首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
1. Two forms of fatty acid-binding proteins (FABPs) were isolated from human, pig and rat liver cytosols by gelfiltration and anion-exchange chromatography. 2. Both forms did not show physicochemical or chemical differences. They had an Mr of about 14.5 kDa for all species. pI Values were 5.8 for both forms of human and pig liver FABP and 6.4 for both forms of rat liver FABP. In contrast to heart FABPs no tryptophan was present in liver FABPs. 3. Liver FABPs show a much higher enhancement of fluorescence at binding of 11-dansylaminoundecanoic acid, 16-anthroyloxy-palmitic acid and 1-pyrene-dodecanoic acid than heart FABPs and additionally a blue shift in excitation and emission wavelengths with the first fatty acid. 4. The bulky side-chain did not affect fatty acid binding since binding constants of liver FABPs were comparable for these fluorescent fatty acids and oleic acid (0.3-0.7 microM). 5. A 1:1 binding stoichiometry was obtained for oleic acid binding with heart and liver FABPs. 6. Liver FABPs have a high binding affinity for C16-C22 saturated and unsaturated fatty acids, palmitoyl-CoA, bromo-substituted fatty acids, POCA, tetradecylglycidic acid and flavaspidic acid. 7. Fatty acid binding could be reduced to less than 50% by arginine modification with 2,3-butadione or by enzymatic degradation of FABPs with trypsin or pronase.  相似文献   

2.
The fatty acid-binding protein from human skeletal muscle   总被引:3,自引:0,他引:3  
Fatty acid-binding protein (FABP) was isolated from human skeletal muscle by gel filtration and anion- and cation-exchange chromatography. The isolation procedure, however, with rat and pig skeletal muscle gave mostly inactive preparations. Rat muscle FABP preparations contained parvalbumin as a contaminant. FABP from human muscle had a Mr of about 15 kDa, a pI value of 5.2, and a Kd value with oleic acid of 0.50 microM. Skeletal muscle and heart FABPs and their antisera showed a strong cross-reactivity on Western blots and in enzyme-linked immunosorbent assays (ELISA). No cross-reactivity was observed with liver FABP and its antiserum. On the basis of amino acid composition, electrophoretic behavior, fatty acid binding, and immunochemical properties, human skeletal muscle FABP must be similar or closely related to human heart FABP. The FABP content determined by ELISA was comparable in various human muscles and cultured muscle cells, but lower than that in rat muscles.  相似文献   

3.
Fatty acid binding proteins from heart   总被引:4,自引:0,他引:4  
Heart contains a fatty acid binding protein (FABP) concentration comparable to liver, when it is determined with a fatty acid-binding assay. The low concentration detected with anti-liver FABP antibodies is related to the different chemical forms and physiochemical properties of liver and heart FABP. The ratio of fatty acid bound per purified protein molecule is one or lower. Rat heart mitochondria oxidize FABP-bound fatty acids. The FABP content of rat heart is dependent on sex and diurnal cycle, but is not influenced by starvation or clofibrate feeding. It is also not different in the newborn rat. FABP was obtained from human heart in a yield of 11%. It shows similar binding characteristics to palmitic, oleic and arachidonic acid. The functional significance of the specific heart FABP is discussed in relation to myocardial fatty acid metabolism in normal and pathological conditions.  相似文献   

