首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mediterranean mountain ranges harbour highly endemic biota in islandlike habitats. Their topographic diversity offered the opportunity for mountain species to persist in refugial areas during episodes of major climatic change. We investigate the role of Quaternary climatic oscillations in shaping the demographic history and distribution ranges in the spider Harpactocrates ravastellus, endemic to the Pyrenees. Gene trees and multispecies coalescent analyses on mitochondrial and nuclear DNA sequences unveiled two distinct lineages with a hybrid zone around the northwestern area of the Catalan Pyrenees. The lineages were further supported by morphological differences. Climatic niche‐based species distribution models (SDMs) identified two lowland refugia at the western and eastern extremes of the mountain range, which would suggest secondary contact following postglacial expansion of populations from both refugia. Neutrality test and approximate Bayesian computation (ABC) analyses indicated that several local populations underwent severe bottlenecks followed by population expansions, which in combination with the deep population differentiation provided evidence for population survival during glacial periods in microrefugia across the mountain range, in addition to the main Atlantic and Mediterranean (western and eastern) refugia. This study sheds light on the complexities of Quaternary climatic oscillations in building up genetic diversity and local endemicity in the southern Europe mountain ranges.  相似文献   

2.
The shrubby milkwort (Polygala chamaebuxus L.) is widely distributed in the Alps, but occurs also in the lower mountain ranges of Central Europe such as the Franconian Jura or the Bohemian uplands. Populations in these regions may either originate from glacial survival or from postglacial recolonization. In this study, we analyzed 30 populations of P. chamaebuxus from the whole distribution range using AFLP (Amplified Fragment Length Polymorphism) analysis to identify glacial refugia and to illuminate the origin of P. chamaebuxus in the lower mountain ranges of Central Europe. Genetic variation and the number of rare fragments within populations were highest in populations from the central part of the distribution range, especially in the Southern Alps (from the Tessin Alps and the Prealps of Lugano to the Triglav Massiv) and in the middle part of the northern Alps. These regions may have served, in accordance with previous studies, as long‐term refugia for the glacial survival of the species. The geographic pattern of genetic variation, as revealed by analysis of molecular variance, Bayesian cluster analysis and a PopGraph genetic network was, however, only weak. Instead of postglacial recolonization from only few long‐term refugia, which would have resulted in deeper genetic splits within the data set, broad waves of postglacial expansion from several short‐term isolated populations in the center to the actual periphery of the distribution range seem to be the scenario explaining the observed pattern of genetic variation most likely. The populations from the lower mountain ranges in Central Europe were more closely related to the populations from the southwestern and northern than from the nearby eastern Alps. Although glacial survival in the Bohemian uplands cannot fully be excluded, P. chamaebuxus seems to have immigrated postglacially from the southwestern or central‐northern parts of the Alps into these regions during the expansion of the pine forests in the early Holocene.  相似文献   

3.
Species that inhabit naturally fragmented environments are expected to be spatially structured and exhibit reduced genetic diversity at the periphery of their range. Patterns of differentiation may also reflect historical processes such as recolonization from glacial refugia. We examined the relative importance of these factors in shaping the spatial patterns of genetic differentiation across the range of an alpine specialist, the North American mountain goat (Oreamnos americanus). Contrary to fossil evidence that suggests a single southern refugium, we detected evidence for additional refugia in northern British Columbia and the Alaskan coast using both mitochondrial and microsatellite DNA. A core area of elevated genetic diversity characterized both regions, and molecular dating suggested a recent Pleistocene split was followed by demographic expansion. Across their range, mountain goats were highly genetically structured and displayed the expected pattern of declining diversity toward the periphery. Gene flow was high within contiguous mountain ranges, but cross‐assignments paradoxically suggest that long‐distance contemporary dispersal movements are not uncommon. These results improve our understanding of how historical vicariance and contemporary fragmentation influence population differentiation, and have implications for conserving the adaptive potential of alpine populations and habitat.  相似文献   

