首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuronal precursor proliferation and axodendritic outgrowth have been traditionally regarded as discrete and sequential developmental stages. However, we recently found that sympathetic neuroblasts in vitro often elaborate long neuritic processes before dividing. Furthermore, these “paramitotic” neurites were maintained during cell division and neuritic morphology was consistently preserved by daughter cells after mitosis. This inheritance of neuritic morphology in vitro raised the possibility that proliferating neuroblasts engage in axodendritic outgrowth. To determine whether mitotic superior cervical ganglion (SCG) neuroblasts are engaged in pathfinding in vivo, we have combined retrograde axonal tracing of efferent nerve trunks with bromodeoxyuridine (BrdU) labeling of cells in S‐phase. In fact, about 13% of BrdU(+) cells were retrogradely labeled, indicating that mitotic neuroblasts often have extraganglionic axonal projections. Moreover, the presence of axons during S‐phase was observed at two developmental ages (E15.5 and E16.5), implicating an ongoing function of paramitotic axons during neuronal ontogeny. Using a calculation to account for experimental limitations, we estimate that virtually all mitotic SCG neuroblasts have direct access to extraganglionic signals during development. We conclude that mitotic neuronal precursors in vivo engage in pathfinding, raising the possibility that interaction of proliferating populations with distant signals actively coordinates cell division and neural connectivity. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 366–374, 1999  相似文献   

2.
The related proteins SCG10 and stathmin are highly expressed in the developing nervous system. Recently it was discovered that they are potent microtubule destabilizing factors. While stathmin is expressed in a variety of cell types and shows a cytosolic distribution, SCG10 is neuron-specific and membrane-associated. It contains an N-terminal targeting sequence that mediates its transport to the growing tips of axons and dendrites. SCG10 accumulates in the central domain of the growth cone, a region that also contains highly dynamic microtubules. These dynamic microtubules are known to be important for growth cone advance and responses to guidance cues. Because overexpression of SCG10 strongly enhances neurite outgrowth, SCG10 appears to be an important factor for the dynamic assembly and disassembly of growth cone microtubules during axonal elongation. Phosphorylation negatively regulates the microtubule destabilizing activity of SCG10 and stathmin, suggesting that these proteins may link extracellular signals to the rearrangement of the neuronal cytoskeleton. A role for these proteins in axonal elongation is also supported by their growth-associated expression pattern in nervous system development as well as during neuronal regeneration.  相似文献   

3.
J S Eisen  S H Pike  B Debu 《Neuron》1989,2(1):1097-1104
Developing motoneurons in zebrafish embryos follow a stereotyped sequence of axonal outgrowth and accurately project their axons to cell-specific target muscles. During axonal pathfinding, an identified motoneuron pioneers the peripheral motor pathway. Growth cones of later motoneurons interact with the pioneer via contact, coupling, and axonal fasciculation. In spite of these interactions, ablation of the pioneer motoneuron does not affect the ability of other identified motoneurons to select the pathways that lead to appropriate target muscles. We conclude that interactions between these cells during pathfinding are not required for accurate pathway selection.  相似文献   

4.
Axon guidance in the inner ear   总被引:1,自引:0,他引:1  
Statoacoustic ganglion (SAG) neurons send their peripheral processes to navigate into the inner ear sensory organs where they will ultimately become post-synaptic to mature hair cells. During early ear development, neuroblasts delaminate from a restricted region of the ventral otocyst and migrate to form the SAG. The pathfinding mechanisms employed by the processes of SAG neurons as they search for their targets in the periphery are the topic of this review. Multiple lines of evidence exist to support the hypothesis that a combination of cues are working to guide otic axons to their target sensory organs. Some pioneer neurites may retrace their neuronal migratory pathway back to the periphery, yet additional guidance mechanisms likely complement this process. The presence of chemoattractants in the ear is supported by in vitro data showing that the otic epithelium exerts both trophic and tropic effects on the statoacoustic ganglion. The innervation of ectopic hair cells, generated after gene misexpression experiments, is further evidence for chemoattractant involvement in the pathfinding of SAG axons. While the source(s) of chemoattractants in the ear remains unknown, candidate molecules, including neurotrophins, appear to attract otic axons during specific time points in their development. Data also suggest that classical axon repellents such as Semaphorins, Eph/ephrins and Slit/Robos may be involved in the pathfinding of otic axons. Morphogens have recently been implicated in guiding axonal trajectories in many other systems and therefore a role for these molecules in otic axon guidance must also be explored.  相似文献   

