首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sandfish lizard (Scincus scincus) swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere discrete element method simulation of the granular medium. In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a “granular frictional fluid” and compare the predictions to our previously developed resistive force theory (RFT) which models sand-swimming using empirically determined granular drag laws. The simulation reveals that the forward speed of the center of mass (CoM) oscillates about its average speed in antiphase with head drag. The coupling between overall body motion and body deformation results in a non-trivial pattern in the magnitude of lateral displacement of the segments along the body. The actuator torque and segment power are maximal near the center of the body and decrease to zero toward the head and the tail. Approximately 30% of the net swimming power is dissipated in head drag. The power consumption is proportional to the frequency in the biologically relevant range, which confirms that frictional forces dominate during sand-swimming by the sandfish. Comparison of the segmental forces measured in simulation with the force on a laterally oscillating rod reveals that a granular hysteresis effect causes the overestimation of the body thrust forces in the RFT. Our models provide detailed testable predictions for biological locomotion in a granular environment.  相似文献   

2.
As global temperatures increase throughout the coming decades, species ranges will shift. New combinations of abiotic conditions will make predicting these range shifts difficult. Biophysical mechanistic niche modeling places bounds on an animal’s niche through analyzing the animal’s physical interactions with the environment. Biophysical mechanistic niche modeling is flexible enough to accommodate these new combinations of abiotic conditions. However, this approach is difficult to implement for aquatic species because of complex interactions among thrust, metabolic rate and heat transfer. We use contemporary computational fluid dynamic techniques to overcome these difficulties. We model the complex 3D motion of a swimming neonate and juvenile leatherback sea turtle to find power and heat transfer rates during the stroke. We combine the results from these simulations and a numerical model to accurately predict the core temperature of a swimming leatherback. These results are the first steps in developing a highly accurate mechanistic niche model, which can assists paleontologist in understanding biogeographic shifts as well as aid contemporary species managers about potential range shifts over the coming decades.  相似文献   

3.
The bacterial flagellar motor is a rotary molecular machine that rotates the helical filaments that propel swimming bacteria. Extensive experimental and theoretical studies exist on the structure, assembly, energy input, power generation, and switching mechanism of the motor. In a previous article, we explained the general physics underneath the observed torque-speed curves with a simple two-state Fokker-Planck model. Here, we further analyze that model, showing that 1), the model predicts that the two components of the ion motive force can affect the motor dynamics differently, in agreement with latest experiments; 2), with explicit consideration of the stator spring, the model also explains the lack of dependence of the zero-load speed on stator number in the proton motor, as recently observed; and 3), the model reproduces the stepping behavior of the motor even with the existence of the stator springs and predicts the dwell-time distribution. The predicted stepping behavior of motors with two stators is discussed, and we suggest future experimental procedures for verification.  相似文献   

4.
Peristaltic contraction of the embryonic heart tube produces time- and spatial-varying wall shear stress (WSS) and pressure gradients (∇P) across the atrioventricular (AV) canal. Zebrafish (Danio rerio) are a genetically tractable system to investigate cardiac morphogenesis. The use of Tg(fli1a:EGFP)y1 transgenic embryos allowed for delineation and two-dimensional reconstruction of the endocardium. This time-varying wall motion was then prescribed in a two-dimensional moving domain computational fluid dynamics (CFD) model, providing new insights into spatial and temporal variations in WSS and ∇P during cardiac development. The CFD simulations were validated with particle image velocimetry (PIV) across the atrioventricular (AV) canal, revealing an increase in both velocities and heart rates, but a decrease in the duration of atrial systole from early to later stages. At 20-30 hours post fertilization (hpf), simulation results revealed bidirectional WSS across the AV canal in the heart tube in response to peristaltic motion of the wall. At 40-50 hpf, the tube structure undergoes cardiac looping, accompanied by a nearly 3-fold increase in WSS magnitude. At 110-120 hpf, distinct AV valve, atrium, ventricle, and bulbus arteriosus form, accompanied by incremental increases in both WSS magnitude and ∇P, but a decrease in bi-directional flow. Laminar flow develops across the AV canal at 20-30 hpf, and persists at 110-120 hpf. Reynolds numbers at the AV canal increase from 0.07±0.03 at 20-30 hpf to 0.23±0.07 at 110-120 hpf (p< 0.05, n=6), whereas Womersley numbers remain relatively unchanged from 0.11 to 0.13. Our moving domain simulations highlights hemodynamic changes in relation to cardiac morphogenesis; thereby, providing a 2-D quantitative approach to complement imaging analysis.  相似文献   

5.
A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions (“active” swimming) or by forces imparted by the surrounding fluid (“passive” swimming), is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD) simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained.  相似文献   

