首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the unusual observation that depolarization of rat basophilic leukemia cells in high potassium not only fails to induce secretion, but also inhibits the secretion induced when receptors for IgE are aggregated by antigen. Antigen-stimulated 45Ca uptake and the rise in cytoplasmic free ionized calcium measured with the fluorescent indicator quin2 were both inhibited in depolarized cells. 45Ca efflux, on the other hand, was unaffected, which confirms that IgE receptor activation was not impaired in high potassium. Unlike the large increase in total cell calcium seen when cells in normal saline solution were stimulated with antigen, there was a decrease in total cell calcium when depolarized cells were stimulated. This is consistent with our finding that 45Ca uptake was inhibited while 45Ca efflux was unaffected. Inhibition of 45Ca uptake and secretion closely paralleled the decrease in membrane potential, and could be overcome by increasing the extracellular calcium concentration. We conclude that changes in the electrochemical gradient for calcium are important in determining calcium influx and the magnitude of antigen-stimulated secretion from rat basophilic leukemia cells, while the release of calcium from intracellular stores is unaffected.  相似文献   

2.
Release of calcium from intracellular stores of rat basophilic leukemia cells was monitored using the fluorescent probe chlortetracycline. The ability of chlortetracycline to indicate release from intracellular calcium stores was initially validated. The decrease of chlortetracycline fluorescence upon antigen-stimulation was not the result of secretion of granule-associated dye or of changes in the properties of the membranes. The chlortetracycline fluorescence signal was not influenced by Ca2+ influx across the plasma membrane. Results obtained from these chlortetracycline fluorescence measurements corresponded well with 45Ca efflux data, an indirect measurement of release of calcium from stores. Chlortetracycline was used to examine the rate of antigen-induced release of calcium from stores, the depletion of intracellular calcium stores by EGTA, and the relationship between the antigen-stimulated release of stored calcium and exocytosis. Chlortetracycline was shown to be a useful qualitative indicator for the release of intracellular calcium with a relatively rapid response time.  相似文献   

3.
Receptor-mediated changes in plasma membrane potential were recorded in rat basophilic leukemia (RBL) cells with the potential-sensitive fluorescent indicator bis-oxonol. Depolarization of the mitochondria with metabolic inhibitors was not detected by bis-oxonol, suggesting that only potential changes across the plasma membrane were being measured. The resting membrane potential of RBL cells was largely generated by the equilibrium distribution of K+ and not through electrogenic activity of the sodium pump. Depolarization was maintained as long as IgE receptors remained aggregated. We believe that at physiologic calcium concentrations a large portion of the measured potential change may be due to calcium influx across the plasma membrane. Prevention of calcium influx by lanthanum, disruption of aggregated receptors, or prior depolarization in a high K+ saline solution completely inhibited the antigen-induced depolarization. The time course of the antigen-stimulated increase in bis-oxonol fluorescence was similar, but not identical, to the antigen-stimulated rise in cytoplasmic free ionized calcium measured with fura-2. Antigen-stimulated depolarization was inhibited by removing both calcium and sodium and could be restored by the addition of either ion. Reduction of total cellular adenosine triphosphate inhibited depolarization in response to antigen stimulation.  相似文献   

4.
The mechanism by which calcium regulates leptin secretion was studied in adipocytes isolated from rat white adipose tissue. Incubation of adipocytes in a medium containing glucose, but no calcium, markedly inhibited insulin-stimulated leptin secretion (ISLS) and synthesis, without affecting basal leptin secretion or lipolysis. However, when pyruvate was used as a substrate, ISLS was insensitive to the absence of calcium. Likewise, the stimulatory effects of insulin were completely prevented by phloretin, cytochalasin B, and W-13 (3 agents that interfere with early steps of glucose metabolism) in the presence of glucose, but not in the presence of pyruvate. Thus calcium appears to be specifically required for glucose utilization. On the other hand, (45)Ca uptake and leptin secretion were not affected by insulin or by inhibitors of L-type calcium channels. However, agents increasing plasma membrane permeability to calcium (high calcium concentrations, A-23187, and ATP) increased (45)Ca uptake and concomitantly inhibited ISLS. Similarly, release of endogenous calcium stores by thapsigargin inhibited ISLS in a dose-dependent manner. ATP, A-23187, calcium, and thapsigargin inhibited ISLS, even in the presence of pyruvate. These results show that 1) extracellular calcium is necessary for ISLS, mainly by affecting glucose uptake, 2) insulin does not affect extracellular calcium uptake, and 3) increasing cytosolic calcium by stimulating its uptake or its release from endogenous stores inhibits ISLS at a level independent of glucose metabolism. Thus calcium regulates leptin secretion from adipocytes in a manner that is markedly different from its role in the exocytosis of many other polypeptidic hormones.  相似文献   