4.
Aim Based on extensive range‐wide sampling, we address the phylogeographical history of one of the most widespread and taxonomically complex sedges in Europe, Carex nigra s. lat. We compare the genetic structure of the recently colonized northern areas (front edge) and the long‐standing southern areas (rear edge), and assess the potential genetic basis of suggested taxonomic divisions at the rank of species and below. Location Amphi‐Atlantic, central and northern Europe, circum‐Mediterranean mountain ranges, central Siberia, Himalayas. Methods A total of 469 individuals sampled from 83 populations, covering most of the species’ range, were analysed with amplified fragment length polymorphism (AFLP) and chloroplast DNA (cpDNA) markers. Bayesian clustering, principal coordinates analysis, and estimates of diversity and differentiation were used for the analysis of AFLP data. CpDNA data were analysed with statistical parsimony networks and maximum parsimony and Bayesian inference of phylogenetic trees. Results Overall genetic diversity was high, but differentiation among populations was limited. Major glacial refugia were inferred in the Mediterranean Basin and in western Russia; in addition, there may have been minor refugia in the North Atlantic region. In the southern part of the range, we found high levels, but geographically quite poorly structured genetic diversity, whereas the levels of genetic diversity varied among different areas in the north. North American populations were genetically very similar to the European populations. Main conclusions The data are consistent with extensive gene flow, which has obscured the recent history of the taxon. The limited differentiation in the south probably results from the mixing of lineages expanding from several local refugia. Northward post‐glacial colonization resulted in a leading‐edge pattern of low diversity in the Netherlands, Belgium, Scotland and Iceland, whereas the observed high diversity levels in Fennoscandia suggest broad‐fronted colonization from the south as well as from the east. The patterns found in the American populations are consistent with post‐glacial colonization, possibly even with anthropogenic introduction from Europe. Our data also suggest that the tussock‐forming populations of C. nigra, often referred to as a distinct species (Carex juncella), represent an ecotype that has originated repeatedly from different populations with creeping rhizomes.  相似文献   

5.
The combined actions of climatic variations and landscape barriers shape the history of natural populations. When organisms follow their shifting niches, obstacles in the landscape can lead to the splitting of populations, on which evolution will then act independently. When two such populations are reunited, secondary contact occurs in a broad range of admixture patterns, from narrow hybrid zones to the complete dissolution of lineages. A previous study suggested that barn owls colonized the Western Palearctic after the last glaciation in a ring-like fashion around the Mediterranean Sea, and conjectured an admixture zone in the Balkans. Here, we take advantage of whole-genome sequences of 94 individuals across the Western Palearctic to reveal the complex history of the species in the region using observational and modeling approaches. Even though our results confirm that two distinct lineages colonized the region, one in Europe and one in the Levant, they suggest that it predates the last glaciation and identify a secondary contact zone between the two in Anatolia. We also show that barn owls recolonized Europe after the glaciation from two distinct glacial refugia: a previously identified western one in Iberia and a new eastern one in Italy. Both glacial lineages now communicate via eastern Europe, in a wide and permeable contact zone. This complex history of populations enlightens the taxonomy of Tyto alba in the region, highlights the key role played by mountain ranges and large water bodies as barriers and illustrates the power of population genomics in uncovering intricate demographic patterns.  相似文献   

6.
The long-tailed pygmy rice rat Oligoryzomys longicaudatus (Sigmodontinae), the major reservoir of Hantavirus in Chile and Patagonian Argentina, is widely distributed in the Mediterranean, Temperate and Patagonian Forests of Chile, as well as in adjacent areas in southern Argentina. We used molecular data to evaluate the effects of the last glacial event on the phylogeographic structure of this species. We examined if historical Pleistocene events had affected genetic variation and spatial distribution of this species along its distributional range. We sampled 223 individuals representing 47 localities along the species range, and sequenced the hypervariable domain I of the mtDNA control region. Aligned sequences were analyzed using haplotype network, bayesian population structure and demographic analyses. Analysis of population structure and the haplotype network inferred three genetic clusters along the distribution of O. longicaudatus that mostly agreed with the three major ecogeographic regions in Chile: Mediterranean, Temperate Forests and Patagonian Forests. Bayesian Skyline Plots showed constant population sizes through time in all three clusters followed by an increase after and during the Last Glacial Maximum (LGM; between 26,000-13,000 years ago). Neutrality tests and the "g" parameter also suggest that populations of O. longicaudatus experienced demographic expansion across the species entire range. Past climate shifts have influenced population structure and lineage variation of O. longicaudatus. This species remained in refugia areas during Pleistocene times in southern Temperate Forests (and adjacent areas in Patagonia). From these refugia, O. longicaudatus experienced demographic expansions into Patagonian Forests and central Mediterranean Chile using glacial retreats.  相似文献   

