首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Predation and drift of lotic macroinvertebrates during colonization   总被引:1,自引:0,他引:1  
J. Lancaster 《Oecologia》1990,85(1):48-56
Summary A field experiment was carried out to determine the effect of an invertebrate predator on the colonization and drift of benthic macroinvertebrates in experimental stream channels. Lotic invertebrates colonized four replicate channels: two controls with no predators, and two channels with low densities (2.8 m–2) of predatory stonefly nymphs, Doroneuria baumanni (Perlidae). Immigration rates were measured at the inflow of two other channels. Drift rates of invertebrates immigrating to and emigrating from channels were measured daily, and benthic samples were collected every five days. Over a 25-day colonization period, benthic densities of Baetis nymphs and larval Chironomidae were reduced by D. baumanni. Colonization curves were fit with a power function and significantly different colonization rates were indicated for both Baetis and chironomids in predation and control channels. A predator-induced drift response was exhibited by Baetis only and this response was size-dependent. In the presence of D. baumanni, large Baetis drifted more frequently than small nymphs and, correspondingly, small nymphs were more frequent in the benthos. Net predator impacts on invertebrate densities in channel substrates were partitioned into predator-induced drift and prey consumption. These estimates suggest that predator avoidance by Baetis is a prominent mechanism causing density reductions in the presence of predators. Reductions in the density of Chironomidae, however, were attributed to prey consumption only. A rainstorm during the experiment demonstrated that stream flow disruptions can override the influence of predators on benthic invertebrates, at least temporarily, and re-set benthic densities.  相似文献   

2.
The effects of pulsed acidification on invertebrate densities and drift, and water chemistry, in a high altitude Sierra Nevada stream were measured using artificial stream channels. Water was diverted from the Marble Fork of the Kaweah River, California, U.S.A., through twelve replicate channels; however, low flow in the summer of 1985 eliminated all but four of these channels. Channels were stocked with natural substrates and organisms from the Marble Fork of the Kaweah River. After a three week acclimation period, we simulated a low pH rain event by adding acid (H2SO4 and HNO3) to two of the channels, reducing pH to 5.0 for 6 hours. The other two channels acted as controls (pH 6.4). During acid additions, Baetis spp. drift in acidified channels was ca. 7 times higher than in control channels (F = 39.02, p < 0.025; data fourth root transformed, ANOVA), and the percentage of drifting baetids that was dead was significantly higher in acidified than control channels (46% vs. 0%, F = 29.86, p < 0.05; arcsine square root transformed data, ANOVA). Other taxa showed no significant drift responses, and benthic densities of all taxa showed no effects two days after acidification, probably owing to rapid recolonization by invertebrate drift in influent waters. Stream chemistry data are presented; heavy metal concentrations did not significantly increase in the 2 m stream channels.  相似文献   

3.
The life history, drift behavior, and benthic density of Baetis (Ephemeroptera) were examined in the arctic Kuparuk River in conjunction with a whole river fertilization experiment to determine if river fertilization affected Baetis drift and life history parameters. Drift was significantly higher in the control section of the river than in the fertilized, which suggested that the control section was a less suitable habitat than the fertilized section. There was no strong linear or exponential relationship between drift and benthic density, suggesting neither of these models are adequate to describe density independence versus density dependence. However, drift patterns in the control and fertilized sections suggest that drift is more of a function of absolute food supply than space or density of individuals. Drift was also sampled along a river transect at 6-hour intervals over a diel cycle. No diel periodicity in arctic summer drift was observed. The number of adults, number of eggs/female, and egg volume were calculated for adult Baetis collected in drift samples. There was no clear linear relationship between Baetis female dry mass and the number of eggs produced per female. However, a strong linear relationship was observed between individual egg volume and Baetis female dry mass, suggesting that larger females tended to produce larger eggs rather than more eggs.  相似文献   