5.
Aggregation of immunoglobulin E-receptor complexes on the surface of rat basophilic leukemia cells stimulates an increase in plasma membrane K+ permeability that is monitored as an increase in the rate of efflux of preloaded 86Rb+. A major component of this stimulated 86Rb+ efflux appears to be due to a Ca(2+)-activated K+ channel because it is inhibited by quinidine in parallel with the inhibition of degranulation and membrane potential repolarization, it is blocked by 0.1 mM La3+, and it is dependent on external Ca2+. Depolarization of the plasma membrane by carbonyl cyanide 3-chlorophenylhydrazone inhibits stimulated Ca2+ influx and prevents antigen-induced 86Rb+ efflux, and increased external Ca2+ partially restores 86Rb+ efflux under these conditions. In addition, potentiation of antigen-stimulated Ca2+ influx by pretreatment with cholera toxin increases the initial rate of stimulated 86Rb+ efflux. Another component of antigen-stimulated K+ efflux appears to be mediated by a guanine nucleotide-binding protein because pretreatment of rat basophilic leukemia cells with pertussis toxin decreases the initial rate of antigen-stimulated 86Rb+ efflux to 40% of that for the untreated cells. Stimulated 86Rb+ efflux is also observed when ionomycin is used to increase cytoplasmic Ca2+ and to trigger membrane depolarization. The efflux stimulated by ionomycin is inhibited by quinidine but not by pertussis toxin pretreatment; thus, it appears to occur through the Ca(2+)-activated K+ efflux pathway. It is proposed that these K+ efflux pathways serve to sustain the Ca2+ influx that is necessary for receptor-mediated triggering of cellular degranulation.  相似文献   

6.
C Fewtrell  E Sherman 《Biochemistry》1987,26(22):6995-7003
The intracellular calcium indicator and buffer quin2 has been used to generate a large calcium buffering capacity in the cytoplasm of rat basophilic leukemia cells. Above 3 mM intracellular quin2, there is no further increase in the initial rate of antigen-induced 45Ca uptake, suggesting that 45Ca buffering by quin2 is now sufficient to prevent the immediate efflux of 45Ca from the cells. Thus, the initial rate of 45Ca uptake should reflect the true unidirectional influx of calcium that occurs when immunoglobulin E (IgE) receptors are aggregated by antigen. The antigen-induced calcium permeability pathway appears to be saturable, with a Km of about 0.7 mM and a Vmax of 0.9 nmol of calcium (10(6) cells)-1 min-1. Although net 45Ca uptake reaches a plateau a few minutes after antigen stimulation, the increase in plasma membrane permeability is maintained for at least an hour, provided that receptors for IgE remain aggregated. The initial rate of 45Ca influx correlates well with the subsequent secretion of [3H]serotonin in response to different concentrations of antigen. Both 45Ca uptake and [3H]serotonin secretion are maximal when only 10% of the receptors are occupied with antigen-specific IgE. Thus, 45Ca influx correlates more closely with secretion than with the number of IgE receptors aggregated by antigen.  相似文献   

7.
Cholera toxin pretreatment has been found to cause a 3-fold increase in the initial rate of antigen-stimulated secretion of serotonin from rat basophilic leukemia (RBL) cells. Under similar conditions, cholera toxin enhances the antigen-stimulated rise in cytoplasmic free ionized calcium levels and causes a 2-3-fold increase in the rate of antigen-stimulated influx of 45Ca. In intact RBL cells cholera toxin pretreatment potentiates the antigen-stimulated production of inositol phosphates, but in permeabilized cells, with strongly buffered free calcium levels, no effect of cholera toxin pretreatment on the antigen-stimulated activation of cellular phospholipase activities is observed. In addition, pretreatment of cells with tetradecanoylphorbol acetate inhibits antigen-stimulated production of inositol phosphates by greater than 95%, while the stimulated influx of 45Ca remains unaffected. These data indicate that the antigen-stimulated influx of calcium into RBL cells can be dissociated from the production of inositol phosphates in these cells. The observed effects of cholera toxin on exocytosis and Ca2+ influx in RBL cells are not due to the elevation of cellular cyclic AMP levels since a variety of agents capable of elevating cellular cyclic AMP levels do not mimic these effects. Together, these data suggest that a cholera toxin-sensitive guanine nucleotide-binding protein is involved in the pathway responsible for the antigen-stimulated influx of calcium into RBL cells.  相似文献   