7.
Aim  The aim of this study is to analyse the genetic population structure of Meum athamanticum Jacq. in order to explore the alternative hypotheses (1) that the central and northern highland populations are the result of post-glacial recolonization from southern refugia, and the disjunct distribution of M. athamanticum can be explained by modern ecological conditions, or (2) that extant populations north of the Alps and Pyrenees persisted in situ during glacial periods.
Location  Europe.
Methods  Variation of amplified fragment length polymorphisms (AFLPs) was analysed for 23 populations from the entire range of the species. We used band-based approaches and methods based on allele frequencies to measure genetic diversity and to identify population structure.
Results  Our analyses reveal a north–south differentiation within M. athamanticum . High levels of genetic diversity, as well as private fragments, are found in populations both north and south of the Alps. Differentiation among populations is lower in the northern than in the southern population group, and significant isolation-by-distance is found only in the latter group.
Main conclusions  Our results indicate that M. athamanticum survived the last ice age in multiple refugia throughout its contemporary range and did not expand into areas north of the Alps from southern refugia. We found evidence that regional-scale migration in northern, formerly periglacial, parts of the species range has resulted in the intermingling of populations. In contrast, southern populations are characterized by long-term isolation. The south-west Alps represent an area where immigration and mixing of populations from northern and southern refugia appears to have taken place.  相似文献   

8.
Corynephorus canescens (L.) P.Beauv. is an outbreeding, short‐lived and wind‐dispersed grass species, highly specialised on scattered and disturbance‐dependent habitats of open sandy sites. Its distribution ranges from the Iberian Peninsula over Atlantic regions of Western and Central Europe, but excludes the two other classical European glacial refuge regions on the Apennine and Balkan Peninsulas. To investigate genetic patterns of this uncommon combination of ecological and biogeographic species characteristics, we analysed AFLP variation among 49 populations throughout the European distribution range, expecting (i) patterns of SW European glacial refugia and post‐glacial expansion to the NE; (ii) decreasing genetic diversity from central to marginal populations; and (iii) interacting effects of high gene flow and disturbance‐driven genetic drift. Decreasing genetic diversity from SW to NE and distinct gene pool clustering imply refugia on the Iberian Peninsula and in western France, from where range expansion originated towards the NE. High genetic diversity within and moderate genetic differentiation among populations, and a significant pattern of isolation‐by‐distance indicate a gene flow drift equilibrium within C. canescens, probably due to its restriction to scattered and dynamic habitats and limited dispersal distances. These features, as well as the re‐colonisation history, were found to affect genetic diversity gradients from central to marginal populations. Our study emphasises the need for including the specific ecology into analyses of species (re–)colonisation histories and range centre–margin analyses. To account for discontinuous distributions, new indices of marginality were tested for their suitability in studies of centre–periphery gradients.  相似文献   

