首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the major goals of comparative genomics is to understand the evolutionary history of each nucleotide in the human genome sequence, and the degree to which it is under selective pressure. Ascertainment of selective constraint at nucleotide resolution is particularly important for predicting the functional significance of human genetic variation and for analyzing the sequence substructure of cis-regulatory sequences and other functional elements. Current methods for analysis of sequence conservation are focused on delineation of conserved regions comprising tens or even hundreds of consecutive nucleotides. We therefore developed a novel computational approach designed specifically for scoring evolutionary conservation at individual base-pair resolution. Our approach estimates the rate at which each nucleotide position is evolving, computes the probability of neutrality given this rate estimate, and summarizes the result in a Sequence CONservation Evaluation (SCONE) score. We computed SCONE scores in a continuous fashion across 1% of the human genome for which high-quality sequence information from up to 23 genomes are available. We show that SCONE scores are clearly correlated with the allele frequency of human polymorphisms in both coding and noncoding regions. We find that the majority of noncoding conserved nucleotides lie outside of longer conserved elements predicted by other conservation analyses, and are experiencing ongoing selection in modern humans as evident from the allele frequency spectrum of human polymorphism. We also applied SCONE to analyze the distribution of conserved nucleotides within functional regions. These regions are markedly enriched in individually conserved positions and short (<15 bp) conserved “chunks.” Our results collectively suggest that the majority of functionally important noncoding conserved positions are highly fragmented and reside outside of canonically defined long conserved noncoding sequences. A small subset of these fragmented positions may be identified with high confidence.  相似文献   

2.
Jin J  Liu MD  Yin SY  Wang DQ  Liu SP  Chen DQ 《遗传》2011,33(3):255-261
老挝纹胸鮡是分布于澜沧江流域的一种特有鱼类,喜激流底栖生活。为了解其各地理种群间的遗传结构与遗传变异,文章分析了129尾采自澜沧江8条支流水系的老挝纹胸鮡mtDNA细胞色素b基因1 138 bp的序列变异,共发现16个多态性位点,定义了15个单倍型。澜沧江老挝纹胸鮡遗传变异较低,平均单倍型多样性指数和核苷酸多样性指数分别是h=0.299,π=0.299,有3个种群甚至没有变异,分子变异方差分析结果表明各种群内变异大于各种群间变异,种群间没有差异。对老挝纹胸鮡所有种群进行的单倍型错配分布呈现单峰型,中性检验结果均为负值(Tajima’s D=?2.36965,P<0.02;Fu’s Fs=?20.975,P<0.05)表明,澜沧江老挝纹胸鮡自然种群可能经历过近期的种群扩张事件。  相似文献   

3.
Health risk for well drinking water is a worldwide problem. Our recent studies showed increased toxicity by exposure to barium alone (≤700 µg/L) and coexposure to barium (137 µg/L) and arsenic (225 µg/L). The present edition of WHO health-based guidelines for drinking water revised in 2011 has maintained the values of arsenic (10 µg/L) and barium (700 µg/L), but not elements such as manganese, iron and zinc. Nevertheless, there have been very few studies on barium in drinking water and human samples. This study showed significant correlations between levels of arsenic and barium, but not its homologous elements (magnesium, calcium and strontium), in urine, toenail and hair samples obtained from residents of Jessore, Bangladesh. Significant correlation between levels of arsenic and barium in well drinking water and levels in human urine, toenail and hair samples were also observed. Based on these results, a high-performance and low-cost adsorbent composed of a hydrotalcite-like compound for barium and arsenic was developed. The adsorbent reduced levels of barium and arsenic from well water in Bangladesh and Vietnam to <7 µg/L within 1 min. Thus, we have showed levels of arsenic and barium in humans and propose a novel remediation system.  相似文献   