8.
Abstract Washed cells of Rhodopseudomonas sphaeroides forma sp. denitrificans , grown under photodenitrifying conditions, exhibited K+ uptake dependent on the transmembrane proton gradient (Δ pH). These cells also acidified the suspension medium in response to K+ pulses both aerobically and anaerobically in light and in the dark. The results indicate that the photodenitrifier has a reversible K+/H+ exchange activity which reflects its role in regulating the intracellular K+ concentration, as well as intracellular pH. The acidification of the external medium resulting from K+ pulses was inhibited by carbonyl cyanide- m -chlorophenylhydrazone (CCCP) indicating that the antiporter is energy-dependent. Addition of KCl to washed cells depolarized the membrane potential (Δψ) with a concomitant increase in ΔpH, indicating that the K+/H+ antiporter was electrogenic.  相似文献   

9.
The effect of clozapine on the intracellular concentration of calcium ([Ca2+](i)) in rat submandibular acinar cells was tested. By itself clozapine had no effect on the mobilization of intracellular pools of calcium or on the uptake of extracellular calcium. It inhibited the increase of the [Ca2+](i) in response to carbachol (half-maximal inhibitory concentrations, IC(50)=100nM) and to norepinephrine and epinephrine (IC(50)=10nM) without affecting the response to substance P, extracellular ATP or thapsigargin. Clozapine inhibited the uptake of extracellular calcium in response to epinephrine but not to substance P, ATP or thapsigargin. It also decreased the production of inositol phosphates elicited by epinephrine but not by substance P or fluoride. It is concluded that, by itself, clozapine has no effect on the [Ca2+](i) in rat salivary acinar cells. It selectively inhibits muscarinic and adrenergic receptors in the acinar plasma membrane.  相似文献   

10.
Our previous work has demonstrated that islet depolarization with KCl opens connexin36 hemichannels in β-cells of mouse pancreatic islets allowing the exchange of small metabolites with the extracellular medium. In this study, the opening of these hemichannels has been further characterized in rat islets and INS–1 cells. Taking advantage of hemicannels’opening, the uptake of extracellular ATP and its effect on insulin release were investigated. 70 mM KCl stimulated light emission by luciferin in dispersed rat islets cells transduced with the fire-fly luciferase gene: it was suppressed by 20 mM glucose and 50 μM mefloquine, a specific connexin36 inhibitor. Extracellular ATP was taken up or released by islets depolarized with 70 mM KCl at 5 mM glucose, depending on the external ATP concentration. 1 mM ATP restored the loss of ATP induced by the depolarization itself. ATP concentrations above 5 mM increased islet ATP content and the ATP/ADP ratio. No ATP uptake occurred in non-depolarized or KCl-depolarized islets simultaneously incubated with 50 μM mefloquine or 20 mM glucose. Extracellular ATP potentiated the secretory response induced by 70 mM KCl at 5 mM glucose in perifused rat islets: 5 mM ATP triggered a second phase of insulin release after the initial peak triggered by KCl-depolarization itself; at 10 mM, it increased both the initial, KCl-dependent, peak and stimulated a greater second phase of secretion than at 5 mM. These stimulatory effects of extracellular ATP were almost completely suppressed by 50 μM mefloquine. The magnitude of the second phase of insulin release due to 5 mM extracellular ATP was decreased by addition of 5 mM ADP (extracellular ATP/ADP ratio = 1). ATP acts independently of KATP channels closure and its intracellular concentration and its ATP/ADP ratio seems to regulate the magnitude of both the first (triggering) and second (amplifying) phases of glucose-induced insulin secretion.  相似文献   