9.
We aim to infer a combined scenario for the evolution of the Woodland Ringlet, Erebia medusa, in Central Europe based on analyses of part of the mitochondrial cytochrome oxydase subunit I (COI) and a published allozyme data set. We sequenced 529 bp of COI for 158 butterflies from 32 populations from almost the entire western distribution range of the species. We applied population genetic [spatial analysis of molecular variance (samova )] and phylogeographical analyses as well as coalescence simulation to test if the published allozyme scenario supports or contradicts the observed haplotype distribution. We recorded 16 haplotypes of which four represent a total of 82%. samova grouped the 32 populations into four geographically coherent groups: (1) western Central Europe, (2) Central Europe, (3) eastern Central Europe and (iv) western Pannonia. Mismatch distribution analyses and haplotype networks are in coincidence with constant population growth and reveal a relatively shallow phylogeographical structure. We evaluated the level of discordance between population histories and gene trees using Slatkins s and the deep coalescence statistics based on our mtDNA data. These estimators decline the previously published allozyme scenario of survival in different extra‐Mediterranean refugia in Europe with an onset of differentiation at the beginning of the last ice age some 70 000 years ago. However, it supports a refined scenario if we assume an onset of vicariance driven differentiation in these refugia after the end of the middle Würm interstadials some 30 000 years ago. Therefore, the general evolutionary history of this species in Europe apparently is very recent. Most probably, areas adjoining the high mountain regions as Alps and northern Carpathians were of great importance for the late Würm glacial survival of species like Erebia medusa.  相似文献   

10.
We used chloroplast polymerase chain reaction-restriction-fragment length polymorphism (PCR-RFLP) and chloroplast microsatellites to assess the structure of genetic variation and postglacial history across the entire natural range of the common ash (Fraxinus excelsior L.), a broad-leaved wind-pollinated and wind-dispersed European forest tree. A low level of polymorphism was observed, with only 12 haplotypes at four polymorphic microsatellites in 201 populations, and two PCR-RFLP haplotypes in a subset of 62 populations. The clear geographical pattern displayed by the five most common haplotypes was in agreement with glacial refugia for ash being located in Iberia, Italy, the eastern Alps and the Balkan Peninsula, as had been suggested from fossil pollen data. A low chloroplast DNA mutation rate, a low effective population size in glacial refugia related to ash's life history traits, as well as features of postglacial expansion were put forward to explain the low level of polymorphism. Differentiation among populations was high (GST= 0.89), reflecting poor mixing among recolonizing lineages. Therefore, the responsible factor for the highly homogeneous genetic pattern previously identified at nuclear microsatellites throughout western and central Europe (Heuertz et al. 2004) must have been efficient postglacial pollen flow. Further comparison of variation patterns at both marker systems revealed that nuclear microsatellites identified complex differentiation patterns in south-eastern Europe which remained undetected with chloroplast microsatellites. The results suggest that data from different markers should be combined in order to capture the most important genetic patterns in a species.  相似文献   

11.
Hamill RM  Doyle D  Duke EJ 《Heredity》2006,97(5):355-365
Fossil evidence shows that populations of species that currently inhabit arctic and boreal regions were not isolated in refugia during glacial periods, but instead maintained populations across large areas of central Europe. These species commonly display little reduction in genetic diversity in northern areas of their range, in contrast to many temperate species. The mountain hare currently inhabits both temperate and arctic-boreal regions. We used nuclear microsatellite and mtDNA sequence data to examine population structure and alternate phylogeographic hypotheses for the mountain hare, that is, temperate type (lower genetic diversity in northern areas) and arctic-boreal type (high northern genetic diversity). Both data sets revealed concordant patterns. Highest allelic richness, expected heterozygosity and mtDNA haplotype diversity were identified in the most northerly subspecies, indicating that this species more closely maps to phylogeographic patterns observed in arctic-boreal rather than temperate species. With regard to population structure, the Alpine and Fennoscandian subspecies were most genetically similar (F(ST) approximately 0.1). These subspecies also clustered together on the mtDNA tree and were assigned with highest likelihood to a common Bayesian cluster. This is consistent with fossil evidence for intermediate populations in the central European plain, persisting well into the postglacial period. In contrast, the geographically close Scottish and Irish populations occupied separate Bayesian clusters, distinct clades on the mtDNA maximum likelihood tree and were genetically divergent from each other (F(ST) > 0.4) indicating the influence of genetic drift, long isolation (possibly dating from the late glacial era) and/or separate postglacial colonisation routes.  相似文献   