4.
A protein from rat kidney was characterized that had several properties common to a multigene family of fatty acid binding proteins identified in other tissues. The putative kidney fatty acid binding protein (FABP) was purified from the soluble fraction of kidney homogenates using gel filtration and ion exchange chromatography. It was relatively abundant, had an apparent molecular mass of 15.5 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, bound equimolar amounts of oleic acid, and could be distinguished from other FABPs on the basis of size, amino acid composition, and tissue distribution. Polyclonal antibodies to kidney FABP were obtained and used to show that only kidney contained the 15.5-kDa protein, although the antibodies also recognized a slightly larger and less abundant protein in kidney that also was present in bladder. Rat kidney also contained heart FABP, and the properties of both FABPs in rat kidney were compared. The distribution of both proteins within the kidney differed, with kidney FABP being localized almost exclusively within the cortex, whereas heart FABP was found both in cortex and medulla. Kidney FABP was expressed developmentally after the neonatal period, whereas heart FABP was present in both neonatal and adult kidney at comparable amounts. Hypertension induced by mineralocorticoids or infusion of angiotensin II caused a marked suppression of kidney FABP expression, whereas amounts of heart FABP in kidney were unchanged. The studies showed that rat kidney contains at least two FABPs, and that these proteins are differentially regulated, suggesting that functional differences between the proteins may exist.  相似文献   

5.
Fatty acid binding proteins (FABP) form a family of proteins displaying tissue-specific expression. These proteins are involved in fatty acid (FA) transport and metabolism by mechanisms that also appear to be tissue-specific. Cellular retinoid binding proteins are related proteins with unknown roles in FA transport and metabolism. To better understand the origin of these tissue-specific differences we report new measurements, using the acrylodated intestinal fatty acid binding protein (ADIFAB) method, of the binding of fatty acids (FA) to human fatty acid binding proteins (FABP) from brain, heart, intestine, liver, and myelin. We also measured binding of FA to a retinoic acid (CRABP-I) and a retinol (CRBP-II) binding protein and we have extended to 19 different FA our characterization of the FA-ADIFAB and FA-rat intestinal FABP interactions. These studies extend our previous analyses of human FABP from adipocyte and rat FABPs from heart, intestine, and liver. Binding affinities varied according to the order brain approximately myelin approximately heart > liver > intestine > CRABP > CRBP. In contrast to previous studies, no protein revealed a high degree of selectivity for particular FA. The results indicate that FA solubility (hydrophobicity) plays a major role in governing binding affinities; affinities tend to increase with increasing hydrophobicity (decreasing solubility) of the FA. However, our results also reveal that, with the exception of the intestinal protein, FABPs exhibit an additional attractive interaction for unsaturated FA that partially compensates for their trend toward lower affinities due to their higher aqueous solubilities. Thermodynamic potentials were determined for oleate and arachidonate binding to a subset of the FABP and retinoid binding proteins. FA binding to all FABPs was enthalpically driven. The DeltaH degrees values for paralogous FABPs, proteins from the same species but different tissues, reveal an exceptionally wide range of values, from -22 kcal/mol (myelin) to -7 kcal/mol (adipocyte). For orthologous FABPs from the same tissue but different species, DeltaH degrees values were similar. In contrast to the enthalpic dominance of FA binding to FABP, binding of FA to CRABP-I was entropically driven. This is consistent with the notion that FA specificity for FABP is determined by the enthalpy of binding. Proteins from different tissues also revealed considerable heterogeneity in heat capacity changes upon FA binding, DeltaC(p) values ranged between 0 and -1.3 kcal mol(-1) K(-1). The results demonstrate that thermodynamic parameters are quite different for paralogous but are quite similar for orthologous FABP, suggesting tissue-specific differences in FABP function that may be conserved across species.  相似文献   