11.
1. The ability of external ATP to induce calcium uptake in isolated rat liver cells was further characterized. Stimulation of calcium uptake was specific for ATP, other nucleotides or ATP metabolites had no comparable effect. ATP was dephosphorylated while stimulating calcium uptake, but there was no stoichiometry between ATP hydrolysis and calcium uptake nor did dephosphorylation depend on calcium concentration. ATP acted from outside and was dephosphorylated by an ecto-ATPase of the cells. 2. In addition to its direct action, ATP enhanced succinate-dependent calcium uptake in a cooperative fashion. This is best explained by different sites of action. ATP increases cell membrane permeability while succinate stimulates uptake into mitochondria. 3. ATP was able to lower Na+ and K+ gradients and the pH gradient between cells and incubation medium. Increasing calcium concentration counteracted this effect though calcium uptake was then stimulated. 4. Succinate alone did not affect monovalent cation gradients but raised the pH gradient. It partially counteracted the ATP effects on these gradients. 5. Since catecholamine-like actions of ATP may be mediated by an increase in cytoplasmic calcium concentration, the action of extracellular ATP can be taken as a model to study the role of calcium as a transmitter of hormone actions. From interdependence between ATP-stimulated and succinate-stimulated calcium uptake, conclusions can be drawn on the resulting cytoplasmic calcium concentration and its effect on plasma membrane permeability.  相似文献   

12.
Non-growing cells of Escherichia coli O157:H7 and K-12 that were incubated anaerobically in sodium phosphate buffer at pH 6.5 consumed glucose at a rate of approximately 8 μmol·(mg protein)−1·h−1 and had intracellular pH values of 7.3 and 7.5, respectively. The uncoupler, carbonylcyanide-m-chlorophenylhydrazone (CCCP), caused a marked decrease in intracellular pH, ATP and potassium of both strains. Low concentrations of CCCP stimulated glucose consumption rate, but higher concentrations were inhibitory. Acetate also caused a decrease in intracellular pH, but it never caused a large decrease in glucose consumption rate. Acetate decreased the intracellular ATP of E. coli K-12, but it had no effect on the ATP of O157:H7. Acetate had no effect on the intracellular potassium of E. coli O157:H7, and acetate-treated K-12 cells had even more potassium than untreated controls. Based on these results, acetate and CCCP appear to have different effects on E. coli. The comparison of E. coli O157:H7 and K-12 indicated that intracellular pH, acetate accumulation and intracellular potassium were related. E. coli K-12 maintained a higher intracellular pH than O157:H7, accumulated more acetate and had a greater intracellular potassium.  相似文献   

13.
The role of intracellular calcium stores in stimulus-secretion coupling in the pancreatic beta-cell is largely unknown. We report here that tetracaine stimulates insulin secretion from collagenase-isolated mouse islets of Langerhans in the absence of glucose or extracellular calcium. We also found that the anesthetic evokes a dose-dependent rise of the intracellular free-calcium concentration ([Ca2+]i) in cultured rat and mouse beta-cells. The tetracaine-specific [Ca2+]i rise also occurs in the absence of glucose, or in beta-cells depolarized by exposure to a Ca(2+)-deficient medium (< 1 microM) or elevated [K+]o. Furthermore, tetracaine (> or = 300 microM) depolarized the beta-cell membrane in mouse pancreatic islets, but inhibited Ca2+ entry through voltage-gated Ca2+ channels in HIT cells, an insulin-secreting cell line. From these data we conclude that tetracaine-enhancement of insulin release occurs by mechanisms that are independent of Ca2+ entry across the cell membrane. The tetracaine-induced [Ca2+]i rise in cultured rat beta-cells and insulin secretion from mouse islets is insensitive to dantrolene (20 microM), a drug that inhibits Ca2+ release evoked by cholinergic agonists in the pancreatic beta-cell, and thapsigargin (3 microM), a blocker of the endoplasmic reticulum (ER) Ca2+ pump. We conclude that the Ca2+ required for tetracaine-potentiated insulin secretion is released from intracellular Ca2+ stores other than the ER. Furthermore, tetracaine-induced Ca2+ release was unaffected by the mitochondrial electron transfer inhibitors NaN3 and rotenone. Taken together, these data show that a calcium source other than the ER and mitochondria can affect beta-cell insulin secretion.  相似文献   