5.
《The Journal of cell biology》1990,110(6):2073-2086
Although neuron generation is precisely regulated during ontogeny, little is known about underlying mechanisms. In addition, relationships between precursor proliferation and the apparent sequence of developmental processes, including cell migration, neurite elaboration, transmitter expression and synaptogenesis remain unknown. To address these issues, we used a fully defined neuronal cell culture system derived from embryonic rat sympathetic ganglia (DiCicco-Bloom, E., and I. B. Black. 1988. Proc. Natl. Acad. Sci. USA. 85:4066-4070) in which precursors enter the mitotic cycle. We now find that, in addition to synthesizing DNA, neuroblasts also underwent division in culture, allowing analysis of developmental relationships and mitotic regulation. Our observations indicate that mitotic neuroblasts expressed a wide array of neuron-specific characteristics including extension of neuritic processes with growth cones, elaboration of neurotransmitter enzyme, synthesis and transport of transmitter vesicles and organization of transmitter release sites. These data suggest that neuroblasts in the cell cycle may simultaneously differentiate. Consequently, the apparent sequence of ontogenetic processes is not an immutable, intrinsic neuronal program. How, then, are diverse developmental events coordinated? Our observations indicate that neuroblast mitosis is regulated by a small number of epigenetic factors, including insulin and EGF. Since these signals also influence other processes in developing neurons, epigenetic regulation normally may synchronize diverse ontogenetic events.  相似文献   

6.
The auditory-vestibular ganglion (AVG) is formed by the division of otic placode-derived neuroblasts, which then differentiate into auditory and vestibular afferent neurons. The developmental mechanisms that regulate neuronal cell fate determination, axonal pathfinding and innervation of otic neurons are poorly understood. The present study characterized the expression of myosin VIIA, along with the neuronal markers, Islet1, NeuroD1 and TuJ1, in the developing avian ear, during Hamburger–Hamilton (HH) stages 16–40. At early stages, when neuroblasts are delaminating from the otic epithelium, myosin VIIA expression was not observed. Myosin VIIA was initially detected in a subset of neurons during the early phase of neuronal differentiation (HH stage 20). As the AVG segregates into the auditory and vestibular portions, myosin VIIA was restricted to a subset of vestibular neurons, but was not present in auditory neurons. Myosin VIIA expression in the vestibular ganglion was maintained through HH stage 33 and was downregulated by stage 36. Myosin VIIA was also observed in the migrating processes of vestibular afferents as they begin to innervate the otic epithelium HH stage 22/23. Notably, afferents targeting hair cells of the cristae were positive for myosin VIIA while afferents targeting the utricular and saccular maculae were negative (HH stage 26–28). Although previous studies have reported that myosin VIIA is restricted to sensory hair cells, our data shows that myosin VIIA is also expressed in neurons of the developing chick ear. Our study suggests a possible role for myosin VIIA in axonal migration/pathfinding and/or innervation of vestibular afferents. In addition, myosin VIIA could be used as an early marker for vestibular neurons during the development of the avian AVG.  相似文献   