12.
Norway spruce (Picea abies [L.] Karst.) is a broadly distributed European conifer tree whose history has been intensively studied by means of fossil records to infer the location of full‐glacial refugia and the main routes of postglacial colonization. Here we use recently compiled fossil pollen data as a template to examine how past demographic events have influenced the species’ modern genetic diversity. Variation was assessed in the mitochondrial nad1 gene containing two minisatellite regions. Among the 369 populations (4876 trees) assayed, 28 mitochondrial variants were identified. The patterns of population subdivision superimposed on interpolated fossil pollen distributions indicate that survival in separate refugia and postglacial colonization has led to significant structuring of genetic variation in the southern range of the species. The populations in the northern range, on the other hand, showed a shallow genetic structure consistent with the fossil pollen data, suggesting that the vast northern range was colonized from a single refugium. Although the genetic diversity decreased away from the putative refugia, there were large differences between different colonization routes. In the Alps, the diversity decreased over short distances, probably as a result of population bottlenecks caused by the presence of competing tree species. In northern Europe, the diversity was maintained across large areas, corroborating fossil pollen data in suggesting that colonization took place at high population densities. The genetic diversity increased north of the Carpathians, probably as a result of admixture of expanding populations from two separate refugia.  相似文献   

13.
Pleistocene glaciations often resulted in differentiation of taxa in southern European peninsulas, producing the high levels of endemism characteristic of these regions (e.g. the Iberian Peninsula). Despite their small ranges, endemic species often exhibit high levels of intraspecific differentiation as a result of a complex evolutionary history dominated by successive cycles of fragmentation, expansion and subsequent admixture of populations. Most evidence so far has come from the study of species with an Atlantic distribution in northwestern Iberia, and taxa restricted to Mediterranean‐type habitats remain poorly studied. The Iberian Midwife toad (Alytes cisternasii) is a morphologically conserved species endemic to southwestern and central Iberia and a typical inhabitant of Mediterranean habitats. Applying highly variable genetic markers from both mitochondrial and nuclear genomes to samples collected across the species’ range, we found evidence of high population subdivision within A. cisternasii. Mitochondrial haplotypes and microsatellites show geographically concordant patterns of genetic diversity, suggesting population fragmentation into several refugia during Pleistocene glaciations followed by subsequent events of geographical and demographic expansions with secondary contact. In addition, the absence of variation at the nuclear β‐fibint7 and Ppp3caint4 gene fragments suggests that populations of A. cisternasii have been recurrently affected by episodes of extinction and recolonization, and that documented patterns of population subdivision are the outcome of recent and multiple refugia. We discuss the evolutionary history of the species with particular interest in the increasing relevance of Mediterranean refugia for the survival of genetically differentiated populations during the Pleistocene glaciations as revealed by studies in co‐distributed taxa.  相似文献   

14.
Understanding the dual roles of demographic and selective processes in the buildup of population divergence is one of the most challenging tasks in evolutionary biology. Here, we investigated the demographic history of Atlantic salmon across the entire species range using 2035 anadromous individuals from North America and Eurasia. By combining results from admixture graphs, geo‐genetic maps, and an Approximate Bayesian Computation (ABC) framework, we validated previous hypotheses pertaining to secondary contact between European and Northern American populations, but also identified secondary contacts in European populations from different glacial refugia. We further identified the major sources of admixture from the southern range of North America into more northern populations along with a strong signal of secondary gene flow between genetic regional groups. We hypothesize that these patterns reflect the spatial redistribution of ancestral variation across the entire North American range. Results also support a role for linked selection and differential introgression that likely played an underappreciated role in shaping the genomic landscape of species in the Northern hemisphere. We conclude that studies between partially isolated populations should systematically include heterogeneity in selective and introgressive effects among loci to perform more rigorous demographic inferences of the divergence process.  相似文献   

15.