6.
When a 100,000 X g supernatant from bovine heart was incubated with [1-14C]oleic acid and subjected to isoelectric focusing, two fatty acid binding proteins (FABPs) with isoelectric points at 4.9 and 5.1 were detected. The proteins were purified on a large scale first by heat and acid precipitation of a postmitochondrial supernatant, as well as fractionation with ammonium sulfate, then by alternate application of ion-exchange and gel chromatography. The procedure afforded around 60 mg pure proteins from 1.5 kg fresh heart muscle. Relative molecular masses of 15 300 +/- 1600 for both proteins were derived from sodium dodecyl sulfate/polyacrylamide gel electrophoresis, gel chromatography, sedimentation velocity as well as from amino acid analysis. Up to 50% of the proteins' secondary structures consisted of beta-sheet. N-termini of the peptide chains were blocked; the amino acid compositions of the two proteins were similar, but differed considerably from those of the two FABPs isolated from bovine liver [Haunerland et al. (1984) Hoppe Seyler's Z. Physiol. Chem. 365, 365-376]. Whereas hepatic FABPs changed their pI upon binding fatty acids, cardiac FABPs did not. Cardiac FABPs were immunologically identical, but did not cross-react with hepatic proteins. A reversible, concentration-dependent self-association reported for FABP from pig heart [Fournier et al. (1983) Biochemistry 22, 1863-1872] was not observed for FABP from bovine heart. Changes of concentration did not alter secondary structure, intrinsic fluorescence or the sedimentation coefficient of the protein.  相似文献   

7.
Summary Fatty acid (FA) binding by fatty acid-binding protein (FABP) is frequently Monitored with the so-called Lipidex 1000 assay, in which protein associated and non-protein bound FA are separated by selectively binding the latter to Lipidex 1000. Careful evaluation of this assay showed that the use of aqueous FA solutions resulted in a Marked decrease (60 to 70%) of FA concentration due to their aspecific binding to the surface of the test-tube used. In addition, solutions of rat heart FABP in the Molar range also showed a concentration decrease up to 80% due to protein binding to the surface of the test-tube. Introduction of detergents, Triton X-100 or Tween 20, limited the FA loss to less than 20% and totally eliminated FABP adsorption. Kinetic parameters for the binding of [1-14C]oleic acid by purified rat heart FABP, assayed in the presence of Triton X-100, were found to be similar to those assayed in the absence of detergent, when adequate corrections were Made for losses of FA and FABP due to surface adsorption. Use of Tween 20 resulted in a substantial increase of the dissociation constant. The addition of 100 M Triton X-100 to the assay medium considerably facilitates the determination of kinetic parameters of fatty acid-binding by proteins.  相似文献   

8.
High-affinity, Na+-dependent synaptosomal amino acid uptake systems are strongly stimulated by proteins which are known to bind fatty acids, including the Mr 12 000 fatty acid binding protein (FABP) from liver. To explore the possibility that such a function might be served by fatty acid binding proteins intrinsic to brain, we examined the 105000g supernatant of brain for fatty acid binding. Observed binding was accounted for mainly by components excluded by Sephadex G-50, and to a small degree by the Mr 12 000 protein fraction (brain FABP fraction). The partially purified brain FABP fraction contained a protein immunologically identical with liver FABP as well as a FABP electrophoretically distinct from liver FABP. Brain FABP fraction markedly stimulated synaptosomal Na+-dependent, but not Na+-independent, amino acid uptake, and also completely reversed the inhibition of synaptosomal Na+-dependent amino acid uptake induced by oleic acid. Palmitic, stearic, and oleic acids were endogenously associated with the brain FABP fraction. These data are consistent with the hypothesis that Mr 12 000 soluble FABPs intrinsic to brain may act as regulators of synaptosomal Na+-dependent amino acid uptake by sequestering free fatty acids which inhibit this process.  相似文献   

