首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bromo- and cucumovirus RNAs contain a tRNA-like structure as an integral part of their genome. This structure is located at the 3' end of the viral RNA and is an acceptor of tyrosine. The 3' regions of representative viral RNAs have been sequenced and quite unorthodox secondary foldings have been proposed for these 3' ends. The question therefore remained as to how these structures could be recognized by tRNA-specific enzymes. We have established the minimum number of nucleotides from the 3' end of the brome mosaic virus and broad bean mottle virus RNAs required for the formation of structures recognized by the tyrosyl-tRNA synthetase and/or the tRNA nucleotidyltransferase. The results obtained delineate the length of the tRNA-like region, and indicate that the 5' region of the tRNA-like structure participates in the formation of the amino acid stem. This has led us to propose an 'L'-shaped secondary structure for these tRNA-like regions.  相似文献   

2.
Tobacco mosaic virus (TMV) and Nemesia ring necrosis virus (NeRNV) belong to the Tobamoviridae and Tymoviridae families, respectively. Although their RNAs present different 5'-untranslated regions and different family-specific genomic organizations, they share common 3'-ends organized into three consecutive pseudoknot structures followed by a histidylatable tRNA-like structure (TLS). We investigate here whether the histidine residue becomes incorporated into viral proteins and if the TLSs of TMV and NeRNV play a role in viral translation. Our results indicate that, regardless of the genomic context, the histidine moiety does not become incorporated in proteins via ribosomal translation, and that disruption of the TLS in either viral RNA does not perturb the viral translation patterns. In the light of the present data and of previous results on tymoviral TLSVal and bromoviral TLSTyr showing differential effects on translation, we suggest that the key role for the TLS in promoting translation initiation appears to be dictated by the TLS architecture and identity.  相似文献   

3.
Various plant viral RNAs possess a 3'' terminus with tRNA-like properties. These viral RNAs are charged with an amino acid upon incubation with the cognate aminoacyl-tRNA synthetase and ATP. We have studied the structure of end-labelled 3''-terminal fragments of turnip yellow mosaic virus RNA and brome mosaic virus RNA 2 with chemical modifications of the adenosine and cytidine residues and with enzymatic digestions using RNase T1, nuclease S1 and the double-strand-specific ribonuclease from cobra venom. The data indicate that the 3'' termini of these plant viral RNAs lack a cloverleaf structure as found in classical tRNA. The three-dimensional folding, however, reveals a striking resemblance with classical tRNA. The models proposed are supported by phylogenetic data. Apparently distinct three-dimensional solutions have evolved to meet the requirements for faithful recognition by tRNA-specific enzymes. The way in which the aminoacyl acceptor arms of these tRNA-like structures are constructed reveal novel features in RNA folding which may have a bearing on the secondary and tertiary structures of RNA in general. The dynamic behaviour of brome mosaic virus RNA 2 in solution presumably is illustrative of conformational transitions, which RNAs generally undergo on changing the ionic conditions.  相似文献   

4.
RNA viruses co-opt the host cell's biological machinery, and their infection strategies often depend on specific structures in the viral genomic RNA. Examples are tRNA-like structures (TLSs), found at the 3′ end of certain plant viral RNAs, which can use the cell's aminoacyl tRNA-synthetases (AARSs) to drive addition of an amino acid to the 3′ end of the viral RNA. TLSs are multifunctional RNAs involved in processes such as viral replication, translation, and viral RNA stability; these functions depend on their fold. Experimental result-based structural models of TLSs have been published. In this study, we further examine these structures using a combination of biophysical and biochemical approaches to explore the three-dimensional (3D) architectures of TLSs from the turnip yellow mosaic virus (TYMV), tobacco mosaic virus (TMV), and brome mosaic virus (BMV). We find that despite similar function, these RNAs are biophysically diverse: the TYMV TLS adopts a characteristic tRNA-like L shape, the BMV TLS has a large compact globular domain with several helical extensions, and the TMV TLS aggregates in solution. Both the TYMV and BMV TLS RNAs adopt structures with tight backbone packing and also with dynamic structural elements, suggesting complexities and subtleties that cannot be explained by simple tRNA mimicry. These results confirm some aspects of existing models and also indicate how these models can be improved. The biophysical characteristics of these TLSs show how these multifunctional RNAs might regulate various viral processes, including negative strand synthesis, and also allow comparison with other structured RNAs.  相似文献   