4.
The ability to taste phenylthiocarbamide (PTC) is a classic phenotype that has long been known to vary in human populations. This phenotype is of genetic, epidemiologic, and evolutionary interest because the ability to taste PTC is correlated with the ability to taste other bitter substances, many of which are toxic. Thus, variation in PTC perception may reflect variation in dietary preferences throughout human history and could correlate with susceptibility to diet-related diseases in modern populations. To test R. A. Fisher's long-standing hypothesis that variability in PTC perception has been maintained by balancing natural selection, we examined patterns of DNA sequence variation in the recently identified PTC gene, which accounts for up to 85% of phenotypic variance in the trait. We analyzed the entire coding region of PTC (1,002 bp) in a sample of 330 chromosomes collected from African (n=62), Asian (n=138), European (n=110), and North American (n=20) populations by use of new statistical tests for natural selection that take into account the potentially confounding effects of human population growth. Two intermediate-frequency haplotypes corresponding to "taster" and "nontaster" phenotypes were found. These haplotypes had similar frequencies across Africa, Asia, and Europe. Genetic differentiation between the continental population samples was low (FST=0.056) in comparison with estimates based on other genes. In addition, Tajima's D and Fu and Li's D and F statistics demonstrated a significant deviation from neutrality because of an excess of intermediate-frequency variants when human population growth was taken into account (P<.01). These results combine to suggest that balancing natural selection has acted to maintain "taster" and "nontaster" alleles at the PTC locus in humans.  相似文献   

5.
Intra- and inter-population genetic variability and the demographic history of Heliothis virescens (F.) populations were evaluated by using mtDNA markers (coxI, coxII and nad6) with samples from the major cotton- and soybean-producing regions in Brazil in the growing seasons 2007/08, 2008/09 and 2009/10. AMOVA indicated low and non-significant genetic structure, regardless of geographical scale, growing season or crop, with most of genetic variation occurring within populations. Clustering analyzes also indicated low genetic differentiation. The haplotype network obtained with combined datasets resulted in 35 haplotypes, with 28 exclusive occurrences, four of them sampled only from soybean fields. The minimum spanning network showed star-shaped structures typical of populations that underwent a recent demographic expansion. The recent expansion was supported by other demographic analyzes, such as the Bayesian skyline plot, the unimodal distribution of paired differences among mitochondrial sequences, and negative and significant values of neutrality tests for the Tajima's D and Fu's F(S) parameters. In addition, high values of haplotype diversity (?) and low values of nucleotide diversity (π), combined with a high number of low frequency haplotypes and values of θ(π)<θ(W), suggested a recent demographic expansion of H. virescens populations in Brazil. This demographic event could be responsible for the low genetic structure currently found; however, haplotypes present uniquely at the same geographic regions and from one specific host plant suggest an initial differentiation among H. virescens populations within Brazil.  相似文献   

6.
DNA variations in two PgiC loci were investigated in 15 strains of Arabidopsis halleri ssp. gemmifera. In a 5.5-kb region of the PgiC1 locus, 127 nucleotide substitutions and 33 length variations were observed. In a 6.0-kb region of the PgiC2 locus, 138 nucleotide substitutions and 33 length variations were observed. Frame shift, novel stop codons, and large length variations were observed in the PgiC2 coding region. These findings suggested that PgiC2 may be a pseudogene. The nucleotide diversities (pi) for the entire regions of both PgiC loci were approximately 0.0033. Tajima's test of both PgiC loci yielded significantly negative results. In the coding regions, the high proportions of replacement substitutions caused significant deviations from neutrality in McDonald and Kreitman's test. An excess of singletons and a high proportion of replacement polymorphic sites have been observed in the Adh and ChiA regions of A. halleri ssp. gemmifera. Thus, the A. halleri ssp. gemmifera population may not have reached equilibrium, and thus nonneutral patterns of DNA polymorphism were observed.  相似文献   