Background

Sky islands, formed by the highest reaches of mountain tracts physically isolated from one another, represent one of the biodiversity-rich regions of the world. Comparative studies of geographically isolated populations on such islands can provide valuable insights into the biogeography and evolution of species on these islands. The Western Ghats mountains of southern India form a sky island system, where the relationship between the island structure and the evolution of its species remains virtually unknown despite a few population genetic studies.

Methods and Principal Findings

We investigated how ancient geographic gaps and glacial cycles have partitioned genetic variation in modern populations of a threatened endemic bird, the White-bellied Shortwing Brachypteryx major, across the montane Shola forests on these islands and also inferred its evolutionary history. We used Bayesian and maximum likelihood-based phylogenetic and population-genetic analyses on data from three mitochondrial markers and one nuclear marker (totally 2594 bp) obtained from 33 White-bellied Shortwing individuals across five islands. Genetic differentiation between populations of the species correlated with the locations of deep valleys in the Western Ghats but not with geographical distance between these populations. All populations revealed demographic histories consistent with population founding and expansion during the Last Glacial Maximum. Given the level of genetic differentiation north and south of the Palghat Gap, we suggest that these populations be considered two different taxonomic species.

Conclusions and Significance

Our results show that the physiography and paleo-climate of this region historically resulted in multiple glacial refugia that may have subsequently driven the evolutionary history and current population structure of this bird. The first avian genetic study from this biodiversity hotspot, our results provide insights into processes that may have impacted the speciation and evolution of the endemic fauna of this region.  相似文献   

16.
This study investigated the phylogeographic structure of Cistus ladanifer, in order to locate its Quaternary refugia, reconstruct its recolonisation patterns and assess the role of geographical features (mountain ranges, rivers and the Strait of Gibraltar) as barriers to its seed flow and expansion through the Western Mediterranean. Thirty-eight populations were screened for length variation of polymorphic chloroplast simple sequence repeats (cpSSRs). Statistical analyses included estimation of haplotypic diversity, hierarchical analysis of molecular variation (amova) and fixation indices. Mantel tests, SAMOVA and BARRIER analyses were applied to evaluate the geographical partitioning of genetic diversity across the entire species range. Pollen data from bibliography were used to complement molecular inferences. Chlorotype diversity within populations was similar throughout the natural range of C. ladanifer (mean haplotypic diversity=0.32). High differentiation among populations was estimated (G(ST)=0.60). Our data suggest that the barriers of the Strait of Gibraltar and the Betic ranges may have favoured the divergence during glacial periods of four different lineages of populations inferred with SAMOVA. The main northward colonisation of in the Iberian Peninsula occurred from refugia in southwest Iberia. This process may have been influenced by human activities (forest clearance, livestock grazing and even commerce) in the Iberian Peninsula. In contrast, populations in the Betic area have conserved a specific haplotype.  相似文献   

17.
There is an ongoing debate about the glacial history of non‐arctic species in central and northern Europe. The two main hypotheses are: (1) postglacial colonization from refugia outside this region; (2) glacial survival in microclimatically favourable sites within the periglacial areas. In order to clarify the glacial history of a boreo‐montane tall forb, we analysed AFLPs from populations of Cicerbita alpina through most of its range (Scandinavia, the mountains of central Europe, the Alps, the Pyrenees and the Balkan Peninsula). We found a major differentiation between the Pyrenean population and all others, supported by principal coordinate, neighbour joining and STRUCTURE analyses. Furthermore, three populations from the central and north‐eastern Alps were genetically distinct from the bulk of populations from Scandinavia, central Europe, the Alps and the Balkan Peninsula. Most populations, including those from central and northern Europe, had moderate to high levels of genetic diversity (mean Shannon index HSh = 0.292, mean percentage of polymorphic loci P = 54.1%, mean Nei's gene diversity H = 0.195). The results indicate separate glacial refugia in the Pyrenean region and the Italian Alps. Furthermore, they provide evidence of glacial persistence in cryptic refugia north of the Alps, from where Scandinavia and most of the Alps are likely to have been colonized following deglaciation. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164 , 142–154.  相似文献   