4.
Macroinvertebrate drift in a Rocky Mountain stream   总被引:5,自引:4,他引:1  
J. David Allan 《Hydrobiologia》1987,144(3):261-268
An extensive series of drift collections from a Rocky Mountain stream was used to investigate quantitative patterns in the taxonomic composition of drift throughout spring, summer and fall for 1975–1978. Drift was estimated by drift rate, the number of organisms drifting past a point per 24 h; and by drift density, the numbers of organisms collected per 100 m3 of water sampled.Drift densities were up to ten times greater by night than by day, and 24 h drift densities for the total fauna approached 2000 per 100 m3 in June–July, declining to <500 by autumn. Ephemeroptera, and especially Baetis, dominated the drift. Drift rates were greatest in late spring, around 106 per 24 h, which are among the highest values reported for small trout streams. Drift rates declined to <105 during the summer, and shifts in the taxonomic composition are described.Multiple regression analysis of the relationship between drift rate and density, and the independent variables discharge, benthic density and temperature, showed that discharge typically was a significant predictor of 24 h drift rate, usually the best single predictor. In contrast, 24 h drift density most frequently was independent of discharge, indicating that this measure tends to correct for seasonal variation in discharge, as suggested in the literature. However, this was not invariably true. Drift density significantly correlated with benthic density in five of eight taxa inspected, thus seasonal declines in the benthos probably accounted for parallel declines in drift density.  相似文献   

5.
The seasonal fluctuations of larval macroinvertebrate drift, exuvial drift and larval benthic density were quantitatively examined over a 1-year period in a fourth order, spring-fed stream in the Piedmont area of South Carolina. The drift was dominated by the mayfly Baetis spp. and by two species of blackfly (Prosimulium mixtum and Simulium jenningsi). Peak drift densities were noted during early spring and especially late summer. Strong correlations were noted between larval drift densities and exuvial drift, indicating a relationship between drift and seasonal growth and emergence patterns. Seasonal trends in drift and benthic densities, though less strongly correlated, were also generally similar.  相似文献   

6.
7.
Macro-invertebrate drift was measured entering and leaving two pools on the Middle Fork of the Cosumnes River, a third order California stream. Drift rates for Baetis spp., Chironomidae, Simulium spp., Capniidae and total drift were calculated. Significant differences in the numbers of organisms entering the two pools were found for Baetis, Chironomidae, and Capniidae. Comparisons of drift rates at the upstream and downstream ends of each pool showed that the abundance of Chironomidae, Simulium, Capniidae and total drift changed in different directions across the pools. The numbers of organisms leaving the two pools, however, were not significantly different for Baetis, Simulium, Capniidae and total drift. These findings lead us to hypothesize that long pools act as barriers, not filters, to stream macro-invertebrate drift. The composition of drift leaving the pools in this experiment appeared to be controlled by the composition of the benthic habitat at the tail of the pool and not by the composition of upstream drift entering the pools.  相似文献   

8.
C. J. Williams 《Hydrobiologia》1985,124(3):243-250
200 µm and 50 µm mesh aperture nets were compared with respect to the sampling of the drift of Chironomidae (Diptera) larvae.200 µm mesh drift nets were found to be unsatisfactory for the sampling of chironomid larval drift; such nets seriously underestimated drift density of larvae and distorted the sub-family and instar composition of samples.200 µm mesh drift nets captured larval drift in densities of 1–24 m–3, while pumped samples, filtered through 50 µm mesh aerial nets, indicated densities of 10–1600 m–3. Drift nets also underestimated ephemeropteran drift density.The use of pumps, with 50 µm or smaller mesh aperture aerial nets, is recommended for quantitative and qualitative sampling of chironomid drift, and possibly that of other invertebrates.  相似文献   

9.
This study assessed the possibility of using drift and subtidal seaweeds from St Lawrence Island, Alaska (lat. 63°N) for sale by the native population after simple processing. Over 125 km of coastline were surveyed for distribution of both drift and subtidal seaweeds. Drift seaweed wet weight densities ranged from 0.2 to over 9 kg m−2, with an average of over 4 t km−1 in the areas sampled. Attached, benthic seaweed densities ranged from 0.15 to 0.32 kg m−2. Thirty and 35% of the biomass was composed of Agarum cribrosum and species of Laminaria, respectively, both as drift and as benthic seaweed. Data from tagged Laminaria indicated that growth rates were relatively slow for most of the year. The drift seaweed resource on the coasts south and west of the city of Gambell appeared to have good potential for a small-scale commercial harvest. (*author for correspondence)  相似文献   