7.
Recent studies of mitochondrial DNA (mtDNA) variation in mammals and Drosophila have shown an excess of amino acid variation within species (replacement polymorphism) relative to the number of silent and replacement differences fixed between species. To examine further this pattern of nonneutral mtDNA evolution, we present sequence data for the ND3 and ND5 genes from 59 lines of Drosophila melanogaster and 29 lines of D. simulans. Of interest are the frequency spectra of silent and replacement polymorphisms, and potential variation among genes and taxa in the departures from neutral expectations. The Drosophila ND3 and ND5 data show no significant excess of replacement polymorphism using the McDonald-Kreitman test. These data are in contrast to significant departures from neutrality for the ND3 gene in mammals and other genes in Drosophila mtDNA (cytochrome b and ATPase 6). Pooled across genes, however, both Drosophila and human mtDNA show very significant excesses of amino acid polymorphism. Silent polymorphisms at ND5 show a significantly higher variance in frequency than replacement polymorphisms, and the latter show a significant skew toward low frequencies (Tajima's D = -1.954). These patterns are interpreted in light of the nearly neutral theory where mildly deleterious amino acid haplotypes are observed as ephemeral variants within species but do not contribute to divergence. The patterns of polymorphism and divergence at charge-altering amino acid sites are presented for the Drosophila ND5 gene to examine the evolution of functionally distinct mutations. Excess charge-altering polymorphism is observed at the carboxyl terminal and excess charge-altering divergence is detected at the amino terminal. While the mildly deleterious model fits as a net effect in the evolution of nonrecombining mitochondrial genomes, these data suggest that opposing evolutionary pressures may act on different regions of mitochondrial genes and genomes.   相似文献   

8.
Approximately 13% of the human genome can fold into non-canonical (non-B) DNA structures (e.g. G-quadruplexes, Z-DNA, etc.), which have been implicated in vital cellular processes. Non-B DNA also hinders replication, increasing errors and facilitating mutagenesis, yet its contribution to genome-wide variation in mutation rates remains unexplored. Here, we conducted a comprehensive analysis of nucleotide substitution frequencies at non-B DNA loci within noncoding, non-repetitive genome regions, their ±2 kb flanking regions, and 1-Megabase windows, using human-orangutan divergence and human single-nucleotide polymorphisms. Functional data analysis at single-base resolution demonstrated that substitution frequencies are usually elevated at non-B DNA, with patterns specific to each non-B DNA type. Mirror, direct and inverted repeats have higher substitution frequencies in spacers than in repeat arms, whereas G-quadruplexes, particularly stable ones, have higher substitution frequencies in loops than in stems. Several non-B DNA types also affect substitution frequencies in their flanking regions. Finally, non-B DNA explains more variation than any other predictor in multiple regression models for diversity or divergence at 1-Megabase scale. Thus, non-B DNA substantially contributes to variation in substitution frequencies at small and large scales. Our results highlight the role of non-B DNA in germline mutagenesis with implications to evolution and genetic diseases.  相似文献   

9.
Insertions and deletions (indels) in chloroplast noncoding regions are common genetic markers to estimate population structure and gene flow, although relatively little is known about indel evolution among recently diverged lineages such as within plant families. Because indel events tend to occur nonrandomly along DNA sequences, recurrent mutations may generate homoplasy for indel haplotypes. This is a potential problem for population studies, because indel haplotypes may be shared among populations after recurrent mutation as well as gene flow. Furthermore, indel haplotypes may differ in fitness and therefore be subject to natural selection detectable as rate heterogeneity among lineages. Such selection could contribute to the spatial patterning of cpDNA haplotypes, greatly complicating the interpretation of cpDNA population structure. This study examined both nucleotide and indel cpDNA variation and divergence at six noncoding regions (psbB-psbH, atpB-rbcL, trnL-trnH, rpl20-5'rps12, trnS-trnG, and trnH-psbA) in 16 individuals from eight species in the Lecythidaceae and a Sapotaceae outgroup. We described patterns of cpDNA changes, assessed the level of indel homoplasy, and tested for rate heterogeneity among lineages and regions. Although regression analysis of branch lengths suggested some degree of indel homoplasy among the most divergent lineages, there was little evidence for indel homoplasy within the Lecythidaceae. Likelihood ratio tests applied to the entire phylogenetic tree revealed a consistent pattern rejecting a molecular clock. Tajima's 1D and 2D tests revealed two taxa with consistent rate heterogeneity, one showing relatively more and one relatively fewer changes than other taxa. In general, nucleotide changes showed more evidence of rate heterogeneity than did indel changes. The rate of evolution was highly variable among the six cpDNA regions examined, with the trnS-trnG and trnH-psbA regions showing as much as 10% and 15% divergence within the Lecythidaceae. Deviations from rate homogeneity in the two taxa were constant across cpDNA regions, consistent with lineage-specific rates of evolution rather than cpDNA region-specific natural selection. There is no evidence that indels are more likely than nucleotide changes to experience homoplasy within the Lecythidaceae. These results support a neutral interpretation of cpDNA indel and nucleotide variation in population studies within species such as Corythophora alta.  相似文献   

