首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The rate of inactivation of bacteriophage f2 and poliovirus 1 (CHAT) by NH3 was strongly influenced by temperature. The process was pseudo-first order at all temperatures and NH3 concentrations. Poliovirus was inactivated at a greater rate than f2, but the change in the rate of inactivation with increasing temperature in the range of approximately 10 to 40 degrees C was greater for f2 than for poliovirus. At higher temperatures, the rate of change was greater for poliovirus. Arrhenius plots of the data were biphasic, indicating that two inactivation processes were occurring, one for the low temperature range and another for the high temperature range. However, the magnitudes of the thermodynamic variables for f2 were low enough, as calculated for the low (10 to 35 degrees C) and high (35 to 60 degrees C) phases, that inactivation could have occurred by breakage of nucleic acid chains. For poliovirus, the sizes indicated possible involvement of nucleic acid at the low temperatures (10 to 40 degrees C) but some unknown mechanism for the high temperatures (40 and 50 degrees C).  相似文献   

2.
Effect of heat on virus inactivation by ammonia.   总被引:2,自引:2,他引:0       下载免费PDF全文
The rate of inactivation of bacteriophage f2 and poliovirus 1 (CHAT) by NH3 was strongly influenced by temperature. The process was pseudo-first order at all temperatures and NH3 concentrations. Poliovirus was inactivated at a greater rate than f2, but the change in the rate of inactivation with increasing temperature in the range of approximately 10 to 40 degrees C was greater for f2 than for poliovirus. At higher temperatures, the rate of change was greater for poliovirus. Arrhenius plots of the data were biphasic, indicating that two inactivation processes were occurring, one for the low temperature range and another for the high temperature range. However, the magnitudes of the thermodynamic variables for f2 were low enough, as calculated for the low (10 to 35 degrees C) and high (35 to 60 degrees C) phases, that inactivation could have occurred by breakage of nucleic acid chains. For poliovirus, the sizes indicated possible involvement of nucleic acid at the low temperatures (10 to 40 degrees C) but some unknown mechanism for the high temperatures (40 and 50 degrees C).  相似文献   

3.
Mechanism of poliovirus inactivation by ammonia.   总被引:11,自引:0,他引:11       下载免费PDF全文
Poliovirus inactivation by ammonia causes a slight reduction in the sedimentation coefficients of viral particles, but has no detectable effect on either the electrophoretic pattern of viral capsid proteins or the isoelectric points of inactivated particles. These virions still attach to cells, but are unable to repress host translation or stimulate the synthesis of detectable amounts of viral RNA. Although ammonia has no detectable effect on naked poliovirus RNA, it causes cleavage of this RNA when still within viral particles. Therefore, the RNA genome appears to be the only component of poliovirus significantly affected by ammonia.  相似文献   

4.
5.
6.
Kinetic patterns of sonication-induced inactivation of bovine liver catalase (CAT) were studied in buffer solutions (pH 4-11) within the temperature range from 36 to 55 degrees C. Solutions of CAT were exposed to low-frequency (20.8 kHz) ultrasound (specific power, 48-62 W/cm2). The kinetics of CAT inactivation was characterized by effective first-order rate constants (s-1) of total inactivation (kin), thermal inactivation (*kin), and ultrasonic inactivation (kin(us)). In all cases, the following inequality was valid: kin > *kin. The value of kin(us) increased with the ultrasound power (range, 48-62 W/cm2) and exhibited a strong dependence on pH of the medium. On increasing the initial concentration of CAT (0.4-4.0 nM), kin(us) decreased. The three rate constants were minimum within the range of pH 6.5-8; their values increased considerably at pH < 6 and pH > 9. At 36-55 degrees C, temperature dependence of kin(us) was characterized by an activation energy (Eact) of 19.7 kcal/mol, whereas the value of Eact for CAT thermoinactivation was equal to 44.2 kcal/mol. Bovine serum and human serum albumins (BSA and HSA, respectively) inhibited sonication-induced CAT inactivation; complete prevention was observed at concentrations above 2.5 micrograms/ml. Dimethyl formamide (DMFA), a scavenger of hydroxyl radicals (HO.), prevented sonication-induced CAT inactivation at 10% (kin and *kin increased with the content of DMFA at concentrations in excess of 3%). The results obtained indicate that free radicals generated in the field of ultrasonic cavitation play a decisive role in the inactivation of CAT, which takes place when its solutions are exposed to low-frequency ultrasound. However, the efficiency of CAT inactivation by the radicals is determined by (1) the degree of association between the enzyme molecules in the reaction medium and (2) the composition thereof.  相似文献   