5.
6.
The tRNA-like structure (TLS) of turnip yellow mosaic virus (TYMV) RNA was previously shown to be efficiently charged by yeast valyl-tRNA synthetase (ValRS). This RNA has a noncanonical structure at its 3'-terminus but mimics a tRNA L-shaped fold, including an anticodon loop containing the major identity nucleotides for valylation, and a pseudoknotted amino acid accepting domain. Here we describe an in vitro selection experiment aimed (i) to verify the completeness of the valine identity set, (ii) to elucidate the impact of the pseudoknot on valylation, and (iii) to investigate whether functional communication exists between the two distal anticodon and amino acid accepting domains. Valylatable variants were selected from a pool of 2 x 10(13) RNA molecules derived from the TYMV TLS randomized in the anticodon loop nucleotides and in the length (1-6 nucleotides) and sequence of the pseudoknot loop L1. After nine rounds of selection by aminoacylation, 42 have been isolated. Among them, 17 RNAs could be efficiently charged by yeast ValRS. Their sequence revealed strong conservation of the second and the third anticodon triplet positions (A(56), C(55)) and the very 3'-end loop nucleotide C(53). A large variability of the other nucleotides of the loop was observed and no wild-type sequence was recovered. The selected molecules presented pseudoknot domains with loop L1 varying in size from 3-6 nucleotides and some sequence conservation, but did neither reveal the wild-type combination. All selected variants are 5-50 times more efficiently valylated than the wild-type TLS, suggesting that the natural viral sequence has emerged from a combination of evolutionary pressures among which aminoacylation was not predominant. This is in line with the role of the TLS in viral replication.  相似文献   

7.
8.
Some 20 years ago, the study of picornaviral RNA translation led to the characterization of an alternative mechanism of initiation by direct ribosome binding to the 5′ UTR. By using a bicistronic vector, it was shown that the 5′ UTR of the poliovirus (PV) or the Encephalomyelitis virus (EMCV) had the ability to bind the 43S preinitiation complex in a 5′ and cap-independent manner. This is rendered possible by an RNA domain called IRES for Internal Ribosome Entry Site which enables efficient translation of an mRNA lacking a 5′ cap structure. IRES elements have now been found in many different viral families where they often confer a selective advantage to allow ribosome recruitment under conditions where cap-dependent protein synthesis is severely repressed. In this review, we compare and contrast the structure and function of IRESes that are found within 4 distinct family of RNA positive stranded viruses which are the (i) Picornaviruses; (ii) Flaviviruses; (iii) Dicistroviruses; and (iv) Lentiviruses.  相似文献   

9.
10.
Structural features of metzincin metalloendopeptidases, their physiological role in a cell, and their potential use in medicine are discussed in this article. The authors published their own results of investigations of the new extracellular Bacillius pumilus metalloendopeptidase that exhibited a unique combination of characteristics of both astacin and adamalysin metzincin families.  相似文献   

11.
Summary TMV RNA contains a unique long segment lacking guanylic acid residues. Chromatographical, biochemical, and physical analyses suggest a size of about 40 nucleotides with one terminal 3-Gp. Base composition of this stretch of TMV RNA appears to be strain-specific among three wild strains, yielding a general formula of (C8A20U11) G for the case of vulgare TMV, (C8A18U12) G for dahlemense TMV, and (C8A24U6) G for the strain U2. More closely related strains within the vulgare group (vulgare, A14, Ni 462) have no difference in base composition between these segments. Some new techniques are described which helped in determining the chain length of such long oligonucleotides. A decision whether this segment contains the beginning of the coat protein cistron on the TMV RNA or not had to be postponed until the nucleotide sequence is elaborated.  相似文献   

12.
Plant functional trait variation in tropical forests results from taxonomic differences in phylogeny and associated genetic differences, as well as, phenotypic plastic responses to the environment. Accounting for the underlying mechanisms driving plant functional trait variation is important for understanding the potential rate of change of ecosystems since trait acclimation via phenotypic plasticity is very fast compared to shifts in community composition and genetic adaptation. We here applied a statistical technique to decompose the relative roles of phenotypic plasticity, genetic adaptation, and phylogenetic constraints. We examined typically obtained plant functional traits, such as wood density, plant height, specific leaf area, leaf area, leaf thickness, leaf dry mass content, leaf nitrogen content, and leaf phosphorus content. We assumed that genetic differences in plant functional traits between species and genotypes increase with environmental heterogeneity and geographic distance, whereas trait variation due to plastic acclimation to the local environment is independent of spatial distance between sampling sites. Results suggest that most of the observed trait variation could not be explained by the measured environmental variables, thus indicating a limited potential to predict individual plant traits from commonly assessed parameters. However, we found a difference in the response of plant functional traits, such that leaf traits varied in response to canopy‐light regime and nutrient availability, whereas wood traits were related to topoedaphic factors and water availability. Our analysis furthermore revealed differences in the functional response of coexisting neotropical tree species, which suggests that endemic species with conservative ecological strategies might be especially prone to competitive exclusion under projected climate change.  相似文献   