10.
Several tests have been proposed to detect departures of nucleotide variability patterns from neutral expectations. However, very different kinds of evolutionary processes, such as selective events or demographic changes, can produce similar deviations from these tests, thus making interpretation difficult when a significant departure of neutrality is detected. Here we study the effects of demography and recombination upon neutrality tests by analyzing their power under sudden population expansions, sudden contractions, and bottlenecks. We evaluate tests based on the frequency spectrum of mutations and the distribution of haplotypes and explore the consequences of using incorrect estimates of the rates of recombination when testing for neutrality. We show that tests that rely on haplotype frequencies-especially Fs and ZnS, which are based, respectively, on the number of different haplotypes and on the r2 values between all pairs of polymorphic sites-are the most powerful for detecting expansions on nonrecombining genomic regions. Nevertheless, they are strongly affected by misestimations of recombination, so they should not be used when recombination levels are unknown. Instead, class I tests, particularly Tajima's D or R2, are recommended.  相似文献   

11.
During six blood passages of simian immunodeficiency virus SIVsm in rhesus macaques, the asymptomatic period shortened from 18 months to 1 month. To study SIVsm envelope gene (env) evolution during passage in rhesus macaques, the C1 to CD4 binding regions of multiple clones were sequenced at seroconversion and again at death. The env variation found during adaptation was almost completely confined to the variable regions. Intrasample sequence variation among clones at seroconversion was lower than the variation among clones at death. Intrasample variation among clones from a single time point as well as intersample variation decreased during the passage. In the variable regions, the mean number of intrasample nonsynonymous nucleotide substitutions decreased from the first passage (5.26 × 10−2 ± 0.6 × 10−2 per site) to the fifth passage (2.24 × 10−2 ± 0.4 × 10−2 per site), whereas in the constant regions, the mean number of intrasample nonsynonymous nucleotide substitutions differed less between the first and fifth passages (1.14 × 10−2 ± 0.27 × 10−2 and 0.80 × 10−2 ± 0.24 × 10−2 per site). Shortening of the asymptomatic period coincided with a rise in the Ks/Ka ratio (ratio between the number of synonymous [Ks] and the number of nonsynonymous [Ka] substitutions) from 1.080 in passage one to 1.428 in passage five and mimicked the difference seen in the intrahost evolution between asymptomatic and fast-progressing individuals infected with human immunodeficiency virus type 1. The distribution of nonsynonymous substitutions was biphasic, with most of the adaptation of env variable regions occurring in the first three passages. This phase, in which the symptom-free period fell to 4 months, was followed by a plateau phase of apparently reduced adaptation. Analysis of codon usage revealed decreased codon redundancy in the variable regions. Overall, the results suggested a biphasic pattern of adaptation and evolution, with extremely rapid selection in the first three passages followed by an equilibrium or stabilization of the variation between env clones at different time points in passages four to six.  相似文献   

12.
The genetic differentiation and phylogeographical pattern of 11 relictual populations of Alsophila spinulosa distributed across Hainan, Guangdong, and Guangxi in southern China were inferred from sequence variations of trnL-F noncoding regions of chloroplast DNA (cpDNA). The length of trnL-F noncoding sequences varied from 863 to 940 bp. The A + T content was 62.23-63.36%. Sequences were neutral in terms of evolution (Tajima's criterion D=-0.62417, P>0.10 and Fu and Li's test D*=-1.45455, P>0.10; F*=-1.32798, P>0.10). Thirty-four haplotypes were identified based on nucleotide variation. Relatively high levels of haplotype diversity (h=0.929) and nucleotide diversity (Dij=0.022263) were detected in A. spinulosa, probably associated with its long evolutionary history which allowed the accumulation of genetic variation within lineages. Both the minimum spanning network and the strict consensus tree of the most parsimonious trees generated for haplotypes demonstrated that the investigated populations of A. spinulosa were subdivided into two geographical groups: Hainan and Guangdong-Guangxi. An analysis of molecular variance (AMOVA) indicated that most of the genetic variation (87.48%, P<0.001) was partitioned among regions. Spatial structure measurements revealed that population genetic structure was not related to geographical distance. This research suggests that blocked gene flow by Qiongzhou strait and an inbreeding system might result in the geographical subdivision between Hainan and Guangdong-Guangxi (F(ST)=0.92, Nm=0.09). Within each region, the "star like" pattern of phylogeography of haplotypes implied a population expansion process during evolutionary history. Gene genealogies together with coalescent theory were useful tools for uncovering the phylogeography of A. spinulosa.  相似文献   

