首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract.  To reveal circadian characteristics and entrainment mechanisms in the Japanese honeybee Apis cerana japonica , the locomotor-activity rhythm of foragers is investigated under programmed light and temperature conditions. After entrainment to an LD 12 : 12 h photoperiodic regime, free-running rhythms are released in constant dark (DD) or light (LL) conditions with different free-running periods. Under the LD 12 : 12 h regime, activity offset occurs approximately 0.4 h after lights-off transition, assigned to circadian time (Ct) 12.4 h. The phase of activity onset, peak and offset, and activity duration depends on the photoperiodic regimes. The circadian rhythm can be entrained to a 24-h period by exposure to submultiple cycles of LD 6 : 6 h, as if the locomotive rhythm is entrained to LD 18 : 6 h. Phase shifts of delay and advance are observed when perturbing single light pulses are presented during free-running under DD conditions. Temperature compensation of the free-running period is demonstrated under DD and LL conditions. Steady-state entrainment of the locomotor rhythm is achieved with square-wave temperature cycles of 10 °C amplitude, but a 5 °C amplitude fails to entrain.  相似文献   

2.
To test whether the affinity (Kd) and total binding capacity (Bmax) of melatonin receptors exhibit daily and circadian changes in teleost fish whose melatonin secretion is not regulated by intra-pineal clocks, we examined the changes in melatonin binding sites in the brains of underyearling masu salmon Oncorhynchus masou under artificial light-dark (LD), constant light (LL) and constant dark (DD) conditions. In Experiment 1, fish were reared under a long (LD 16:8) or short (LD 8:16) photoperiod for 69 days. Blood and brains were sampled eight times at 3 h intervals. Plasma melatonin levels were high during the dark phase and low during the light phase in both photoperiodic groups. The Bmax exhibited no daily variations. Although the Kd slightly, but significantly, changed under LD 8:16, this may be of little physiological significance. In Experiment 2, fish reared under LD 12:12 for 27 days were exposed to LL or DD from the onset of the dark phase under LD 12:12. Blood and brains were sampled 13 times at 4 h intervals for two complete 24 h cycles. Plasma melatonin levels were constantly high in the DD group and low in the LL group. No significant differences were observed in the Kd and the Bmax between the two groups, and the Kd and the Bmax exhibited no circadian variation either in the LL or DD groups. These results indicate that light conditions have little effect on melatonin binding sites in the masu salmon brain.  相似文献   

3.
The locomotor activity of the millipede Glyphiulus cavernicolus (Spirostreptida), which occupies the deeper recesses of a cave, was monitored in light-dark (LD) cycles (12h light and 12h darkness), constant darkness (DD), and constant light (LL) conditions. These millipedes live inside the cave and are apparently never exposed to any periodic factors of the environment such as light-dark, temperature, and humidity cycles. The activity of a considerable fraction of these millipedes was found to show circadian rhythm, which entrained to a 12:12 LD cycle with maximum activity during the dark phase of the LD cycle. Under constant darkness (DD), 56.5% of the millipedes (n = 23) showed circadian rhythms, with average free-running period of 25.7h ± 3.3h (mean ± SD, range 22.3h to 35.0h). The remaining 43.5% of the millipedes, however, did not show any clear-cut rhythm. Under DD conditions following an exposure to LD cycles, 66.7% (n = 9) showed faint circadian rhythm, with average free-running period of 24.0h ± 0.8h (mean ± SD, range 22.9h to 25.2h). Under constant light (LL) conditions, only 2 millipedes of 11 showed free-running rhythms, with average period length of 33.3h ± 1.3h. The results suggest that these cave-dwelling millipedes still possess the capacity to measure time and respond to light and dark situations. (Chronobiology International, 17(6), 757-765, 2000)  相似文献   