9.
Fatty acid binding proteins (FABPs) are small cytosolic proteins with virtually identical backbone structures that facilitate the solubility and intracellular transport of fatty acids. At least eight different types of FABP occur, each with a specific tissue distribution and possibly with a distinct function. To define the functional characteristics of all eight human FABPs, viz. heart (H), brain (B), myelin (M), adipocyte (A), epidermal (E), intestinal (I), liver (L) and ileal lipid-binding protein (I-LBP), we studied their ligand specificity, their conformational stability and their immunological crossreactivity. Additionally, binding of bile acids to I-LBP was studied. The FABP types showed differences in fatty acid binding affinity. Generally, the affinity for palmitic acid was lower than for oleic and arachidonic acid. All FABP types, except E-FABP, I-FABP and I-LBP interacted with 1-anilinonaphtalene-8-sulphonic acid (ANS). Only L-FABP, I-FABP and M-FABP showed binding of 11-((5-dimethylaminonaphtalene-1-sulfonyl)amino)undecanoic acid (DAUDA). I-LBP showed increasing binding of bile acids in the order taurine-conjugated>glycine-conjugated>unconjugated bile acids. A hydroxylgroup of bile acids at position 7 decreased and at position 12 increased the binding affinity to I-LBP. The fatty acid-binding affinity and the conformation of FABP types were differentially affected in the presence of urea. Our results demonstrate significant differences in ligand binding, conformational stability and surface properties between different FABP types which may point to a specific function in certain cells and tissues. The preference of I-LBP (but not L-FABP) for conjugated bile acids is in accordance with a specific role in bile acid reabsorption in the ileum.  相似文献   

10.
Three fatty acid-binding proteins (FABPs) from the liver of the shark Halaetunus bivius were isolated and characterized: one of them belongs to the liver-type FABP family and the other two to the heart-type FABP family. The complete primary structure of the first FABP, and partial primary structures of the two others, were determined. The liver-type FABP constitutes 69% of the total FABPs, and its amino acid sequence presents the highest identity with chicken, catfish, iguana and elephant fish liver basic FABPs. The L-FABP protein has low affinity for palmitic and oleic acids and high affinity for linoleic and arachidonic acids and other hydrophobic ligands, all of them important for the metabolic functions of the liver. In contrast, both heart-type FABPs have the highest affinity for palmitic acid, the principal fatty acid mobilized from fat deposits for beta-oxidation.  相似文献   

11.
The structures of intestinal and liver fatty acid binding proteins (FABPs) have been determined from an analysis of the nucleotide sequences of cloned cDNAs. The primary translation product of intestinal FABP mRNA contains 132 residues (Mr = 15 124). Liver FABP mRNA encodes a 127 amino acid polypeptide (Mr = 14 273). In vitro co-translational cleavage and translocation assays showed that neither sequence has a cleavable signal peptide or signal peptide equivalent - suggesting that the FABPs do not enter the secretory apparatus but rather are targeted to the cytoplasm. A variety of computational techniques were used to compare the two FABP sequences. The results indicate that liver and intestinal FABP are paralogous homologues. A superfamily of proteins was defined which includes the FABPs, the cellular retinol and retinoic acid binding proteins, the P2 protein of peripheral nerve myelin, and a polypeptide known as 422 whose synthesis is induced during differentiation of 3T3-L1 cells to adipocytes. No sequence homologies were noted between any of these small molecular weight cytosolic proteins and nonspecific lipid transfer protein (sterol carrier protein 2), phosphatidylcholine transfer protein, serum albumin or apolipoprotein AI. The FABPs may have structural features responsible for lipid-protein interactions that are not present in these non-homologous sequences. The distribution of intestinal and liver FABP mRNAs in adult rat tissues and the changes in FABP gene expression which occur during gastrointestinal development support the notion that these proteins are involved in fatty acid uptake, transport and/or compartmentalization. However, differences in tissue distribution and periods of non-coordinate expression during gastrointestinal ontogeny suggest that the two FABPs have distinct functions. The relationship between intestinal and liver FABPs and similar sized cytosolic FABPs isolated from brain, skeletal and cardiac muscle remains unclear. Recombinant DNA techniques combined with comparative sequence analyses offer a useful approach for defining unique as well as general structure-function relationships in this group of fatty acid binding proteins.  相似文献   