13.
The level and hierarchical distribution of genetic variation in complete sequences of the Atlantic salmon (Salmo salar) growth hormone (GH1) gene were investigated in populations from Europe and North America with a view to inferring the major evolutionary forces affecting genetic variation at this locus. Seventeen polymorphic sites were identified in complete sequences from nine populations, with levels of noncoding (intron and untranslated region sequences) nucleotide diversity being similar to those observed in other species. No variation, however, was observed in exonic sequences, indicating that nucleotide diversity in the Atlantic salmon GH1 gene is three and 25 times less than that estimated for human and Drosophila coding sequences, respectively. This suggests that purifying selection is the predominant contemporary force controlling the molecular evolution of GH1 coding sequences. Comparison of haplotype relationships within and between populations indicated that differentiation between populations from Europe and North America was greater than within-continent comparisons. However, several haplotypes observed in the northernmost European populations were more similar to those observed in North American than to any other haplotypes observed in Europe. This is most likely to be a result of historical, rather than contemporary, gene flow. Neutrality test statistics, such as Tajima's D, were significantly positive in the European populations in which North American-like haplotypes were observed. Although a positive Tajima's D is commonly interpreted as the signal of balancing selection, a more likely explanation in this case is that either historical migration or ascertainment bias, rather than within population local adaptation, has given rise to an excess of intermediate frequency alleles.  相似文献   

14.
D. J. Begun  C. F. Aquadro 《Genetics》1991,129(4):1147-1158
We have estimated DNA sequence variation and differentiation within and between Drosophila melanogaster and its sibling species, Drosophila simulans, using six-cutter restriction site variation at yellow-achaete (y-ac), phosphogluconate dehydrogenase (Pgd), and period (per). These three gene regions are of varying distance from the telomere of the X chromosome and range from very low to moderate rates of recombination in D. melanogaster. According to Tajima's test of neutrality, the Pgd region has been influenced by balancing selection in D. melanogaster. This is consistent with previous data suggesting the allozyme polymorphism at this locus is visible to selection. The Hudson, Kreitman, Aguadé test of neutrality reveals a significant departure from neutrality for the y-ac region compared to the per or rosy regions in D. simulans. There is also a significant departure for the y-ac region compared to the Adh 5' flanking region in D. melanogaster. In both species the departure appears to be due to reduced variation at y-ac compared to that expected from divergence between D. simulans and D. melanogaster. We conclude that recent hitchhiking associated with the selective fixation of one or more advantageous mutants in the y-ac region is the best explanation for reduced variation at y-ac.  相似文献   

15.

Objectives

Hypertension is one of the major cardiovascular diseases. It affects nearly 1.56 billion people worldwide. The present study is about a particular genetic polymorphism (A1166C), gene expression and protein expression of the angiotensin II type I receptor (AT1R) (SNP ID: rs5186) and its association with essential hypertension in a Northern Indian population.

Methods

We analyzed the A1166C polymorphism and expression of AT1R gene in 250 patients with essential hypertension and 250 normal healthy controls.

Results

A significant association was found in the AT1R genotypes (AC+CC) with essential hypertension (χ2 = 22.48, p = 0.0001). Individuals with CC genotypes were at 2.4 times higher odds (p = 0.0001) to develop essential hypertension than individuals with AC and AA genotypes. The statistically significant intergenotypic variation in the systolic blood pressure was found higher in the patients with CC (169.4±36.3 mmHg) as compared to that of AA (143.5±28.1 mmHg) and AC (153.9±30.5 mmHg) genotypes (p = 0.0001). We found a significant difference in the average delta-CT value (p = 0.0001) wherein an upregulated gene expression (approximately 16 fold) was observed in case of patients as compared to controls. Furthermore, higher expression of AT1R gene was observed in patients with CC genotype than with AC and AA genotypes. A significant difference (p = 0.0001) in the protein expression of angiotensin II Type 1 receptor was also observed in the plasma of patients (1.49±0.27) as compared to controls (0.80±0.24).

