首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Escherichia coli B/pTG201 recombinant cells were immobilized by entrapment in a carrageenan gel and cultivated in nonselective media to investigate the effect of agitation rate on plasmid stability, biomass concentration, and enzyme productivity. These parameters were studied in continuous cultures for free and immobilized cells, respectively. Immobilized recombinant cells exhibit an increase in the stability of the plasmid pTG201 compared to free cells, even under conditions where the tendency of plasmid stability for free cells decreased generally more rapidly under a higher agitation rate. Intensive agitation, resulting also in a strong shear stress, greatly reduced cell concentration within gel beads throughout the course of growth. Higher enzyme expression of catechol 2–3, dioxygenase was also obtained in leaked cells due to better maintenance of plasmid stability and higher plasmid copy number with regard to free cells. Enzyme productivity of leaked and free cells in minimal medium decreased with the increase in agitation rate, due to decreased plasmid stability; however, in LB medium, it increased in the presence of higher agitation rate related to important cell concentration.  相似文献   

2.
In order to better understand the high plasmid stability in immobilized recombinant E. coli cells, the effects of dilution rate on the pTG201 plasmid stability, the copy number, and the catechol 2,3-dioxygenase (encoded by XyIE gene) production were, at first, studied in free E. coli W3101 continuous cultures in minimal media. It was found that decreasing specific growth rate increased the plasmid copy number and the catechol 2,3-dioxygenase activity but the stability decreased. In continuous culture with immobilized cells, an increase was shown in plasmid copy number and catechol 2,3-dioxygenase activity probably due to the distribution of growth in the gel beads. Besides mechanical properties of gel beads which may allow limited cell divisions, the increase in plasmid copy number is involved in enhanced plasmid stability in immobilized cells. In the same way, an experiment conducted in LB medium dealing with competition between pTG201-free and pTG201-containing E. coli B cells was described. It was shown that the competition was not more pronounced in gel bead compared to a free system. The effects of nutritional limitations on pTG201 plasmid stability and catechol 2,3-dioxygenase activity during chemostat cultivations in free and immobilized E. coli B cells were also investigated. It was found that immobilization of cells increased the stability of pTG201 even under glucose, nitrogen, or phosphate limited cultures. However in the case of magnesium depleted culture, pTG201 was shown to be relatively instable and a decrease in viable cell number during the immobilized continuous culture was observed. By contrast to the free system, the catechol 2,3-dioxygenase activity increased in immobilized cells under all culture conditions used.  相似文献   

3.
Escherichia coli B/pTG201 recombinant cells were immobilized by entrapment in a carrageenan gel and cultivated in nonselective media to investigate the effect of agitation rate on plasmid stability, biomass concentration, and enzyme productivity. These parameters were studied in continuous cultures for free and immobilized cells, respectively. Immobilized recombinant cells exhibit an increase in the stability of the plasmid pTG201 compared to free cells, even under conditions where the tendency of plasmid stability for free cells decreased generally more rapidly under a higher agitation rate. Intensive agitation, resulting also in a strong shear stress, greatly reduced cell concentration within gel beads throughout the course of growth. Higher enzyme expression of catechol 2–3, dioxygenase was also obtained in leaked cells due to better maintenance of plasmid stability and higher plasmid copy number with regard to free cells. Enzyme productivity of leaked and free cells in minimal medium decreased with the increase in agitation rate, due to decreased plasmid stability; however, in LB medium, it increased in the presence of higher agitation rate related to important cell concentration.  相似文献   

4.
Stability of the plasmid pKK223-200 in Escherichia coli JM105 was studied for both free and immobilized cells during continuous culture. The relationship between plasmid copy number, xylanase activity, which was coded for by the plasmid, and growth rate and culture conditions involved complex interactions which determined the plasmid stability. Generally, the plasmid stability was enhanced in cultured immobilized cells compared with free-cell cultures. This stability was associated with modified plasmid copy number, depending on the media used. Hypotheses are presented concerning the different plasmid instability kinetics observed in free-cell cultures which involve the antagonistic effects of plasmid copy number and plasmid presence on the plasmid-bearing/plasmid-free cell growth rate ratio. Both diffusional limitation in carrageenan gel beads, which is described in Theoretical Analysis of Immobilized-Cell Growth, and compartmentalized growth of immobilized cells are proposed to explain plasmid stability in immobilized cells.  相似文献   