13.
Satellite RNAs of plant viruses: structures and biological effects.   总被引:18,自引:0,他引:18       下载免费PDF全文
Plant viruses often contain parasites of their own, referred to as satellites. Satellite RNAs are dependent on their associated (helper) virus for both replication and encapsidation. Satellite RNAs vary from 194 to approximately 1,500 nucleotides (nt). The larger satellites (900 to 1,500 nt) contain open reading frames and express proteins in vitro and in vivo, whereas the smaller satellites (194 to 700 nt) do not appear to produce functional proteins. The smaller satellites contain a high degree of secondary structure involving 49 to 73% of their sequences, with the circular satellites containing more base pairing than the linear satellites. Many of the smaller satellites produce multimeric forms during replication. There are various models to account for their formation and role in satellite replication. Some of these smaller satellites encode ribozymes and are able to undergo autocatalytic cleavage. The enzymology of satellite replication is poorly understood, as is the replication of their helper viruses. In many cases the coreplication of satellites suppresses the replication of the helper virus genome. This is usually paralleled by a reduction in the disease induced by the helper virus; however, there are notable exceptions in which the satellite exacerbates the pathogenicity of the helper virus, albeit on only a limited number of hosts. The ameliorative satellites are being assessed as biocontrol agents of virus-induced disease. In greenhouse studies, satellites have been known to "spontaneously" appear in virus cultures. The possible origin of satellites will be briefly considered.  相似文献   

14.
The 9600-base RNA genome of hepatitis C virus (HCV) has an internal ribosome entry site (IRES) in its first 370 bases, including the AUG start triplet at bases 342-344. Structural elements of this and other IRES domains substitute for a 5' terminal cap structure in protein synthesis. Recent work (Nadal, A., Martell, M., Lytle, J. R., Lyons, A. J., Robertson, H. D., Cabot, B., Esteban, J. I., Esteban, R., Guardia, J., and Gomez, J. (2002) J. Biol. Chem. 277, 30606-30613) has demonstrated that the host pre-tRNA processing enzyme, RNase P, can cleave the HCV RNA genome at a site in the IRES near the AUG initiator triplet. Although this step is unlikely to be part of the HCV life cycle, such a reaction could indicate the presence of a tRNA-like structure in this IRES. Because susceptibility to cleavage by mammalian RNase P is a strong indicator of tRNA-like structure, we have conducted the studies reported here to test whether such tRNA mimicry is unique to HCV or is a general property of IRES structure. We have assayed IRES domains of several viral RNA genomes: two pestiviruses related to HCV, classical swine fever virus and bovine viral diarrhea virus; and two unrelated viruses, encephalomyocarditis virus and cricket paralysis virus. We have found similarly placed RNase P cleavage sites in these IRESs. Thus a tRNA-like domain could be a general structural feature of IRESs, the first IRES structure to be identified with a functional correlate. Such tRNA-like features could be recognized by pre-existing ribosomal tRNA-binding sites as part of the IRES initiation cycle.  相似文献   

15.
S Joshi  M A Wosnick 《FEBS letters》1988,239(1):45-49
Using alfalfa mosaic virus (AMV) as a model, a simple method for separating plant viral genomic RNAs from their subgenomic counterparts was established. The method relies on sucrose gradient fractionation under carefully selected conditions of centrifugation and fraction collection. The RNA components are recovered in nearly quantitative yield and have full biological activity as measured by infectivity of the reconstituted RNAs in suitable protoplasts and plant hosts. The individual RNAs, on the other hand, show no such infectivity, indicating that the separation is indeed complete.  相似文献   