Conclusion

Our findings suggest that C allele of A1166C polymorphism in the angiotensin II type 1 receptor gene is associated with essential hypertension and its upregulation could play an important role in essential hypertension.  相似文献   

16.
The current pandemic (H1N1) 2009 virus remains transmissible among humans worldwide with cases of reverse zoonosis, providing opportunities to produce more pathogenic variants which could pose greater human health concerns. To investigate whether recent seasonal human or swine H1N1 vaccines could induce cross-reactive immune responses against infection with the pandemic (H1N1) 2009 virus, mice, ferrets or mini-pigs were administered with various regimens (once or twice) and antigen content (1.77, 3.5 or 7.5 µg HA) of a-Brsibane/59/07, a-CAN01/04 or RgCA/04/09xPR8 vaccine. Receipt of a-CAN01/04 (2-doses) but not a-Brisbane/59/07 induced detectable but modest (20–40 units) cross-reactive serum antibody against CA/04/09 by hemagglutinin inhibition (HI) assays in mice. Only double administration (7.5 µg HA) of both vaccine in ferrets could elicit cross-reactivity (30–60 HI titers). Similar antigen content of a-CAN01/04 in mini-pigs also caused a modest ∼30 HI titers (twice vaccinated). However, vaccine-induced antibody titers could not suppress active virus replication in the lungs (mice) or virus shedding (ferrets and pigs) of immunized hosts intranasally challenged with CA/04/09. Furthermore, neither ferrets nor swine could abrogate aerosol transmission of the virus into naïve contact animals. Altogether, these results suggest that neither recent human nor animal H1N1 vaccine could provide complete protectivity in all animal models. Thus, this study warrants the need for strain-specific vaccines that could yield the optimal protection desired for humans and/or animals.  相似文献   

17.
Genetic variation in bitter taste receptors, such as hTAS2R38, may affect food preferences and intake. The aim of the present study was to investigate the association between bitter taste receptor haplotypes and the consumption of vegetables, fruits, berries and sweet foods among an adult Finnish population. A cross-sectional design utilizing data from the Cardiovascular Risk in Young Finns cohort from 2007, which consisted of 1,903 men and women who were 30–45 years of age from five different regions in Finland, was employed. DNA was extracted from blood samples, and hTAS2R38 polymorphisms were determined based on three SNPs (rs713598, rs1726866 and rs10246939). Food consumption was assessed with a validated food frequency questionnaire. The prevalence of the bitter taste-sensitive (PAV/PAV) haplotype was 11.3 % and that of the insensitive (AVI/AVI) haplotype was 39.5 % among this Finnish population. PAV homozygotic women consumed fewer vegetables than did the AVI homozygotic women, 269 g/day (SD 131) versus 301 g/day (SD 187), respectively, p = 0.03 (multivariate ANOVA). Furthermore, the intake of sweet foods was higher among the PAV homozygotes of both genders. Fruit and berry consumption did not differ significantly between the haplotypes in either gender. Individuals perceive foods differently, and this may influence their patterns of food consumption. This study showed that the hTAS2R38 taste receptor gene variation was associated with vegetable and sweet food consumption among adults in a Finnish population.  相似文献   