6.
We study crossflow filtration mechanisms in suspension-feeding fishes using computational fluid dynamics to model fluid flow and food particle movement in the vicinity of the gill rakers. During industrial and biological crossflow filtration, particles are retained when they remain suspended in the mainstream flow traveling across the filter surface rather than traveling perpendicularly to the filter. Here we identify physical parameters and hydrodynamic processes that determine food particle movement and retention inside the fish oral cavity. We demonstrate how five variables affect flow patterns and particle trajectories: (1) flow speed inside the fish oral cavity, (2) incident angle of the flow approaching the filter, (3) dimensions of filter structures, (4) particle size, and (5) particle density. Our study indicates that empirical experiments are needed to quantify flow parameters inside the oral cavity, and morphological research is needed to quantify dimensions of the filter apparatus such as gill rakers, the gaps between rakers, and downstream barriers. Ecological studies on suspension-feeding fishes are also needed to quantify food particle size and density, as these variables can affect particle retention due to hydrodynamic processes during crossflow filtration.  相似文献   

7.
A Mechanochemical Model of Flagellar Activity   总被引:1,自引:0,他引:1       下载免费PDF全文
A theory is presented which quantitatively links the physical properties of a flagellum with parameters which characterize the chemical reactions responsible for deforming the flagellum. Realistic values for the wave parameters are predicted when order-of-magnitude values for the appropriate constants are used. The model may be useful in other fields where mechanochemical coupling occurs.  相似文献   

8.

This study was conducted to determine whether local arterial pulsations are sufficient to cause cerebrospinal fluid (CSF) flow along perivascular spaces (PVS) within the spinal cord. A theoretical model of the perivascular space surrounding a "typical" small artery was analysed using computational fluid dynamics. Systolic pulsations were modelled as travelling waves on the arterial wall. The effects of wave geometry and variable pressure conditions on fluid flow were investigated. Arterial pulsations induce fluid movement in the PVS in the direction of arterial wave travel. Perivascular flow continues even in the presence of adverse pressure gradients of a few kilopascals. Flow rates are greater with increasing pulse wave velocities and arterial deformation, as both an absolute amplitude and as a proportion of the PVS. The model suggests that arterial pulsations are sufficient to cause fluid flow in the perivascular space even against modest adverse pressure gradients. Local increases in flow in this perivascular pumping mechanism or reduction in outflow may be important in the etiology of syringomyelia.  相似文献   

9.
10.
Interstitial fluid is a solution that bathes and surrounds the human cells and provides them with nutrients and a way of waste removal. It is generally believed that elevated tumor interstitial fluid pressure (IFP) is partly responsible for the poor penetration and distribution of therapeutic agents in solid tumors, but the complex interplay of extravasation, permeabilities, vascular heterogeneities and diffusive and convective drug transport remains poorly understood. Here we consider–with the help of a theoretical model–the tumor IFP, interstitial fluid flow (IFF) and its impact upon drug delivery within tumor depending on biophysical determinants such as vessel network morphology, permeabilities and diffusive vs. convective transport. We developed a vascular tumor growth model, including vessel co-option, regression, and angiogenesis, that we extend here by the interstitium (represented by a porous medium obeying Darcy''s law) and sources (vessels) and sinks (lymphatics) for IFF. With it we compute the spatial variation of the IFP and IFF and determine its correlation with the vascular network morphology and physiological parameters like vessel wall permeability, tissue conductivity, distribution of lymphatics etc. We find that an increased vascular wall conductivity together with a reduction of lymph function leads to increased tumor IFP, but also that the latter does not necessarily imply a decreased extravasation rate: Generally the IF flow rate is positively correlated with the various conductivities in the system. The IFF field is then used to determine the drug distribution after an injection via a convection diffusion reaction equation for intra- and extracellular concentrations with parameters guided by experimental data for the drug Doxorubicin. We observe that the interplay of convective and diffusive drug transport can lead to quite unexpected effects in the presence of a heterogeneous, compartmentalized vasculature. Finally we discuss various strategies to increase drug exposure time of tumor cells.  相似文献   

11.
12.
13.
We introduce a novel hybrid of two fields-Computational Fluid Dynamics (CFD) and Agent-Based Modeling (ABM)-as a powerful new technique for urban evacuation planning. CFD is a predominant technique for modeling airborne transport of contaminants, while ABM is a powerful approach for modeling social dynamics in populations of adaptive individuals. The hybrid CFD-ABM method is capable of simulating how large, spatially-distributed populations might respond to a physically realistic contaminant plume. We demonstrate the overall feasibility of CFD-ABM evacuation design, using the case of a hypothetical aerosol release in Los Angeles to explore potential effectiveness of various policy regimes. We conclude by arguing that this new approach can be powerfully applied to arbitrary population centers, offering an unprecedented preparedness and catastrophic event response tool.  相似文献   