16.
On the basis of a comparative analysis of published sequences, models for the secondary structure of the 3'-terminal [poly(A)-preceding] untranslated region of the entero- and rhinovirus RNAs were worked out. The models for all these viruses share a common core element, but there are an extra enterovirus-specific element and still an additional element characteristic of a subset of enterovirus RNAs. The two latter models were verified for poliovirus and coxsackievirus B genomes by testing with single-strand and double-strand specific enzymatic and chemical probes. A tRNA-like tertiary structure model for the 3'-terminal folding of enterovirus RNAs was proposed. A similar folding was proposed for the 3' termini of the negative RNA strands as well as for the 5' termini of the positive strand of all entero- and rhinovirus RNAs. Implications of these data for template recognition during negative and positive RNA strands synthesis and for the evolution of the picornavirus genomes are discussed.  相似文献   

17.
The roles of virus-derived small RNAs (vsRNAs) have been studied in plants and insects. However, the generation and function of small RNAs from cytoplasmic RNA viruses in mammalian cells remain unexplored. This study describes four vsRNAs that were detected in enterovirus 71-infected cells using next-generation sequencing and northern blots. Viral infection produced substantial levels (>105 copy numbers per cell) of vsRNA1, one of the four vsRNAs. We also demonstrated that Dicer is involved in vsRNA1 generation in infected cells. vsRNA1 overexpression inhibited viral translation and internal ribosomal entry site (IRES) activity in infected cells. Conversely, blocking vsRNA1 enhanced viral yield and viral protein synthesis. We also present evidence that vsRNA1 targets stem-loop II of the viral 5′ untranslated region and inhibits the activity of the IRES through this sequence-specific targeting. Our study demonstrates the ability of a cytoplasmic RNA virus to generate functional vsRNA in mammalian cells. In addition, we also demonstrate a potential novel mechanism for a positive-stranded RNA virus to regulate viral translation: generating a vsRNA that targets the IRES.  相似文献   

18.
Green and senesced leaf nitrogen (N) and phosphorus (P) concentrations of different plant functional groups in savanna communities of Kruger National Park, South Africa were analyzed to determine if nutrient resorption was regulated by plant nutritional status and foliar N:P ratios. The N and P concentrations in green leaves and the N concentrations in senesced leaves differed significantly between the dominant plant functional groups in these savannas: fine-leaved trees, broad-leaved trees and grasses. However, all three functional groups reduced P to comparable and very low levels in senesced leaves, suggesting that P was tightly conserved in this tropical semi-arid savanna ecosystem. Across all functional groups, there was evidence for nutritional control of resorption in this system, with both N and P resorption efficiencies decreasing as green leaf nutrient concentrations increased. However, specific patterns of resorption and the functional relationships between nutrient concentrations in green and senesced leaves varied by nutrient and plant functional group. Functional relationships between N concentrations in green and senesced leaves were indistinguishable between the dominant groups, suggesting that variation in N resorption efficiency was largely the result of inter-life form differences in green leaf N concentrations. In contrast, observed differences in P resorption efficiencies between life forms appear to be the result of both differences in green leaf P concentrations as well as inherent differences between life forms in the fraction of green leaf P resorbed from senescing leaves. Our results indicate that foliar N:P ratios are poor predictors of resorption efficiency in this ecosystem, in contrast to N and P resorption proficiencies, which are more responsive to foliar N:P ratios.  相似文献   

19.
The interaction between nickel and yeast hexokinase was studied. The binding of nickel showed a positive cooperativity, and saturation was not reached. The nickel binding induced modifications in the secondary structure of the protein; thus, a lost of alpha helix and beta turns, as well as an increase of the random structure and beta sheet was observed. The monomer/dimmer equilibrium of the protein was modified in the presence of nickel, and the monomer state was mainly obtained at the highest nickel concentrations studied. These changes on the protein structure caused a decrease in the enzyme activity. According to kinetic studies, nickel caused a non-competitive inhibition when glucose was the variable substrate and a linear competitive inhibition when ATP was the variable substrate.  相似文献   

20.
王天一  王应祥  尤辰江 《遗传》2021,(4):323-339
植物同源结构域(plant homeodomain,PHD)是锌指结构域家族的一类转录调控因子,其最主要的功能是可以识别各种组蛋白修饰密码,包括组蛋白甲基化和乙酰化等;此外PHD结构域还可以与DNA结合.含有PHD结构域的蛋白,或者本身具有组蛋白修饰酶活性,或者可以与各类组蛋白修饰酶相互作用,还有部分与DNA甲基化相关...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号