12.
Epoxyeicosatrienoic acids (EETs) are potent regulators of vascular homeostasis and are bound by cytosolic fatty acid-binding proteins (FABPs) with K(d) values of approximately 0.4 microM. To determine whether FABP binding modulates EET metabolism, we examined the effect of FABPs on the soluble epoxide hydrolase (sEH)-mediated conversion of EETs to dihydroxyeicosatrienoic acids (DHETs). Kinetic analysis of sEH conversion of racemic [(3)H]11,12-EET yielded K(m) = 0.45 +/- 0.08 microM and V(max) = 9.2 +/- 1.4 micromol min(-1) mg(-)(1). Rat heart FABP (H-FABP) and rat liver FABP were potent inhibitors of 11,12-EET and 14,15-EET conversion to DHET. The resultant inhibition curves were best described by a substrate depletion model, with K(d) = 0.17 +/- 0.01 microM for H-FABP binding to 11,12-EET, suggesting that FABP acts by reducing EET availability to sEH. The EET depletion by FABP was antagonized by the co-addition of arachidonic acid, oleic acid, linoleic acid, or 20-hydroxyeicosatetraenoic acid, presumably due to competitive displacement of FABP-bound EET. Collectively, these findings imply that FABP might potentiate the actions of EETs by limiting their conversion to DHET. However, the effectiveness of this process may depend on metabolic conditions that regulate the levels of competing FABP ligands.  相似文献   

13.
When delipidated Mr>10,000 cut-off human fetal lung cytosol was separated on gel filtration and ion-exchange chromatography on Auto-FPLC system, two fatty acid-binding proteins (FABPs) of pI 6.9 and pI 5.4 were purified to homogeneity. On Western blotting analysis with the anti-human fetal lung pI 6.9 FABP, these two proteins showed immunochemical cross reactivity with each other and with purified hepatic FABPs but not with cardiac or gut FABP. These two FABPs have identical molecular mass of 15.2 kDa, which is slightly higher than that of the hepatic proteins (14.2 kDa). Carbohydrate covalently linked to FABPs, that may substantially add to the molecular mass, was not detected in the purified protein preparations. Amino acid analysis revealed that both the proteins have same amino acid composition each containing one Trp residue that is lacking in hepatic FABP. Different isoforms of lung FABP exhibited different binding ability for their natural ligands. These proteins bind palmitoyl CoA with higher affinity than oleic acid. pI 6.9 FABP can more rapidly and efficiently transfer fatty acid than can pI 5.4 FABP from unilammelar liposomes. Thus these FABPs may play a critical role in fatty acid transport during human fetal lung development.Abbreviations AO anthroyloxy - 12-AS 12-(9-anthroyloxy)stearic acid - FABP fatty acid-binding protein - NBD-PE [N-(4-nitrobenzo-2-oxa-1,3-diazole)phosphatidylethanolamine - Pal-CoA palmitoyl coenzyme A - PITC phenylisothiocyanate - PBS phosphate-buffered saline - PtdCho phosphatidylcholine - SUV small unilamellar vesicle - Tris tris(hydroxymethyl) amino methane  相似文献   

14.
Fatty acid-binding proteins (FABPs) are members of a super family of lipid-binding proteins, and occur intracellularly in vertebrates and invertebrates. This review briefly addresses the structural and molecular properties of the fatty acid binding proteins, together with their potential physiological role. Special attention is paid to the methods used to study the binding characteristics of FABPs. An overview of the conventional (Lipidex, the ADIFAB and ITC) and innovative separation-based techniques (chromatographic and electrophoretic methods) for the study of ligand-protein interactions is presented along with a discussion of their strengths, weak points and potential applications. The best conventional approaches with natural fatty acids have generally revealed only limited information about the interactions of fatty acid proteins. In contrast, high-performance affinity chromatography (HPAC) studies of several proteins provide full information on the binding characteristics. The review uses, as an example, the application of immobilized liver basic FABP as a probe for the study of ligand-protein binding by high-performance affinity chromatography. The FABP from chicken liver has been immobilized on aminopropyl silica and the developed stationary phase was used to examine the enantioselective properties of this protein and to study the binding of drugs to FABP. In order to clarify the retention mechanism, competitive displacement studies were also carried out by adding short chain fatty acids to the mobile phase as displacing agents and preliminary quantitative structure-retention relationship (QSRRs) correlations were developed to describe the nature of the interactions between the chemical structures of the analytes and the observed chromatographic results.The results of these studies may shed light on the proposed roles of these proteins in biological systems and may find applications in medicine and medicinal chemistry. This knowledge will yield a deeper insight into the mechanism of fatty acid binding in order to indisputably show the central role played by FABPs in cellular FA transport and utilization for a proper lipid metabolism.  相似文献   