14.
Arthroscopic lavage and arthrocentesis, performed with different inner-diameter lavage needles, are the current minimally invasive techniques used in temporomandibular joint disc displacement (TMJ-DD) for pain reduction and functional improvement. In the current study, we aimed to explore the biomechanical influence and explain the diverse clinical outcomes of these two approaches with computational fluid dynamics. Data was retrospectively analyzed from 78 cases that had undergone arthroscopic lavage or arthrocentesis for TMJ-DD from 2002 to 2010. Four types of finite volume models, featuring irrigation needles of different diameters, were constructed based on computed tomography images. We investigated the flow pattern and pressure distribution of lavage fluid secondary to caliber-varying needles. Our results demonstrated that the size of outflow portal was the critical factor in determining irrigated flow rate, with a larger inflow portal and a smaller outflow portal leading to higher intra-articular pressure. This was consistent with clinical data suggesting that increasing the mouth opening and maximal contra-lateral movement led to better outcomes following arthroscopic lavage. The findings of this study could be useful for choosing the lavage apparatus according to the main complaint of pain, or limited mouth opening, and examination of joint movements.  相似文献   

15.

Background

Patients with symptomatic intracranial atherosclerosis (ICAS) of ≥70% luminal stenosis are at high risk of stroke recurrence. We aimed to evaluate the relationships between hemodynamics of ICAS revealed by computational fluid dynamics (CFD) models and risk of stroke recurrence in this patient subset.

Methods

Patients with a symptomatic ICAS lesion of 70–99% luminal stenosis were screened and enrolled in this study. CFD models were reconstructed based on baseline computed tomographic angiography (CTA) source images, to reveal hemodynamics of the qualifying symptomatic ICAS lesions. Change of pressures across a lesion was represented by the ratio of post- and pre-stenotic pressures. Change of shear strain rates (SSR) across a lesion was represented by the ratio of SSRs at the stenotic throat and proximal normal vessel segment, similar for the change of flow velocities. Patients were followed up for 1 year.

Results

Overall, 32 patients (median age 65; 59.4% males) were recruited. The median pressure, SSR and velocity ratios for the ICAS lesions were 0.40 (−2.46–0.79), 4.5 (2.2–20.6), and 7.4 (5.2–12.5), respectively. SSR ratio (hazard ratio [HR] 1.027; 95% confidence interval [CI], 1.004–1.051; P = 0.023) and velocity ratio (HR 1.029; 95% CI, 1.002–1.056; P = 0.035) were significantly related to recurrent territorial ischemic stroke within 1 year by univariate Cox regression, respectively with the c-statistics of 0.776 (95% CI, 0.594–0.903; P = 0.014) and 0.776 (95% CI, 0.594–0.903; P = 0.002) in receiver operating characteristic analysis.

Conclusions

Hemodynamics of ICAS on CFD models reconstructed from routinely obtained CTA images may predict subsequent stroke recurrence in patients with a symptomatic ICAS lesion of 70–99% luminal stenosis.  相似文献   

16.
A thermal convection loop is a annular chamber filled with water, heated on the bottom half and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in the loop oscillates chaotically, dynamics analogous to the Earth’s weather. As is the case for state-of-the-art weather models, we only observe the statistics over a small region of state space, making prediction difficult. To overcome this challenge, data assimilation (DA) methods, and specifically ensemble methods, use the computational model itself to estimate the uncertainty of the model to optimally combine these observations into an initial condition for predicting the future state. Here, we build and verify four distinct DA methods, and then, we perform a twin model experiment with the computational fluid dynamics simulation of the loop using the Ensemble Transform Kalman Filter (ETKF) to assimilate observations and predict flow reversals. We show that using adaptively shaped localized covariance outperforms static localized covariance with the ETKF, and allows for the use of less observations in predicting flow reversals. We also show that a Dynamic Mode Decomposition (DMD) of the temperature and velocity fields recovers the low dimensional system underlying reversals, finding specific modes which together are predictive of reversal direction.  相似文献   

17.
The behavior of rope-guided conveyances is so complicated that the rope-guided hoisting system hasn’t been understood thoroughly so far. In this paper, with user-defined functions loaded, ANSYS FLUENT 14.5 was employed to simulate lateral motion of rope-guided conveyances in two typical kinds of shaft layouts. With rope-guided mine elevator and mine cages taken into account, results show that the lateral aerodynamic buffeting force is much larger than the Coriolis force, and the side aerodynamic force have the same order of magnitude as the Coriolis force. The lateral aerodynamic buffeting forces should also be considered especially when the conveyance moves along the ventilation air direction. The simulation shows that the closer size of the conveyances can weaken the transverse aerodynamic buffeting effect.  相似文献   