4.
Abstract. Along a stable temperature gradient and under a LD 12:12 h cycle, nurse workers of the ant Camponotus mus Roger 1863 (Hymenoptera: Formicidae) select for the brood two different temperatures daily: 30.8°C at the middle of the light period (circadian phase = 90°), and 27.5°C 8 h later, during the dark period (circadian phase = 210°), this rhythm being of endogenous nature.When a 24 h temperature cycle was superimposed along the thermal gradient, so that the immobile brood experienced a temperature transition as they receive when translocated by nurses (8 h at 30.8°C and 16 h at 27.5°C), no brood translocations occurred.The thermal cycle masked the rhythm of brood translocation when temperature fitted the daily pattern expected by nurses.When the same temperature cycle was presented with a phase-advance, nurses did not tolerate the early thermal increase and removed the brood as temperature rose.However, when workers experienced this new phase relationship between light and temperature cycles for more than 10 days, brood translocations were suppressed.Records under constant conditions of light and temperature indicated that the overt rhythm was locked-on to the expected early increase in temperature, so that the temperature cycle dominated over the LD cycle in resetting brood-carrying activity.  相似文献   

5.
N-Acetyltransferase (NAT) is an enzyme whose rhythmic activity in the pineal gland and retina is responsible for circadian rhythms in melatonin. The NAT activity rhythm has circadian properties such as persistence in constant conditions and precise control by light and dark. Experiments are reported in which chicks (Gallus domesticus), raised for 3 weeks in 12 h of light alternating with 12 h of dark (LD12:12), were exposed to 1-3 days of light-dark treatments during which NAT activity was measured in their pineal glands. (a) In LD12:12, NAT activity rose from less than 4.5 nmol/pineal gland/h during the light-time to 25-50 nmol/pineal gland/h in the dark-time. Constant light (LL) attenuated the amplitude of the NAT activity rhythm to 26-45% of the NAT activity cycle in LD12:12 during the first 24 h. (b) The timing of the increase in NAT activity was reset by the first full LD12:12 cycle following a 12-h phase shift of the LD12:12 cycle (a procedure that reversed the times of light and dark by imposition of either 24 h of light or dark). This result satisfies one of the criteria for NAT to be considered part of a circadian driving oscillator. (c) In less than 24-h cycles [2 h of light in alternation with 2 h of dark (LD2:2), 4 h of light in alternation with 4 h of dark (LD4:4), and 6 h of light in alternation with 6 h of dark (LD6:6)], NAT activity rose in the dark during the chicks' previously scheduled dark-time but not the previously scheduled light-time of LD12:12. In a cycle where 8 h of light alternated with 8 h of dark (LD8:8), NAT activity rose in both 8-h dark periods, even though the second one fell in the light-time of the prior LD12:12 schedule.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Background: Persuasive evidence for circadian programs in non-photosynthetic bacteria other than cyanobacteria is still lacking, we aimed to investigate the circadian rhythm of specific growth rate in Escherichia coli ATCC 25922, one of the important prokaryotes. Methods: To grow E. coli under different light and dark conditions. When the growth entered into the stationary phase, we stopped the culture and obtained the viable counts by MTT assay every 3 h. The specific growth rates (SGRs) were calculated and analyzed with cosinor method for potential rhythms. Results: Single cosinor method revealed that the SGR of E. coli displayed rhythmic variations with a period of around 24 h both under light/dark cycles and under constant darkness. The best-fitting periods and best-fitting cosine curves were acquired. Conclusions: The SGR of E. coli (ATCC 25922) in a culture medium with limiting substrates in the stationary and death phases displayed rhythmic variations with a period of around 24 h under light/dark cycles and constant darkness conditions.  相似文献   

7.
ABSTRACT. Evidence is presented for a circadian control of locomotory activity in the larval stadia of the cricket, Teleogryllus commodus Walker. Under light—dark cycles (LD), maximal activity occurs around the L/D transition and/or in the hours preceding it. Free-running rhythm patterns longer than 24 h are observed in constant light. Re-entrainment to phase advances in the LD cycle is also accompanied by several transient cycles. However, free-running rhythms under constant darkness or transients when exposed to LD cycle delays were not found. LD cycles during the eighth stadium set the phase of a free-running rhythm in the adult, even if the nymph does not show a rhythm. Nymphal activity is often erratic and is disrupted periodically by the moulting cycle, but moulting does not interrupt the operation of the circadian system. The daily timing of the moult itself is not under circadian control.  相似文献   