18.
Bending, in addition to compression, is recognized to be a common loading pattern in long bones in animals. However, due to the technical difficulty of measuring bone deformation in humans, our current understanding of bone loading patterns in humans is very limited. In the present study, we hypothesized that bending and torsion are important loading regimes in the human tibia. In vivo tibia segment deformation in humans was assessed during walking and running utilizing a novel optical approach. Results suggest that the proximal tibia primarily bends to the posterior (bending angle: 0.15°–1.30°) and medial aspect (bending angle: 0.38°–0.90°) and that it twists externally (torsion angle: 0.67°–1.66°) in relation to the distal tibia during the stance phase of overground walking at a speed between 2.5 and 6.1 km/h. Peak posterior bending and peak torsion occurred during the first and second half of stance phase, respectively. The peak-to-peak antero-posterior (AP) bending angles increased linearly with vertical ground reaction force and speed. Similarly, peak-to-peak torsion angles increased with the vertical free moment in four of the five test subjects and with the speed in three of the test subjects. There was no correlation between peak-to-peak medio-lateral (ML) bending angles and ground reaction force or speed. On the treadmill, peak-to-peak AP bending angles increased with walking and running speed, but peak-to-peak torsion angles and peak-to-peak ML bending angles remained constant during walking. Peak-to-peak AP bending angle during treadmill running was speed-dependent and larger than that observed during walking. In contrast, peak-to-peak tibia torsion angle was smaller during treadmill running than during walking. To conclude, bending and torsion of substantial magnitude were observed in the human tibia during walking and running. A systematic distribution of peak amplitude was found during the first and second parts of the stance phase.  相似文献   

19.
The Eastern European Grey cattle are regarded as the direct descendants of the aurochs (Bos taurus primigenius). Nowadays in Romania, less than 100 Grey animals are being reared and included in the national gene reserve. We examined the genetic diversity among Romanian Grey, Brown, Spotted and Black and White cattle breeds, with a particular focus on Romanian Grey through the use of (i) 11 bovine specific microsatellite markers on 83 animals and (ii) 638 bp length of mitochondrial DNA (mtDNA) D-loop region sequence data from a total of 81 animals. Both microsatellite and mtDNA analysis revealed a high level of genetic variation in the studied breeds. In Romanian Grey a total of 100 alleles were found, the mean number of observed alleles per locus was 9.091; the average observed heterozygosity was 0.940; the Wright’s fixation index (FIS) was negative (-0.189) and indicates that there is no inbreeding and no selection pressure. MtDNA analysis revealed 52 haplotypes with 67 variable sites among the Romanian cattle breeds without any insertion or deletion. Haplotype diversity was 0.980 ± 0.007 and ranged from 0.883 ± 0.056 (Brown) to 0.990 ± 0.028 (Spotted and Black and White). The highest genetic variability of the mtDNA was recorded in the Grey breed, where 18 haplotypes were identified. The most frequent mtDNA D-loop region belonged to T3 haplogroup (80.247%), which was found across all studied breeds, while T2 haplotypes (16.049%) was only found in Grey, Spotted and Black and White genotypes. The T1 haplotypes (3.704%) were found in the Grey and Spotted. The current results contribute to the general knowledge on genetic diversity found in Eastern European cattle breeds and could prove a valuable tool for the conservation efforts of animal genetic resources (FAnGR).  相似文献   

20.
Opioids are commonly used as effective analgesics for the treatment of acute and chronic pain. However, considerable individual differences have been widely observed in sensitivity to opioid analgesics. We focused on a G-protein-activated inwardly rectifying potassium (GIRK) channel subunit, GIRK2, that is an important molecule in opioid transmission. In our initial polymorphism search, a total of nine single-nucleotide polymorphisms (SNPs) were identified in the whole exon, 5′-flanking, and exon-intron boundary regions of the KCNJ6 gene encoding GIRK2. Among them, G-1250A and A1032G were selected as representative SNPs for further association studies. In an association study of 129 subjects who underwent major open abdominal surgery, the A/A genotype in the A1032G SNP and -1250G/1032A haplotype were significantly associated with increased postoperative analgesic requirements compared with other genotypes and haplotypes. The total dose (mean±SEM) of rescue analgesics converted to equivalent oral morphine doses was 20.45±9.27 mg, 10.84±2.24 mg, and 13.07±2.39 mg for the A/A, A/G, and G/G genotypes in the A1032G SNP, respectively. Additionally, KCNJ6 gene expression levels in the 1032A/A subjects were significantly decreased compared with the 1032A/G and 1032G/G subjects in a real-time quantitative PCR analysis using human brain tissues, suggesting that the 1032A/A subjects required more analgesics because of lower KCNJ6 gene expression levels and consequently insufficient analgesic effects. The results indicate that the A1032G SNP and G-1250A/A1032G haplotype could serve as markers that predict increased analgesic requirements. Our findings will provide valuable information for achieving satisfactory pain control and open new avenues for personalized pain treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号