15.
Summary A fatty acid-binding protein (FABP) from the cytosol of bovine brain was purified by Sephadex G-75 filtration and electrofocusing. The purified protein migrated as a single protein band in 15% polyacrylamide gel electrophoresis with an apparent molecular mass of 14.7 kDa. To ascertain that the purified protein was a FABP, it was submitted to fatty acid-binding tests. Oleic and palmitic acids bound to brain FABP but this was not the case for palmitoyl CoA. By Scatchard analysis the ligand binding values were: Kd = 0.28 µM, Bmax (mol/mol) = 0.6 for oleic acid and Kd = 0.8 µM, Bmax (mol/mol) = 2.1 for palmitic acid. The complete amino acid sequence of the brain FABP was determined and a microheterogeneity was observed. Sequence comparison with other FABPs of known sequence and the observed microheterogeneity demonstrated the presence in brain of several homologous FABPs closely related to heart FABP.This paper corresponds to a communication at the first international workshop on fatty acid binding proteins (Maastricht, the Netherlands, September 4–5, 1989).  相似文献   

16.
Summary The possible property of fatty acid-binding proteins (FABPs) to transport fatty acid was investigated in various model systems with FABP preparations from liver and heart. An effect of FABP, however, was not detectable with a combination of oleic acid-loaded mitochondria and vesicles or liposomes due to the rapid spontaneous transfer. Therefore, the mitochondria were separated from the vesicles in an equilibrium dialysis cell. The spontaneous fatty acid transfer was much lower and addition of FABP resulted in an increase of fatty acid transport. Oleic acid was withdrawn from different types of monolayers by FABP with rates up to 10%/min. When two separate monolayers were used, FABP increased fatty acid transfer between these monolayers and an equilibrium was reached.Abbreviations FABP(s) fatty acid-binding protein(s) - PC phosphatidylcholine - PS phosphatidylserine - PE phosphatidylethanolamine  相似文献   

17.
Summary A high-resolution, solution-state NMR method for characterizing and comparing the interactions between carboxyl 13C-enriched fatty acids (FA) and individual binding sites on proteins has been developed. The utility of this method results from the high degree of resolution of carboxyl from other carbon resonances and the high sensitivity of FA carboxyl chemical shifts to intermolecular environmental factors such as degree of hydrogen-bonding or hydration, degree of ionization (pH), and proximity to positively-charged or aromatic side-chain moieties in proteins. Information can be obtained regarding binding heterogeneity (structural as well as thermodynamic), binding stoichiometries, relative binding affinities, the ionization behavior of bound FA and protein side-chain moieties, the physical and ionization states of unbound FA, and the exchange rates of FA between protein binding sites and between protein and non-protein acceptors of FA, such as model membranes.Cytosolic fatty acid binding proteins represent an excellent model system for studying and comparing fatty acid-protein interactions. Prokaryotic expression vectors have been used to direct efficient synthesis of several mammalian intestinal FABPs in E. coli. This has enabled us to isolate gram-quantities of purified FABPs, to introduce NMR-observable isotopes, and to generate FABP mutants.The intestine is the only tissue known to contain abundant quantities of more than one FABP homologue in a single cell type. It is likely that these homologous FABPs serve distinct functional roles in intestinal lipid transport. This paper presents comparative 13C NMR results for FA interactions with FABP homologues from intestine, and the functional implications of these analyses are discussed.Abbreviations FA Fatty Acid(s) - FABP Fatty Acid Binding Protein(s) - I-FABPc Cytosolic rat intestinal Fatty Acid Binding Protein - L-FABPc Cytosolic rat liver Fatty Acid Binding Protein - CD Circular Dichroic spectroscopy Established Investigator of the American Heart Association  相似文献   