8.
This study investigated the functional linkage between food availability and activity behavior in the Palaearctic Indian night migratory blackheaded bunting (Emberiza melanocephala) subjected to artificial light-dark (LD) cycles. Two experiments were performed on photosensitive birds. In the first one, birds were exposed to short days (LD 10/14; Experiment 1A), long days (LD 13/11; Experiment 1B), or increasing daylengths (8 to 13?h light/d; Experiment 1C) and presented with food either for the whole or a restricted duration of the light period. In Experiments 1A and 1B, illumination of the light and dark periods or of the dark period, alone, was changed to assess the influence of the light environment on direct and circadian responses to food cycles. In the second experiment, birds were exposed to LD 12/12 or LD 8/16 with food availability overlapping with the light (light and food presence in phase) or dark period (light and food presence in antiphase). Also, birds were subjected to constant dim light (LL(dim)) to examine the phase of the activity rhythms under synchronizing influence of the food cycles. Similarly, the presentation of food ad libitum (free food; FF) during an experiment examined the effects of the food-restriction regimes on activity rhythms. A continuous measurement of the activity-rest pattern was done to examine both the circadian and direct effects of the food and LD cycles. Measurement of activity at night enabled assessment of the migratory phenotype, premigratory restlessness, or Zugunruhe. The results show that (i) light masked the food effects if they were present together; (ii) birds had a higher anticipatory activity and food intake during restricted feeding conditions; and (iii) food at night alone reduced both the duration and amount of Zugunruhe as compared to food during the day alone. This suggests that food affects both the daily activity and seasonal Zugunruhe, and food cycles act as a synchronizer of circadian rhythms in the absence of dominant natural environmental synchronizers, such as the light-dark cycle.  相似文献   

9.
The locomotor activity of the millipede Glyphiulus cavernicolus (Spirostreptida), which occupies the deeper recesses of a cave, was monitored in light-dark (LD) cycles (12h light and 12h darkness), constant darkness (DD), and constant light (LL) conditions. These millipedes live inside the cave and are apparently never exposed to any periodic factors of the environment such as light-dark, temperature, and humidity cycles. The activity of a considerable fraction of these millipedes was found to show circadian rhythm, which entrained to a 12:12 LD cycle with maximum activity during the dark phase of the LD cycle. Under constant darkness (DD), 56.5% of the millipedes (n = 23) showed circadian rhythms, with average free-running period of 25.7h ± 3.3h (mean ± SD, range 22.3h to 35.0h). The remaining 43.5% of the millipedes, however, did not show any clear-cut rhythm. Under DD conditions following an exposure to LD cycles, 66.7% (n = 9) showed faint circadian rhythm, with average free-running period of 24.0h ± 0.8h (mean ± SD, range 22.9h to 25.2h). Under constant light (LL) conditions, only 2 millipedes of 11 showed free-running rhythms, with average period length of 33.3h ± 1.3h. The results suggest that these cave-dwelling millipedes still possess the capacity to measure time and respond to light and dark situations. (Chronobiology International, 17(6), 757–765, 2000)  相似文献   

10.
The adaptation of the endogenous rhythm of an organism to external cycles may influence the development of physiological processes in animals. Light not only synchronizes the circadian system, but also exerts profound direct effects: the immediate reduction of melatonin release at night-time and the inhibition of locomotor activity in nocturnal rodents after a light pulse are well-known examples, yet little is known about effects of different light/dark (LD) cycles on the level of corticosterone, growth hormone and growth rate. Mice were raised under different period length of LD cycle including LD5:5 (light: 5 h; dark: 5 h), LD12:12 (light: 12 h; dark: 12 h) and LD16:16 (light: 16 h; dark: 16 h) for four weeks. Mice in LD5:5 and LD16:16 groups manifested higher locomotor activity, plasma corticosterone and growth hormone concentrations and growth rate than the LD12:12 group. The results suggest that different LD cycles may affect many physiological processes including growth rate, food intake and hormones, and the change of growth rate in different LD cycles may be related to the level of corticosterone and growth hormone concentrations. The results also suggest that both the long-period LD cycle and short-period LD cycles can improve the growth of mice, but they disturbed the biorhythm stabilization and affected hormone secretion; in general, these conditions would not promote the animals' survival.  相似文献   