5.
Stability of the plasmid pKK223-200 in Escherichia coli JM105 was studied for both free and immobilized cells during continuous culture. The relationship between plasmid copy number, xylanase activity, which was coded for by the plasmid, and growth rate and culture conditions involved complex interactions which determined the plasmid stability. Generally, the plasmid stability was enhanced in cultured immobilized cells compared with free-cell cultures. This stability was associated with modified plasmid copy number, depending on the media used. Hypotheses are presented concerning the different plasmid instability kinetics observed in free-cell cultures which involve the antagonistic effects of plasmid copy number and plasmid presence on the plasmid-bearing/plasmid-free cell growth rate ratio. Both diffusional limitation in carrageenan gel beads, which is described in Theoretical Analysis of Immobilized-Cell Growth, and compartmentalized growth of immobilized cells are proposed to explain plasmid stability in immobilized cells.  相似文献   

6.
Summary The immobilized growing cell system using Serratia marcescens was applied to continuous L-arginine production. From the determination of oxygen uptake rate, it was shown that the cells entrapped in carrageenan gel were in an oxygen-limited state due to the diffusion barrier to oxygen transport created by the gel layer. This limited state in gel was relieved by supply of oxygen-enriched gas instead of air into the medium. The maximum population of immobilized cells increased to five times that of free cells with the supply of pure oxygen gas. The L-arginine-producing activity of the immobilized growing cells was proportional to the concentration of oxygen gas supplied and was 6 mg/h per millilitre in gel supplied with pure oxyges gas. The continuous L-arginine containing production was constantly maintained by controlling the medium penicillin G at pH 6.5 and more than 10 mg/ml of L-arginine were obtained at 10h of residence time for at least 12 days.  相似文献   

7.
Summary A 2 m circle-based chimaeric plasmid containing the yeast LEU2 and the Herpes Simplex Virus type 1 thymidine kinase (HSV-1 TK) genes was constructed. Transformants grown under selective conditions for the LEU2 gene harboured the plasmid at about 15 copies per cell whilst selection for the HSV-1 TK gene led to an increase to about 100 copies per cell. Furthermore, the plasmid copy number could be controlled by the stringency of selection for the TK gene, and the increase in TK gene dosage was reflected in an increase in intracellular thymidine kinase activity. The mitotic stability of the plasmid in high-copy and low-copy number cells was determined. High-copy number cells showed a greater mitotic stability. The relationship of TK expression to plasmid copy number may be useful for the isolation of plasmid copy number mutants in yeast and the control of heterologous gene expression.  相似文献   

8.
The stability of pTG201 plasmid was examined by continuous culture in three genetically different Escherichia coli hosts. Two types of experiment were carried out, one with free cells and one with immobilized cells. When cells were cultivated in free continuous culture in the absence of antibiotic selection, the plasmid was maintained with various degrees of stability in the three host organisms. By contrast, in continuous culture with immobilized cells, plasmid pTG201 was stably maintained in the three strains. We showed that the increase in pTG201 stability in immobilized cells is due neither to plasmid transfer between immobilized cells nor to an increase of the plasmid copy number of immobilized cells. We also showed that plasmid-free cells, when coimmobilized and grown in competition with plasmid-containing cells, cannot overrun the culture.  相似文献   

9.
The stability of pTG201 plasmid was examined by continuous culture in three genetically different Escherichia coli hosts. Two types of experiment were carried out, one with free cells and one with immobilized cells. When cells were cultivated in free continuous culture in the absence of antibiotic selection, the plasmid was maintained with various degrees of stability in the three host organisms. By contrast, in continuous culture with immobilized cells, plasmid pTG201 was stably maintained in the three strains. We showed that the increase in pTG201 stability in immobilized cells is due neither to plasmid transfer between immobilized cells nor to an increase of the plasmid copy number of immobilized cells. We also showed that plasmid-free cells, when coimmobilized and grown in competition with plasmid-containing cells, cannot overrun the culture.  相似文献   

10.
Abstract The stability and the copy number of pBR322, pBR325 and pBR328 were studied during continous cultures of free and immobilized E. coli W3101 without selective pressure. In the free-cell system, it was found that pBR328 and pBR325-free E. coli cells appeared after a lag period. They rapidly overgrew the cultures and the plasmid copy number subsequently declined. On the other hand, an increase in the proportion of pBR322- carrying cells during a free continuous culture was observed. This increase correlated with that of plasmid copy number. By contrast, in the immobilized- cell system, plasmid free segregants were not detected in all the cases even after 250 generations. We have also shown that plasmid copy number remained constant and phenomena such as fluctuations or genetic modifications which occured after long term growth of bacteria in a free continuous culture could be avoided throughout cell immobilization.  相似文献   