7.
NO-donors block Plasmodium, Trypanosoma, and Leishmania life cycle inactivating parasite cysteine proteinases. In this study, the inactivation of falcipain, cruzipain, and Leishmania infantum cysteine proteinase by S-nitroso-5-dimethylaminonaphthalene-1-sulphonyl (dansyl-SNO), S-nitrosoglutathione (GSNO), (+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide (NOR-3), and S-nitrosoacetylpenicillamine (SNAP) is reported. With NO-donors in excess over the parasite cysteine proteinase, the time course of enzyme inactivation corresponds to a pseudo-first-order reaction for more than 90% of its course. The concentration dependence of the pseudo-first-order rate constant is second-order at low NO-donor concentrations but tends to first-order at high NO-donor concentrations. This behavior may be explained by a relatively fast pre-equilibrium followed by a limiting pseudo-first-order process. Kinetic parameters of cruzipain inactivation by GSNO were affected by the acidic pK shift of one ionizing group (from pKunl = 5.7 to pKlig = 4.8) upon GSNO-induced enzyme inactivation. Falcipain, cruzipain, and L. infantum cysteine proteinase inactivation by dansyl-SNO, GSNO, NOR-3, and SNAP is prevented and reversed by dithionite and l-ascorbic acid. However, the incubation of L. infantum cysteine proteinase with dansyl-SNO does not result in the appearance of fluorescence of the enzyme. More than 90% of the S-transnitrosylation product GSH existed in the inactivation reaction, suggesting that S-transnitrosylation is the favorite process for parasite cysteine proteinase inactivation. Furthermore, the fluorogenic substrate N-alpha-benzyloxycarbonyl-l-phenylalanyl-l-arginine-(7-amino-4-methylcoumarin) protects L. infantum cysteine proteinase from inactivation by SNAP. These results indicate that parasite cysteine proteinase inactivation by NO-donors occurs via NO-mediated S-nitrosylation of the Cys25 catalytic residue.  相似文献   

8.
9.
Acetylene brings about a progressive inactivation of ammonia mono-oxygenase, the ammonia-oxidizing enzyme in Nitrosomonas europaea. High NH4+ ion concentrations were protective. The inactivation followed first-order kinetics, with a rate constant of 1.5 min-1 at saturating concentrations of acetylene. If acetylene was added in the absence of O2, the cells remained active until O2 was re-introduced. A protective effect was also demonstrated with thiourea, a reversible non-competitive inhibitor of ammonia oxidation. Incubation of cells with [14C]acetylene was found to cause labelling of a single membrane polypeptide. This ran on dodecyl sulphate/polyacrylamide-gel electrophoresis with an Mr value of 28 000. It is concluded that acetylene is a suicide substrate for the mono-oxygenase. The labelling experiment provides the first identification of a constituent polypeptide of ammonia mono-oxygenase.  相似文献   

10.
11.
12.
Mercuric chloride, p-chloromercuribenzoate and 5,5'-dithiobis(2-nitrobenzoic acid) irreversibly inhibited the activity of Escherichia coli glutamate decarboxylase. Their second order rate constants for inactivation are 0.463 microM(-1) min(-1), 0.034 microM(-1) min(-1), 0.018 microM(-1) min(-1), respectively. The characteristics of the inhibition by the three thiol-group reagents supports the idea that cysteinyl residues at the binding sites for the cofactor and/or the substrate are important for enzyme activity in E. coli.  相似文献   