11.
In the first cycle following transfer from a 12 h light-12 h dark cycle (LD12:12) to constant darkness (DD), the standard deviation in circadian phase among individual clocks in populations of Gonyaulax polyedra is approximately 60 min. When a culture is transferred to constant light conditions (LL) from an LD 12:12 cycle, the standard deviation increases in the first 2-3 d, but then remains unchanged, suggesting a lack of observable desynchronization in LL after the transient period. The synchrony in a cell population is preserved even after several cell divisions. The results indicate that variations in period among cells are small, that the period of an individual clock does not fluctuate randomly from day to day, and that the circadian phase of a mother cell is faithfully passed to the clocks of the daughter cells.  相似文献   

12.
Daily variations in plasma melatonin levels in the rainbow trout Oncorhynchus mykiss were studied under various light and temperature conditions. Plasma melatonin levels were higher at mid-dark than those at mid-light under light-dark (LD) cycles. An acute exposure to darkness (2 hr) during the light phase significantly elevated the plasma melatonin to the level that is comparable with those at mid-dark, while an acute exposure to a light pulse (2 hr) during the dark phase significantly suppressed melatonin to the level that is comparable with those at mid-light. Plasma melatonin kept constantly high and low levels under constant darkness and constant light, respectively. No circadian rhythm was seen under both conditions. When the fish were subjected to simulative seasonal conditions (simulative (S)-spring: under LD 13.1:10.9 at 13 degrees C; S-summer: under LD 14.3:9.7 at 16.5 degrees C; S-autumn: under LD 11.3:12.7 at 13 degrees C; S-winter: under LD 10.1:13.9 at 9 degrees C), melatonin levels during the dark phase were significantly higher than those during the light phase irrespective of simulative seasons. The peak melatonin level in each simulative season significantly correlated with temperature but not with the length of the dark phase employed. In addition, the peak melatonin level in S-autumn was significantly higher than those in S-spring although water temperature was the same under these conditions. These results indicate that the melatonin rhythm in the trout plasma is not regulated by an endogenous circadian clock but by combination of photoperiod and water temperature.  相似文献   

13.
The circadian pacemaker controlling the eclosion rhythm of the high altitude Himalayan strains of Drosophila ananassae captured at Badrinath (5123 m) required ambient temperature at 21°C for the entrainment and free-running processes. At this temperature, their eclosion rhythms entrained to 12h light, 12h dark (LD 12:12) cycles and free-ran when transferred from constant light (LL) to constant darkness (DD) or upon transfer to constant temperature at 21°C following entrainment to temperature cycles in DD. These strains, however, were arrhythmic at 13 or 17°C under identical experimental conditions. Eclosion medians always occurred in the thermophase of temperature cycles whether they were imposed in LL or DD; or whether the thermophase coincided with the photophase or scotophase of the concurrent LD 12:12 cycles. The temperature dependent rhythmicity in the Himalayan strains of D. ananassae is a rare phenotypic plasticity that might have been acquired through natural selection by accentuating the coupling sensing mechanism of the pacemaker to temperature, while simultaneously suppressing the effects of light on the pacemaker.  相似文献   