11.
Summary The ability of alginate-entrapped microorganisms to supply oxygen was determined with regard to physiology and growth behavior of the cells. Oxygen diffusion through an alginate film containing different concentrations of Pseudomonas putida or Saccharomyces cerevisiae was measured. Oxygen diffusion decreased when the cell loading increased. Dependent on the physiological behavior of these organisms the course of the oxygen concentration under the gel film is quite different. In further experiments an Effectiveness-Factor of oxygen uptake of alginate beads with Saccharomyces cerevisiae or Aspergillus niger was determined in relation to the growth behavior of the organisms. The effectiveness factor is always higher when the biomass is concentrated in the outer region of the gel beads as if the microorganisms are distributed homogeneously in the alginate. Considering these results it is not possible to make a general statement on the ability of microorganisms in alginate to supply oxygen. The physiology and the growth behavior of the immobilized organisms have to be considered in any case.  相似文献   

12.
Summary Protoplasts of wild-type strain s and a long-lived extrachromosomal mutant (AL2) of the ascomycete Podospora anserina were transformed using a plasmid (pAN7-1) which contains the hygromycin B phosphotransferase gene (hph) of Escherichia coli under the control of Aspergillus nidulans regulatory sequences. After optimizing the transformation procedure, transformation efficiencies of 15–21 transformants/ plasmid DNA were obtained. Using a second selectable vector (pBT3), which contains the -tubuline gene of a benomyl-resistant Neurospora crassa mutant, the cotransformation rate was determined. Southern blot hybridization experiments revealed that the transforming plasmid became integrated into the genome of the recipient either as a single copy or as multiple copies. In addition, the data from molecular as well as from classical genetic analyses indicated that in independent transformants vector integration occurred at different positions. The mitotic and meiotic stability of transformants proved to be dependent on the number of integrated plasmid copies. Genetic analyses revealed a transformant in which the integrated vector is closely linked to the mating-type locus. Fractination of whole chromosomes by pulsed field gel electrophoresis and subsequent hybridization of the immobilized DNAs against radiolabelled vector sequences indicated the largest of seven chromosomes as the chromosome containing the integrated vector and thus the mating-type locus. Offprint requests to: K. Esser  相似文献   

13.
Bioprocesses using filamentous fungi immobilized in inert supports present many advantages when compared to conventional free cell processes. However, assessment of the real advantages of the unconventional process demands a rigorous study of the limitations to diffusional mass transfer of the reagents, especially concerning oxygen. In this work, a comparative study was carried out on the cephalosporin C production process in defined medium containing glucose and sucrose as main carbon and energy sources, by free and immobilized cells of Cephalosporium acremonium ATCC 48272 in calcium alginate gel beads containing alumina. The effective diffusivity of oxygen through the gel beads and the effectiveness factors related to the respiration rate of the microorganism were determined experimentally. By applying Monod kinetics, the respiration kinetics parameters were experimentally determined in independent experiments in a complete production medium. The effectiveness factor experimental values presented good agreement with the theoretical values of the approximated zero‐order effectiveness factor, considering the dead core model. Furthermore, experimental results obtained with immobilized cells in a 1.7‐L tower bioreactor were compared with those obtained in 5‐L conventional fermentor with free cells. It could be concluded that it is possible to attain rather high production rates working with relatively large diameter gel beads (ca. 2.5 mm) and sucrose consumption‐based productivity was remarkably higher with immobilized cells, i.e., 0.33 gCPC/kg sucrose/h against 0.24 gCPC/kg sucrose/h in the aerated stirred tank bioreactor process. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 63: 593–600, 1999.  相似文献   

14.
Summary Cephalosporium acremonium cells were immobilized in calcium alginate beads. Immobilized cells were used to produce -lactam antibiotics in rest medium under various oxygen concentrations, and the results were compared with free cell performance. Cell growth rate of immobilized cells was 35% of the growth rate of free cells. -Lactam antibiotic production rate of immobilized cells was also limited by mass transfer of oxygen. -Lactam antibiotic production rate of immobilized cells was 70% of that of free cells at oxygen saturation condition (i.e., 0.27 mM O2). Specific antibiotic production of immobilized cells was about 200% of that of free cells at 0.27 mM O2.  相似文献   