13.
A kinetic model was established for the inactivation of endotoxins in water at temperatures ranging from 210°C to 270°C and a pressure of 6.2 × 10(6) Pa. Data were generated using a bench scale continuous-flow reactor system to process feed water spiked with endotoxin standard (Escherichia coli O113:H10). Product water samples were collected and quantified by the Limulus amebocyte lysate assay. At 250°C, 5-log endotoxin inactivation was achieved in about 1 s of exposure, followed by a lower inactivation rate. This non-log-linear pattern is similar to reported trends in microbial survival curves. Predictions and parameters of several non-log-linear models are presented. In the fast-reaction zone (3- to 5-log reduction), the Arrhenius rate constant fits well at temperatures ranging from 120°C to 250°C on the basis of data from this work and the literature. Both biphasic and modified Weibull models are comparable to account for both the high and low rates of inactivation in terms of prediction accuracy and the number of parameters used. A unified representation of thermal resistance curves for a 3-log reduction and a 3 D value associated with endotoxin inactivation and microbial survival, respectively, is presented.  相似文献   

14.
15.
16.
3-Bromopyruvate inhibited 4-aminobutyrate aminotransferase (EC 2.6.1.19) from Pseudomonas fluorescens, apparently irreversibly. Kinetics of this inactivation were studied by continuously monitoring the enzyme reaction at 30 degrees C in the presence of inhibitor. Irrespective of how high an inhibitor concentration was present, a maximum rate of inactivation was eventually achieved (5.9 x 10(-3) s-1), indicating the formation of a reversible inhibitor-enzyme complex before the final inactivation step. The dissociation constant of this complex was found to be 6.5 microM. This affinity labelling by 3-bromopyruvate suggests the presence of essential sulphydryl groups on the enzyme, since this compound is known to preferentially alkylate cysteinyl residues.  相似文献   

17.
The kinetics of the inactivation of beta-lactamase I from Bacillus cereus 569 by preparations of 6 alpha-bromopenicillanic acid showed unexpected features. These can be quantitatively accounted for on the basis of the inactivator being the epimer, 6 beta-bromopenicillanic acid. At pH 9.2, the rate-determining step in the inactivation is the formation of the inactivator. When pure 6 beta-bromopenicillanic acid is used to inactivate beta-lactamase I, simple second-order kinetics are observed. The inactivated enzyme has a new absorption peak at 326 nm. The rate constant for inactivation has the same value as the rate constant for appearance of absorption at 326 nm; the rate-determining step may thus be fission of the beta-lactam ring of 6 beta-bromopenicillanic acid. Inactivation is slower in the presence of substrate, and the observed kinetics can be quantitatively accounted for on a simple competitive model. The results strongly suggest that inactivation is a consequence of reaction at the active site.  相似文献   

18.
Human leukocyte elastase (HLE), a serine protease involved in inflammation and tissue degradation, can be irreversibly inactivated in a time- and concentration-dependent manner by ynenol lactones. Ynenol lactones that are alpha-unsubstituted do not inactivate but are alternate substrate inhibitors that are hydrolyzed by the enzyme. Ynenol lactones that are both substituted alpha to to the lactone carbonyl and unsubstituted at the acetylene terminus are rapid inactivators of HLE and inactivate pancreatic elastase and trypsin more slowly. 3-Benzyl-5(E)-(prop-2-ynylidene)tetrahydro-2-furanone inactivates HLE with biphasic kinetics and an apparent second-order rate of up to 22,000 M-1 s-1 (pH 7.8, 25 degrees C). The rate of inactivation is pH-dependent and is slowed by a competitive inhibitor. The partition ratio is 1.6 +/- 0.1. Rapid removal of ynenol lactone during the course of inactivation yields a mixture of acyl and inactivated enzyme species, which then shows a partial recovery of activity that is time- and pH-dependent. Inactivation is not reversible with hydroxylamine. The enzyme is not inactivated if the untethered allenone is added exogenously. All of these results are consistent with a mechanism involving enzyme acylation at serine-195 by the ynenol lactone, isomerization of the acyl enzyme to give a tethered allenone, and capture of a nucleophile (probably histidine-57) to inactivate the enzyme. Substitution at the acetylene terminus of ynenol lactones severely reduces their ability to inactivate HLE, because allenone formation is slowed and/or nucleophile capture is hindered. Chemical competence of each of these steps has been demonstrated [Spencer, R.W., Tam, T.F., Thomas, E.M., Robinson, V.J.,& Krantz, A. (1986) J. Am. Chem. Soc. 108, 5589-5597].  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号