18.
Cerebrospinal fluid (CSF) dynamics in the cervical spinal subarachnoid space (SSS) have been thought to be important to help diagnose and assess craniospinal disorders such as Chiari I malformation (CM). In this study we obtained time-resolved three directional velocity encoded phase-contrast MRI (4D PC MRI) in three healthy volunteers and four CM patients and compared the 4D PC MRI measurements to subject-specific 3D computational fluid dynamics (CFD) simulations. The CFD simulations considered the geometry to be rigid-walled and did not include small anatomical structures such as nerve roots, denticulate ligaments and arachnoid trabeculae. Results were compared at nine axial planes along the cervical SSS in terms of peak CSF velocities in both the cranial and caudal direction and visual interpretation of thru-plane velocity profiles. 4D PC MRI peak CSF velocities were consistently greater than the CFD peak velocities and these differences were more pronounced in CM patients than in healthy subjects. In the upper cervical SSS of CM patients the 4D PC MRI quantified stronger fluid jets than the CFD. Visual interpretation of the 4D PC MRI thru-plane velocity profiles showed greater pulsatile movement of CSF in the anterior SSS in comparison to the posterior and reduction in local CSF velocities near nerve roots. CFD velocity profiles were relatively uniform around the spinal cord for all subjects. This study represents the first comparison of 4D PC MRI measurements to CFD of CSF flow in the cervical SSS. The results highlight the utility of 4D PC MRI for evaluation of complex CSF dynamics and the need for improvement of CFD methodology. Future studies are needed to investigate whether integration of fine anatomical structures and gross motion of the brain and/or spinal cord into the computational model will lead to a better agreement between the two techniques.  相似文献   

19.
Erythrocytes are proposed to be involved in blood flow regulation through both shear- and oxygen-dependent mechanisms for the release of adenosine triphosphate (ATP), a potent vasodilator. In a recent study, the dynamics of shear-dependent ATP release from erythrocytes was measured using a microfluidic device with a constriction in the channel to increase shear stress. The brief period of increased shear stress resulted in ATP release within 25 to 75 milliseconds downstream of the constriction. The long-term goal of our research is to apply a similar approach to determine the dynamics of oxygen-dependent ATP release. In the place of the constriction, an oxygen permeable membrane would be used to decrease the hemoglobin oxygen saturation of erythrocytes flowing through the channel. This paper describes the first stage in achieving that goal, the development of a computational model of the proposed experimental system to determine the feasibility of altering oxygen saturation rapidly enough to measure ATP release dynamics. The computational model was constructed based on hemodynamics, molecular transport of oxygen and ATP, kinetics of luciferin/luciferase reaction for reporting ATP concentrations, light absorption by hemoglobin, and sensor characteristics. A linear model of oxygen saturation-dependent ATP release with variable time delay was used in this study. The computational results demonstrate that a microfluidic device with a 100 µm deep channel will cause a rapid decrease in oxygen saturation over the oxygen permeable membrane that yields a measurable light intensity profile for a change in rate of ATP release from erythrocytes on a timescale as short as 25 milliseconds. The simulation also demonstrates that the complex dynamics of ATP release from erythrocytes combined with the consumption by luciferin/luciferase in a flowing system results in light intensity values that do not simply correlate with ATP concentrations. A computational model is required for proper interpretation of experimental data.  相似文献   

20.
In previous work,we modified blade element theory by implementing three-dimensional wing kinematics and modeled the unsteady aerodynamic effects by adding the added mass and rotational forces.This method is referred to as Unsteady Blade Element Theory (UBET).A comparison between UBET and Computational Fluid Dynamics (CFD) for flapping wings with high flapping frequencies (>30 Hz) could not be found in literature survey.In this paper,UBET that considers the movement of pressure center in pitching-moment estimation was validated using the CFD method.We investigated three three-dimensional (3D) wing kinematics that produce negative,zero,and positive aerodynamic pitching moments.For all cases,the instantaneous aerodynamic forces and pitching moments estimated via UBET and CFD showed similar trends.The differences in average vertical forces and pitching moments about the center of gravity were about 10% and 12%,respectively.Therefore,UBET is proven to reasonably estimate the aerodynamic forces and pitching moment for flight dynamic study of FW-MAV.However,the differences in average wing drags and pitching moments about the feather axis were more than 20%.Since study of aerodynamic power requires reasonable estimation of wing drag and pitching moment about the feather axis,UBET needs further improvement for higher accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号