7.
The capacity to synthesize proteins in axons is limited to early stages of neuronal development, while axons are undergoing elongation and pathfinding. Although the roles of local protein synthesis are not fully understood, it has been implicated in regulating the morphological plasticity of growth cones. Recent studies have identified specific mRNAs that are translated in growth cones in response to specific extracellular signals. In this review, we discuss the functional relevance of axonal protein translation for developing axons, the differences in translational capacity between developing and mature vertebrate axons, and possible pathways governing the specific translational activation of axonal mRNAs.  相似文献   

8.
Early in its development, the chick embryo hindbrain manifests an axial series of bulges, termed rhombomeres. Rhombomeres are units of cell lineage restriction, and both they and their intervening boundaries form a series that reiterates various features of neuronal differentiation, cytoarchitecture, and molecular character. The segmented nature of hindbrain morphology and cellular development may be related to early patterns of cell division. These were explored by labeling with BrdU to reveal S-phase nuclei, and staining with basic fuchsin to visualise mitotic cells. Whereas within rhombomeres, S-phase nuclei were located predominantly toward the pial surface of the neuroepithelium, at rhombomere boundaries S-phase nuclei were significantly closer to the ventricular surface. The density of mitotic figures was greater toward the centres of rhombomeres than in boundary regions. Mitotic cells did not show any consistent bias in the orientation of division, either in the centres of rhombomeres, or near boundaries. Our results are consistent with the idea that rhombomeres are centres of cell proliferation, while boundaries contain populations of relatively static cells with reduced rates of cell division.  相似文献   

9.
10.
The formation of axonal connections in the nervous system involves cell-specific decisions of the growth cone. In this article we examine the contribution of early fate decisions to axonal pathfinding. Evidence is accumulating that different neuronal cell types in the cerebral cortex are specified during their final mitosis. It would seem that cortical projection neurons are pre-specified to choose particular pathways, since the newly generated neurons send out their axons in the correct direction from the onset of outgrowth. Pathfinding decisions that are made much later during development, such as the recognition of specific target-derived chemoattractants and the retraction of inappropriate axon collaterals, also seem to be at least partially pre-specified at much earlier developmental stages. Hence, the early determination of a neuron's phenotype includes the specification of axonal growth occuring over a protracted phase of development. Understanding more about the regulative events targeted to the growth cone should help us to unravel the decisions made by this specialized neuronal organelle.  相似文献   

11.
Early in its development, the chick embryo hindbrain manifests an axial series of bulges, termed rhombomeres. Rhombomeres are units of cell lineage restriction, and both they and their intervening boundaries form a series that reiterates various features of neuronal differentiation, cytoarchitecture, and molecular character. The segmented nature of hindbrain morphology and cellular development may be related to early patterns of cell division. These were explored by labeling with BrdU to reveal S-phase nuclei, and staining with basic fuchsin to visualise mitotic cells. Whereas within rhombomeres, S-phase nuclei were located predominantly toward the pial surface of the neuroepithelium, at rhombomere boundaries S-phase nuclei were significantly closer to the ventricular surface. The density of mitotic figures was greater toward the centres of rhombomeres than in boundary regions. Mitotic cells did not show any consistent bias in the orientation of division, either in the centres of rhombomeres, or near boundaries. Our results are consistent with the idea that rhombomeres are centres of cell proliferation, while boundaries contain populations of relatively static cells with reduced rates of cell division.  相似文献   

12.
We have addressed the control of longitudinal axon pathfinding in the developing hindbrain, including the caudal projections of reticular and raphe neurons. To test potential sources of guidance signals, we assessed axon outgrowth from embryonic rat hindbrain explants cultured in collagen gels at a distance from explants of midbrain-hindbrain boundary (isthmus), caudal hindbrain, or cervical spinal cord. Our results showed that the isthmus inhibited caudally directed axon outgrowth by 80% relative to controls, whereas rostrally directed axon outgrowth was unaffected. Moreover, caudal hindbrain or cervical spinal cord explants did not inhibit caudal axons. Immunohistochemistry for reticular and raphe neuronal markers indicated that the caudal, but not the rostral projections of these neuronal subpopulations were inhibited by isthmic explants. Companion studies in chick embryos showed that, when the hindbrain was surgically separated from the isthmus, caudal reticulospinal axon projections failed to form and that descending pioneer axons of the medial longitudinal fasciculus (MLF) play an important role in the caudal reticulospinal projection. Taken together, these results suggest that diffusible chemorepellent or nonpermissive signals from the isthmus and substrate-anchored signals on the pioneer MLF axons are involved in the caudal direction of reticulospinal projections and might influence other longitudinal axon projections in the brainstem.  相似文献   