15.
Immobilized cells of Bacillus licheniformis 44MB82-G were used for the production of thermostable -amylase. The immobilization was carried out by entrapment in agar gel or by binding to formaldehyde-activated acrylonitrile/acrylamide membranes. The -amylase production after 144 h of cultivation of membrane immobilized cells was 40% higher in comparison with the free cells. The respective value for the agar-entrapped cells was 22%. Similar trends were observed in the repeated batch fermentations performed with the immobilized cells. The scanning electron micrographs (SEM) of the immobilized cells gave additional information about their binding to the respective carriers.  相似文献   

16.
Li  Gao-Xiang  Linko  Yu-Yen  Linko  P. 《Biotechnology letters》1984,6(10):645-650
Summary Aspergillus niger mycelia or spores were immobilized in calcium alginate gel beads and employed for production of glucoamylase and -amylase by repeated batch process. The immobilized mycelium produced lower enzyme activities than immobilized spores germinated in a growth medium and subsequently cultured in an enzyme production medium. In repeated batch experiments, free cells could be used for only 4 4-day batches, whereas with immobilized spores at least 11 4-day batches with a gradual increase in enzyme activities in each successive batch were possible. The activity ratio of glucoamylase and -amylase produced was altered by immobilization.  相似文献   

17.
Summary The stability and gene expression of a batch culture ofEscherichia coli, strain C600, carrying the plasmid pKN401 under both aerobic and anaerobic conditions were studied. It was observed that the plasmid was stable under both conditions and during a step change in the environment in which oxygen and nitrogen were supplied alternately. In addition, the -lactamase specific activity was sensitive to the availability of oxygen, with higher activities and a strong dependence on optical density observed under anaerobic conditions.  相似文献   

18.
Summary Whole cells of Arthrobacter simplex were immobilized in a living state in calcium alginate gel. The bacteria showed steroid-1-dehydrogenase activity and the production of prednisolone from cortisol was investigated. The 1-dehydrogenase activity of the immobilized cells could be increased about ten-fold by incubation in nutrient media (e.g., containing 0.5% peptone abd 0.2% glucose). The reason for this activation was examined and it was found that the immobilized cells were capable of multiplying when supplied with nutrients. Furthermore, provided that an inducer, cortisol, was present, the steroid-1-dehydrogenase activity increased in proportion to the increase in the number of cells and it was thus concluded that microbial growth was the cause of activation.Experiments on repeated, batch-wise pseudocrystallofermentation with immobilized A. simplex cells also showed that immobilized cells could be advantageously used for pseudocrystallofermentation of steroids.  相似文献   

19.
Summary -Galactosidase-2 (-d-galactoside galactohydrolase, EC 3.2.1.23) from Bacillus circulans was purified using hydroxyapatite gel chromatography and immobilized onto Duolite ES-762 (phenolformaldehyde resin) and Merckogel (controlled pore silica gel) for continuous production of galacto-oligosaccharides using lactose as the substrate. The maximum amount of ologosaccharides produced by the immobilized enzyme was 35–40% of the total sugar during hydrolysis of 4.56% lactose. Partially purified -galactosidase from B. circulans was also immobilized onto various supports for the same purpose. The stability of the immobilized -galactosidase-2 or partially purified enzyme during a continuous reaction depended on their supports and specific activity. Of the supports tested, Merckogel was best for operational stability. With this support, the enzyme was quite stable with specific activity up to 15 units/g of wet gel; it was reversibly inactivated with more.  相似文献   

20.
Summary Bacillus amyloliquefaciens 321S cells were immobilized with 3.4% -carrageenan gel in bead form, and -amylase production by the immobilized cells was studied. Cells in the gel, after the population reached maximum were restricted to a layer of 50 m thickness, from the surface of the gel, suggesting that oxygen diffusion is the growth limiting factor. The specific respiratory activity and the growth rate of the entrapped cells under such conditions were 1/2 and 1/5 1/10, respectively, that of free cells. In spite of the repressed respiration and growth, the specific rate of -amylase production of the entrapped cells reached the maximum value of free cells or higher.In continuous culture, in an aerated vessel with a volume ratio of gel beads to medium of 1:2, the maximum production rate of -amylase was obtained at a dilution rate of 1.0 h–1, which was double the maximum specific growth rate of the strain.These results showed that bacterial -amylase production, which is a nongrowth-associated type of synthesis was achieved with the use of immobilized cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号