14.
Organisms are believed to have evolved circadian clocks as adaptations to deal with cyclic environmental changes, and therefore it has been hypothesized that evolution in constant environments would lead to regression of such clocks. However, previous studies have yielded mixed results, and evolution of circadian clocks under constant conditions has remained an unsettled topic of debate in circadian biology. In continuation of our previous studies, which reported persistence of circadian rhythms in Drosophila melanogaster populations evolving under constant light, here we intended to examine whether circadian clocks and the associated properties evolve differently under constant light and constant darkness. In this regard, we assayed activity-rest, adult emergence and oviposition rhythms of D. melanogaster populations which have been maintained for over 19 years (~330 generations) under three different light regimes – constant light (LL), light–dark cycles of 12:12 h (LD) and constant darkness (DD). We observed that while circadian rhythms in all the three behaviors persist in both LL and DD stocks with no differences in circadian period, they differed in certain aspects of the entrained rhythms when compared to controls reared in rhythmic environment (LD). Interestingly, we also observed that DD stocks have evolved significantly higher robustness or power of free-running activity-rest and adult emergence rhythms compared to LL stocks. Thus, our study, in addition to corroborating previous results of circadian clock evolution in constant light, also highlights that, contrary to the expected regression of circadian clocks, rearing in constant darkness leads to the evolution of more robust circadian clocks which may be attributed to an intrinsic adaptive advantage of circadian clocks and/or pleiotropic functions of clock genes in other traits.  相似文献   

15.
Adult crickets (Gryllus bimaculatus) were maintained under a 12-h light:12-h dark cycle (LD 12:12). After oviposition, their eggs were incubated under different lighting regimens at 23 degrees C, and temporal profiles of egg hatching were examined. When the eggs were incubated in LD 12:12 or in DL 12:12 with a phase difference of 12h from LD 12:12, throughout embryogenesis, 88% to 97% of hatching occurred within 3 h of the dark-light transition on days 17 and 18 of embryogenesis; the phases of the egg-hatching rhythms in the LD 12:12 and DL 12:12 groups differed by about 12 h. In eggs incubated in constant darkness (DD) throughout embryogenesis, a circadian (about 24 h) rhythm of hatching was found, and the phase of the rhythm was similar to that seen in eggs incubated in LD 12:12, but not DL 12:12, throughout embryogenesis. When eggs that had been incubated in DD after oviposition were transferred to DL 12:12 in the middle or later stages of embryogenesis and were returned to DD after three cycles of DL 12:12, the rhythm of hatching synchronized (entrained) to DL 12:12. However, when eggs in the earlier stages of embryogenesis were transferred from DD to DL 12:12 and returned to DD after three cycles, 52% to 94% of hatching did not entrain to DL 12:12. To determine whether photoperiodic conditions to which the parents had been exposed influenced the timing of egg hatching, adult crickets were maintained in DL 12:12, and their eggs were incubated in LD 12:12, DL 12:12, or DD throughout embryogenesis. The egg-hatching rhythm was also found in the eggs incubated under these three lighting regimens. In DD, the phase of the rhythm was similar to that seen in eggs incubated in DL 12:12, not LD 12:12, throughout embryogenesis. The results indicate that in the cricket, the timing of egg hatching is under circadian control and that the circadian rhythm of hatching entrains to 24-h light:dark cycles, but only if the light:dark cycles are imposed midway through embryogenesis. Therefore, by midembryogenesis, a circadian clock has been formed in the cricket, and this is entrainable to light:dark cycles. In addition, the photoperiodic conditions to which the parents (probably the mothers) have been exposed influence the timing of hatching, suggesting that maternal factors may regulate the timing of egg hatching.  相似文献   

16.
Circadian clocks time developmental stages of fruit flies Drosophila melanogaster, while light/dark (LD) cycles delimit emergence of adults, conceding only during the “allowed gate.” Previous studies have revealed that time‐to‐emergence can be altered by mutations in the core clock gene period (per), or by altering the length of LD cycles. Since this evidence came from studies on genetically manipulated flies, or on flies maintained under LD cycles with limited range of periods, inferences that can be drawn are limited. Moreover, the extent of shortening or lengthening of time‐to‐emergence remains yet unknown. In order to pursue this further, we assayed time‐to‐emergence of D. melanogaster under 12 different LD cycles as well as in constant light (LL) and constant dark conditions (DD). Time‐to‐emergence in flies occurred earlier under LL than in LD cycles and DD. Among the LD cycles, time‐to‐emergence occurred earlier under T4T8, followed by T36T48, and then T12T32, suggesting that egg‐to‐emergence duration in flies becomes shorter when the length of LD cycles deviates from 24 h, bearing a strong positive and a marginally negative correlation with day length, for values shorter and longer than 24 h, respectively. These results suggest that the extent of mismatch between the period of circadian clocks and environmental cycles determines the time‐to‐emergence in Drosophila.  相似文献   