13.
By means of morphological methods dynamics of the spinal cord development in 14-day-old rat embryos implanted into the sciatic nerve of mature rats have been studied. The implants preserve their viability during 5 months after the operation and their cells continue to differentiate beginning from neuroepithelial cells and neuroblasts up to young and mature neurons with histotypical signs of motoneurons. In 6 h and 1 day after transplantation the neuroepithelial cells continue their mitotic division. In 3 days, however, their mitotic activity decreases essentially and differentiation of neuroblasts begins. In 7 days the implants consist mainly of differentiated neuroblasts and glial cells. As demonstrates electron microscopy, in 30 days after the operation in the implants there is a well developed neuropil, where mature neurons, myelinated axons are situated and synaptic contacts are present.  相似文献   

14.
In vertebrate embryos, spinal motor neurons project through segmentally reiterated nerves into the somites. Here, we report that zebrafish secondary motor neurons, which are similar to motor neurons in birds and mammals, depend on myotomal cues to navigate into the periphery. We show that the absence of myotomal adaxial cells in you-too/gli2 embryos severely impairs secondary motor axonal pathfinding, including their ability to project into the somites. Moreover, in diwanka mutant embryos, in which adaxial cells are present but fail to produce cues essential for primary motor growth cones to pioneer into the somites, secondary motor axons display similar pathfinding defects. The similarities between the axonal defects in you-too/gli2 and diwanka mutant embryos strongly suggest that pathfinding of secondary motor axons depends on myotome-derived cues, and that the diwanka gene is a likely candidate to produce or encode such a cue. Our experiments also demonstrate that diwanka plays a central role in the migration of primary and secondary motor neurons, suggesting that both neural populations share mechanisms underlying axonal pathfinding. In summary, we provide compelling evidence that myotomal cells produce multiple signals to initiate and control the migration of spinal nerve axons into the somites.  相似文献   

15.
In neurons, the regulation of microtubules plays an important role for neurite outgrowth, axonal elongation, and growth cone steering. SCG10 family proteins are the only known neuronal proteins that have a strong destabilizing effect, are highly enriched in growth cones and are thought to play an important role during axonal elongation. MAP1B, a microtubule-stabilizing protein, is found in growth cones as well, therefore it was important to test their effect on microtubules in the presence of both proteins. We used recombinant proteins in microtubule assembly assays and in transfected COS-7 cells to analyze their combined effects in vitro and in living cells, respectively. Individually, both proteins showed their expected activities in microtubule stabilization and destruction respectively. In MAP1B/SCG10 double-transfected cells, MAP1B could not protect microtubules from SCG10-induced disassembly in most cells, in particular not in cells that contained high levels of SCG10. This suggests that SCG10 is more potent to destabilize microtubules than MAP1B to rescue them. In microtubule assembly assays, MAP1B promoted microtubule formation at a ratio of 1 MAP1B per 70 tubulin dimers while a ratio of 1 SCG10 per two tubulin dimers was needed to destroy microtubules. In addition to its known binding to tubulin dimers, SCG10 binds also to purified microtubules in growth cones of dorsal root ganglion neurons in culture. In conclusion, neuronal microtubules are regulated by antagonistic effects of MAP1B and SCG10 and a fine tuning of the balance of these proteins may be critical for the regulation of microtubule dynamics in growth cones.  相似文献   