18.
Two fatty acid binding proteins (FABPs) of identicalM r, 13 kDa, have been isolated from developing human fetal brain. A delipidated 105,000 g supernatant was incubated with [1 -14C]oleate and subjected to a Sephacryl S-200 column followed by gel filtration chromatography on a Sephadex G-75 column and ion-exchange chromatography using a DEAE-Sephacel column. Purity was checked by UV spectroscopy, SDS-PAGE, isoelectric focusing and immunological cross-reactivity. The two FABPs designated as DE-I (pI 5.4) and DE-II (pI 6.9) showed cross-reactivity with each other and no alteration at the antigenic site during intrauterine development. Anti-human fetal brain FABP does not cross-react with purified human fetal heart, gut, lung or liver FABPs. The molecular mass of DE-I and DE-II is lower than those of fetal lung and liver FABPs. Like liver FABP, these proteins bind organic anions, fatty acids and acyl CoAs but differ in their binding affinities. Both DE-I and DE-II have been found to exhibit higher affinity for oleate (K d = 0.23 μM) than palmitate (K d = 0.9μM) or palmitoyl-CoA (K d = 0.96 μM), with DE-I binding less fatty acids than DE-II. DE-II is more efficient in transferring fatty acid from phospholipid vesjcles than DE-I indicating that human fetal brain FABPs may play a significant role in fatty acid transport in developing fetal brain.  相似文献   

19.
The ability of purified rat liver and heart fatty acid binding proteins to bind oleoyl-CoA and modulate acyl-CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart fatty acid binding protein was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver fatty acid binding protein has a single binding site acyl-CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl-CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver fatty acid binding protein stimulated acyl-CoA production, whereas that from heart did not stimulate production over control values. 14C-labeled fatty acid-fatty acid binding protein complexes were prepared, incubated with membranes, and acyl-CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl-CoA in the presence of liver fatty acid binding protein but in the presence of heart fatty acid binding protein, only 45% of the fatty acid was converted. Liver but not heart fatty acid binding protein bound the acyl-CoA formed and removed it from the membranes. The amount of product formed was not changed by additional membrane, enzyme cofactors, or incubation time. Additional liver fatty acid binding protein was the only factor found that stimulated product formation. Acyl-CoA hydrolase activity was also shown in the absence of ATP and CoA. These studies suggest that liver fatty acid binding protein can increase the amount of acyl-CoA by binding this ligand, thereby removing it from the membrane and possibly aiding transport within the cell.  相似文献   

20.
Vesicles having diameters from 20 to 200 nm were prepared from egg-yolk phosphatidylcholine (PC) and were separated as well as analyzed by methods that can be carried out with standard laboratory equipment. Gel-chromatography on Sephacryl S 1000 was adapted for expeditious size analysis of vesicles as well as for isolation of vesicle populations having a narrow range of diameters. The internal volume of vesicles was derived from enzymic tests for PC and for glucose encapsulated. Size analysis and enzymic determinations provided a convenient check for the lamellarity of membranes produced.Fatty acids and fatty acid binding proteins (FABPs) must interact in vivo in the presence of cellular membranes. As a model, interactions between unilamellar vesicles, anthroyloxypalmitic acid (A16:0) and FABPs were studied with the aid of gel-chromatographic methods elaborated and of fluorescence spectroscopy. FABP from bovine heart donated A16:0 to membranes, whereas FABP from bovine liver removed this fatty acid from vesicle membranes. The results revealed characteristic differences between cardiac and hepatic FABPs with regard to binding a fatty acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号