18.
Pollen cores and plant and animal fossils suggest that global climate changes at the end of the last glacial period caused range expansions in organisms indigenous to the North American desert regions, but this suggestion has rarely been investigated from a population genetic perspective. In order to investigate the impact of Pleistocene climate changes and glacial/interglacial cycling on the distribution and population structure of animals in North American desert communities, biogeographical patterns in the flightless, warm-desert cactus beetles, Moneilema gigas and Moneilema armatum, were examined using mitochondrial DNA (mtDNA) sequence data from the cytochrome oxidase I (COI) gene. Gene tree relationships between haplotypes were inferred using parsimony, maximum-likelihood, and Bayesian analysis. Nested clade analysis and coalescent modelling using the programs mdiv and fluctuate were used to identify demographically independent populations, and to test the hypothesis that Pleistocene climate changes caused recent range expansions in these species. A sign test was used to evaluate the probability of observing concerted population growth across multiple, independent populations. The phylogeographical and nested clade analyses reveal a history of northward expansion in both of these species, as well as a history of past range fragmentation, followed by expansion from refugia. The coalescent analyses provide highly significant evidence for independent range expansions from multiple refugia, but also identify biogeographical patterns that predate the most recent glacial period. The results indicate that widespread desert environments are more ancient than has been suggested in the past.  相似文献   

19.
Aim The aim of this study is to detect extant patterns of population genetic structure of Fraxinus mandshurica var. japonica in Japan, and to provide insights into the post‐glacial history of this species during the Holocene. Location Hokkaido and Honshu islands, Japan (including the Oshima and Shimokita peninsulas). Methods We examined nine polymorphic nuclear microsatellite loci to assess genetic variation within and among 15 populations across almost the entire range of the species in Japan. Extant patterns of geographical structure were analysed using Bayesian clustering, Monmonier’s algorithm, analysis of molecular variance, Mantel tests and principal coordinates analysis. Recent bottlenecks within populations and regional genetic variation were also assessed. Results Northern populations (Hokkaido Island and the Shimokita Peninsula) formed a single homogeneous deme, maintaining the highest level of allelic diversity on the Oshima Peninsula. By contrast, southern populations (Honshu Island) demonstrated strong substructure on both coasts. Specifically, populations on the Pacific side of Honshu exhibited significant bottlenecks and erosion of allelic diversity but preserved distinct subclusters diverging from widespread subclusters on the Japan Sea side of this island. Main conclusions Genetic evidence and life history traits suggest that F. mandshurica occupied cryptic northern refugia on the Oshima Peninsula during the Last Glacial Maximum, which is reflected in the species’ extant northern distribution. Strong geographical structure in southern populations, in agreement with fossil pollen records, suggests geographical isolation by mountain ranges running north–south along Honshu. Given that this tree species is cold‐adapted and found in riparian habitats, populations on the Pacific side of Honshu probably contracted into higher‐elevation swamps during warm post‐glacial periods, leading to a reduction of effective population sizes and rare allelic richness.  相似文献   

20.
Recent decreases in biodiversity in Europe are commonly thought to be due to land use and climate change. However, the genetic diversity of populations is also seen as one essential factor for their fitness. Genetic diversity in species across the continent of Europe has been recognized as being in part a consequence of ice age isolation in southern refugia and postglacial colonization northwards, and these phylogeographical patterns may themselves affect the adaptability of populations. Recent work on butterfly species with different refugia, colonization paths and genetic structures allows this idea to be examined. The 'chalk-hill blue' pattern is one of decreasing genetic diversity from south to north, whereas the 'woodland ringlet' pattern shows greater genetic diversity in eastern than in western lineages. Comparison of population demographic trends in species with these biogeographical patterns reveals higher rates of decrease with lower genetic diversity. This indicates reduced adaptability due to genetic impoverishment as a result of glacial and postglacial range changes. Analysis of phylogeographical pattern may be a useful guide to interpreting demographic trends and in conservation planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号