16.
E Cornel  C Holt 《Neuron》1992,9(6):1001-1011
The developing axons of retinal ganglion cells follow a stereotyped trajectory through the diencephalon to the optic tectum. In Xenopus, this trajectory closely parallels that of a preexisting fiber tract, the tract of the postoptic commissure (TPOC). This tract comprises part of the early CNS scaffold and has been proposed to play a critical role in guiding the later growing optic axons. We have tested this possibility using heterochronic and xenoplastic transplants of eye primordia to force optic axons to enter the brain before scaffold tracts have arisen in the forebrain. We show that optic axons can navigate appropriately in the absence of the TPOC or any other axons, indicating that axonal pathfinding cues are present in the axonless neuroepithelial sheet. We suggest that molecularly distinct heterogeneities within the neuroepithelium are used for pathfinding by early and late developing axons alike in normal development.  相似文献   

17.
A K Hall  S C Landis 《Neuron》1991,6(5):741-752
To determine whether postmigratory neural crest cells retain the capacity to give rise to multiple cell types, the clonal progeny of embryonic rat superior cervical ganglion (SCG) cells were examined in culture. Double labeling with BrdU and neurofilament antibodies demonstrated that neuron precursors from the E14.5 SCG continued to proliferate for several days in culture. Using the BAG retrovirus to examine the progeny of single cells, we obtained several kinds of distinct clones from SCG cultures after 3 days. At E14.5, during peak neurogenesis in vivo, neuron-containing clones composed of one to seven cells were common. At E17.5, after neurons have been born in vivo, most clones in vitro contained flat cells, primarily reflecting glial cell division. Even in cultures from E13.5 ganglia, mixed clones containing neurons and flat cells were rarely observed. These observations suggest that neuronal and nonneuronal cell precursors are specified during or before early gangliogenesis.  相似文献   

18.
Many lines of evidence suggest that glial cells function as guide post cells for axonal pathfinding. However, due to the difficulty in completely eliminating glial cells during development, their functions in axonal pathfinding have not been critically evaluated. In Drosophila gcm mutant embryos, glial cells were genetically eliminated providing us with a unique opportunity to investigate glial functions in nervous system formation. We showed that even in the absence of glial cells the initial axonal extension of pioneer neurons was essentially normal. However, at later stages, axon bundle formation and pathfinding were disturbed in the absence of glial cells, and abnormal migration of glial cells led to misrouting of axons. This indicates that glial cells are required for correct pathfinding at later stages. We propose that glial cells function in a stage-specific manner; they are not required for the initial extension of pioneers but essential for the subsequent extension of pioneers and followers as well as axon bundle formation.  相似文献   

19.
20.
Neural cell adhesion molecules (CAMs) are important players during neurogenesis and neurite outgrowth as well as axonal fasciculation and pathfinding. Some of these developmental processes entail the activation of cellular signaling cascades. Pharmacological and genetic evidence indicates that the neurite outgrowth-promoting activity of L1-type CAMs is at least in part mediated by the stimulation of neuronal receptor tyrosine kinases (RTKs), especially FGF and EGF receptors. It has long been suspected that neural CAMs might physically interact with RTKs, but their activation by specific cell adhesion events has not been directly demonstrated. Here we report that gain-of-function conditions of the Drosophila L1-type CAM Neuroglian result in profound sensory axon pathfinding defects in the developing Drosophila wing. This phenotype can be suppressed by decreasing the normal gene dosage of the Drosophila EGF receptor gene. Furthermore, in Drosophila S2 cells, cell adhesion mediated by human L1-CAM results in the specific activation of human EGF tyrosine kinase at cell contact sites and EGF receptors engage in a physical interaction with L1-CAM molecules. Thus L1-type CAMs are able to promote the adhesion-dependent activation of EGF receptor signaling in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号