14.
Uncoupling protein 2 (UCP2) was reported to be involved in insulin-glucose homeostasis, based on well established event that inhibition of UCP2 stimulates insulin secretion in pancreatic β-cells. However, the role of UCP2 on insulin-stimulated glucose uptake in adipose tissue, which is an indispensable process in insulin-glucose homeostasis, remains unknown. In this study, UCP2 was inhibited by genipin in 3T3-L1 adipocytes, which increased mitochondrial membrane potential, intracellular ATP level and production of reactive oxygen species (ROS). Importantly, insulin-stimulated glucose uptake in 3T3-L1 adipocytes was largely impaired in the presence of genipin, and recovered by CCCP, a mitochondrial uncoupler. Furthermore, genipin leaded to suppression of insulin signal transduction through hyperactivation of c-Jun N-terminal kinase (JNK) and subsequent serine phosphorylation of insulin receptor substrate-1 (IRS-1). These results suggest that mitochondrial uncoupling in adipocytes positively regulates insulin-stimulated glucose uptake in adipocytes, and UCP2 may play an important role in insulin resistance.  相似文献   

15.
Disruption of microfilaments in rat basophilic leukemia (RBL) cells by exposure to cytochalasin B is observed to potentiate the rate of antigen-stimulated secretion from these cells. Under these conditions, cytochalasin B is without effect on the antigen-stimulated production of inositol phosphates or 45Ca2(+)-influx. In streptolysin-O-permeabilized RBL cells, cytochalasin B is observed to potentiate the rate of secretion in response both to guanosine 5'-(2-thio)-O-triphosphate (GTP gamma S) and to Ca2+ (buffered between 0.1 and 10 microM). However, under these conditions, cytochalasin B does not affect to antigen-stimulated production of inositol phosphates. Consistent with these data, microfilaments are proposed to regulate a terminal step in exocytosis, in a physiologically relevant manner.  相似文献   

16.
Recent studies in rat basophilic leukemia cells (RBL-2H3) have shown that two pharmacological agents, ionomycin and thapsigargin, induce leukotriene C4 production and translocation of 5-lipoxygenase from cytosol to membrane, primarily by causing an influx of extracellular calcium. In the present study, we investigate the induction of these events by receptor activation. Cross-linking of high-affinity IgE receptors (Fc epsilon RI) by antigen in RBL-2H3 cells leads to leukotriene C4 production and membrane translocation of 5-lipoxygenase. As in the ionomycin-stimulated cells, leukotriene C4 production in antigen-stimulated cells is calcium-dependent since the amount of leukotriene C4 produced correlates quantitatively with the increase in intracellular free calcium concentration ([Ca2+]i). However, the increase in [Ca2+]i required for equivalent leukotriene C4 production by antigen is not as high as it is using ionomycin. In addition, no threshold [Ca2+]i level is required for leukotriene production by antigen, which is in contrast to the ionomycin stimulation that a [Ca2+]i level of 300-400 nM is required. Furthermore, antigen causes an additive increase in leukotriene C4 production in cells stimulated by the ionomycin. These results suggest that another as yet unidentified intracellular pathway acts in conjunction with Ca2+ for leukotriene synthesis in antigen-stimulated cells. Antigen stimulation causes 20-30% of the total cell 5-lipoxygenase to associate with membranes (compared with 10% in unstimulated cells) as demonstrated by enzyme activity assay and by Western Blot using antibodies to 5-lipoxygenase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Vascular ATP-sensitive potassium (KATP) channels have an important role in hypoxic vasodilation. Because KATP channel activity depends on intracellular nucleotide concentration, one hypothesis is that hypoxia activates channels by reducing cellular ATP production. However, this has not been rigorously tested. In this study we measured KATP current in response to hypoxia and modulators of cellular metabolism in single smooth muscle cells from the rat femoral artery by using the whole cell patch-clamp technique. KATP current was not activated by exposure of cells to hypoxic solutions (Po2 approximately 35 mmHg). In contrast, voltage-dependent calcium current and the depolarization-induced rise in intracellular calcium concentration ([Ca2+]i) was inhibited by hypoxia. Blocking mitochondrial ATP production by using the ATP synthase inhibitor oligomycin B (3 microM) did not activate current. Blocking glycolytic ATP production by using 2-deoxy-D-glucose (5 mM) also did not activate current. The protonophore carbonyl cyanide m-chlorophenylhydrazone (1 microM) depolarized the mitochondrial membrane potential and activated KATP current. This activation was reversed by oligomycin B, suggesting it occurred as a consequence of mitochondrial ATP consumption by ATP synthase working in reverse mode. Finally, anoxia induced by dithionite (0.5 mM) also depolarized the mitochondrial membrane potential and activated KATP current. Our data show that: 1) anoxia but not hypoxia activates KATP current in femoral artery myocytes; and 2) inhibition of cellular energy production is insufficient to activate KATP current and that energy consumption is required for current activation. These results suggest that vascular KATP channels are not activated during hypoxia via changes in cell metabolism. Furthermore, part of the relaxant effect of hypoxia on rat femoral artery may be mediated by changes in [Ca2+]i through modulation of calcium channel activity.  相似文献   

