. Plant dry weight increased with urea application and growth analysis showed that this was mainly associated with increase in leaf area and to a minor extent with increase in net assimilation rate. Root weight increased significantly with urea application. The specific absorption rate of roots for several nutrients was greater at higher urea levels for the first 2 harvest periods, but this pattern reversed during the 3rd growth period. Surprisingly, manganese uptake and the specific absorption rate for manganese were enhanced with higher urea application. The acidifying effect of urea nitrification is a likely explanation for the increased Mn availability, and nitrate leaching and/or nitrogen immobilization contributed to low uptake of urea-N by the seedlings. The proportion of the applied nitrogen incorporated into the seedlings was 1.5 and 0.6% for the 75 and 450 kg N/ha urea treatments, respectively. Broadcast fertilizer application is not an effective way of supplying nutrients to seedlings during plantation establishment.  相似文献   

20.
The sea area adjacent to the Changjiang River estuary is the most notable region for harmful algal blooms (HABs1) in China as both diatom and dinoflagellate blooms have been recorded in this region. Affected by the Changjiang diluted water (CDW2) and currents from the open ocean (i.e., Taiwan warm current, TWC3), the environmental conditions in the coastal waters adjacent to the Changjiang River estuary are quite complex. To obtain a better understanding of the mechanisms of HABs in this region, analyses based on field investigation data collected by the National Basic Research Priority Program (CEOHAB I4) were performed using principle component analysis (PCA5), multiple regression analysis (MRA6) and path analysis (PA7). The results suggested that phosphate and silicate are the major factors that directly affect the diatom bloom, while dissolved inorganic nitrogen (DIN8), temperature and turbidity are the factors that influence the dinoflagellate bloom. CDW and the TWC have different roles in affecting the two types of algal blooms. CDW, which has a high concentration of nitrate and silicate, is essential for the diatom bloom, while the intrusion of the TWC (mainly Kuroshio subsurface water that is rich in phosphate at the bottom) is critical for the maintenance of the dinoflagellate bloom. The results of this study offer a better understanding of the mechanisms of HABs in the East China Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号