17.
The freerunning period of circadian clocks in constant environmental conditions can be history-dependent, and one effect of entrainment of circadian clocks by light cycles is to cause long-lasting changes in the freerunning period that are termed after-effects. We have studied after-effects of entrainment to 22-h (LD 8:14) and 26-h (LD 8:18) light cycles in the cockroach Leucophaea maderae. We find that in cockroaches, the freerunning period of the locomotor activity rhythm, measured in constant darkness (DD), is 0.7h less after entrainment to T22 than after entrainment to T26. Induction of after-effects requires several days (>1 week) entrainment, and after induction, after-effects will persist in DD for over 40 days. Further after-effects are unaltered by phase-resetting of up to 12h caused by exposure to low-temperature pulses (7 degrees C) of 24 or 48h duration. After-effects also persist through re-entrainment for 2 weeks to 24-h light cycles. These results indicate that after-effects arise from stable changes in the circadian system that are likely to be independent of phase relationships among oscillators within the circadian system. We also show that entrainment to temperature cycles does not generate after-effects indicating that light may be unique in its ability to generate lasting changes in pacemaker period.  相似文献   

18.
Arctic and subarctic environments are exposed to extreme light: dark (LD) regimes, including periods of constant light (LL) and constant dark (DD) and large daily changes in day length, but very little is known about circadian rhythms of mammals at high latitudes. The authors investigated the circadian rhythms of a subarctic population of northern red-backed voles (Clethrionomys rutilus). Both wild-caught and third-generation laboratory-bred animals showed predominantly nocturnal patterns of wheel running when exposed to a 16:8 LD cycle. In LL and DD conditions, animals displayed large phenotypic variation in circadian rhythms. Compared to wheel-running rhythms under a 16:8 LD cycle, the robustness of circadian activity rhythms decreased among all animals tested in LL and DD (i.e., decreased chi-squared periodogram waveform amplitude). A large segment of the population became noncircadian (60% in DD, 72% in LL) within 8 weeks of exposure to constant lighting conditions, of which the majority became ultradian, with a few individuals becoming arrhythmic, indicating highly labile circadian organization. Wild-caught and laboratory-bred animals that remained circadian in wheel running displayed free-running periods between 23.3 and 24.8 h. A phase-response curve to light pulses in DD showed significant phase delays at circadian times 12 and 15, indicating the capacity to entrain to rapidly changing day lengths at high latitudes. Whether this phenotypic variation in circadian organization, with circadian, ultradian, and arrhythmic wheel-running activity patterns in constant lighting conditions, is a novel adaptation to life in the arctic remains to be elucidated.  相似文献   

19.
20.
Daily and circadian variations of melatonin contents in the diencephalic region containing the pineal organ, the lateral eyes, and plasma were studied in a urodele amphibian, the Japanese newt (Cynops pyrrhogaster), to investigate the possible roles of melatonin in the circadian system. Melatonin levels in the pineal region and the lateral eyes exhibited daily variations with higher levels during the dark phase than during the light phase under a light-dark cycle of 12 h light and 12 h darkness (LD12:12). These rhythms persisted even under constant darkness but the phase of the rhythm was different from each other. Melatonin levels in the plasma also exhibited significant day-night changes with higher values at mid-dark than at mid-light under LD 12:12. The day-night changes in plasma melatonin levels were abolished in the pinealectomized (Px), ophthalmectomized (Ex), and Px+Ex newts but not in the sham-operated newts. These results indicate that in the Japanese newts, melatonin production in the pineal organ and the lateral eyes were regulated by both environmental light-dark cycles and endogenous circadian clocks, probably located in the pineal organ and the retina, respectively, and that both the pineal organ and the lateral eyes are required to maintain the daily variations of circulating melatonin levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号