18.
This study evaluated the effect of inhibitors of transmethylation on histamine release from rat mast cells and rat basophilic leukemia cells. IgE-mediated histamine release from rat basophilic leukemia cells (RBL-2H3 cells) was inhibited by 3-deazaadenosine (DZA) in the presence of L-homocysteine thiolactone (Hcy) or the combination of adenosine, erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA), and Hcy in a dose-dependent fashion. There were no significant changes in the cellular cAMP levels by these inhibitors. Histamine release induced by anti-IgE or dextran from normal rat mast cells was also blocked by DZA plus Hcy in a dose-dependent manner. DZA at 10(-3) M in the presence of 10(-4) M Hcy or the combination of 10(-3) M adenosine, 10(-4) M EHNA, and 10(-3) M Hcy inhibited lipid (perhaps phospholipid) methylation into RBL-2H3 cells without affecting choline incorporation. In the presence of 10(-3) M DZA plus 10(-4) M Hcy there was a 170-fold increase in [35S]AdoHcy with the concomitant appearance of 3-deaza-AdoHcy when the cells were incubated with [35S]methionine, thus indicating that these drugs inhibited methylation reaction(s) through the intracellular accumulation of AdoHcy and 3-deaza-AdoHcy. In contrast, histamine release from rat mast cells induced by the calcium ionophore A23187, compound 48/80, polymyxin B, or ATP was not inhibited by these compounds. These results suggest that IgE- or dextran-mediated histamine release involves methylation reactions(s), whereas the other secretagogues bypass this early step.  相似文献   

19.
We studied the effects of electrical stimulation on insulin release from rat insulinoma (INS-1) cells. The anodal/cathodal biphasic stimulation (ACBPS) electrical waveform resulted in a voltage- and stimulation duration-dependent increase in insulin release. ACBPS elicited insulin release both in the presence and absence of glucose. Basal and ACBPS-induced insulin secretion could be inhibited by mitochondrial poisons and calcium channel blockers, indicating that insulin release was dependent on adenosine triphosphate (ATP) and the influx of calcium. ACBPS parameters that released insulin caused no detectable plasma membrane damage or cytotoxicity, although temporary morphological changes could be observed immediately after ACBPS. ACBPS did not alter the plasma membrane transmembrane potential but did cause pronounced uptake of MitoTracker Red into the mitochondrial membrane, indicating an increased mitochondrial membrane potential. While the ATP:ADP ratio after ACBPS did not change, the guanosine triphosphate (GTP) levels increased and increased GTP levels have previously been associated with insulin release in INS-1 cells. These results provide evidence that ACBPS can have significant biological effects on cells. In the case of INS-1 cells, ACBPS promotes insulin release without causing cytotoxicity.  相似文献   

20.
Previous experiments on the functional properties of rat basophilic leukaemia cells showed a major anomaly when compared to normal mast cells: though IgE-mediated secretion was dependent on external Ca2+ with both types of cells, substantial non-cytotoxic release with ionophore A23187 could be demonstrated with the normal cells but not with the tumour cells. We now show that when the pH of the incubation medium is increased to 8 it is possible to obtain excellent Ca-dependent, non-cytotoxic secretion from tumour basophils with the ionophores A23187 and ionomycin. These results provide further evidence that secretion from the tumour cells occurs via a mechanism similar to that used by normal mast cells and basophils. Experiments with metabolically inhibited tumour cells suggest that their unusual sensitivity to the cytotoxic effects of Ca2+ ionophores may be related to their ability to sequester intracellular calcium. Changes in the conditions of cell culture appeared to produce substantial and at least partially reversible changes in responsiveness to IgE-mediated triggering and ionophores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号