10.
Invertebrate drift in a large, braided New Zealand river   总被引:1,自引:0,他引:1  
1. The spatio-temporal patterns of drifting macroinvertebrates in a large, braided New Zealand river were determined by sampling with drift nets, seasonally, for 1 year. 2. Drift densities were greatest in autumn, and at night in all seasons except winter. A greater proportion of larger animals drifted at night than during the day in all seasons. Mean annual drift densities were ninety-six animals 100m?3 and 47 mg dry weight 100 m?3. 3. There were relatively few taxa in the drift, and the mayfly Deleatidium spp. comprised more than 85% of the drifting aquatic invertebrates in all seasons except autumn. Chironomidae and terrestrial forms were the only other groups to occur at densities of more than one animal 100 m?3 in all seasons. 4. Drift density was positively correlated with benthic density, which in turn was adversely affected by floods, particularly during spring and summer.  相似文献   

11.
SUMMARY. 1. A soft-water stream iti upland Wales was dosed with sulphuric acid and aluminiutn sulphate at two successive points to create sitnultaneous episodes of low pH, and low pH with increased aluminiutn. Chemical atid biological responses were measured before, during and after the episode and were compared with a reference zone. 2. The pH fell frotn ~7.0 to 4.28 (±0.18 SD) and 5.02 (±0.10) respectively in the acid and aluminium zones. Corresponding aluminium concentrations during the episode were 0.052 g Al m?3 (±0.008) and 0.347 g Al nr3 (±0.047), the former not differing significantly from the reference zone. The concentration of cadmium rose to 0.002- 0.011 g Cd m?3in both treated areas, but the concentrations of other metals were unchanged. 3. In situ toxicity tests were performed with macroinvertebrates and fish. Chironomus riparius. Hydropsyche angustipennis and Dinocras cephalotes suffered no mortality. Ecdyonurus venosus, Baetis rhodani and Gammarus pulex showed up to 25% mortality in both treatment zones and further mortalities occurred after the episode. Brown trout Salmo trutta and salmon Valmo salar s howed 7–10% mortality in the acid zone, but 50–87% in the aluminium zone, where salmon had a significantly shorter LT50than trout. 4. The drift of Simuliidae increased during treatment in both acid and aluminium zones. Drift densities of Dixa puherula, Protonemura meyeri, Ephemeralla ignita and Dicranota sp. increased in the aluminium zone. The most pronounced response was by Baetis rhodani in the aluminium zone where drift density increased by ×8.4 during the episode. 5. Baetis rhodani was the only taxon to show a significant decline in benthic density during the treatment, and then only in the aluminium zone. Drift could account for most of the losses. 6. The depth distribution of invertebrates in the substratum differed between zones following treatment. More individuals were present at the surface of the reference zone (1287 m?2±747) than at the surface of the other zones (<400 m?2); however, densities at greater depths were similar. These patterns probably reflected differences prior to the treatments.  相似文献   

12.
1. This study aimed to quantify ontogenetic changes in the drifting of Elmis aenea, Oulimnius tuberculatus, Esolus parallelepipedus and Limnius volkmari (Coleoptera: Elmidae), and to relate their drift to benthic density. Monthly samples were taken over 39 months, using three surface nets at each of two contrasting sites in a small stream: one in a deep section with abundant macrophytes, and the other in a shallow stony section. 2. Most larvae and adults were taken in the drift at night with little variation between catches in the three nets at each site. Day catches were very low, often zero. No significant relationships could be established between mean numbers in the drift catches and benthic densities. 3. When night catches were converted to drift densities (number caught per 100 m3 of water sampled), the latter were positively related to monthly losses in the benthos, but not to benthic densities. A linear regression described the relationship, and equations for the different life‐stages within each species were not significantly different from the equation for all life‐stages combined. However, drift losses were only about 0.07% of total losses in the benthos. A severe spate in October 1967 increased the number of larvae and adults in the drift, but not drift densities, except for immature adults of E. aenea, O. tuberculatus and E. parallelepipedus. 4. Key life‐stages with the highest drift density were the earliest life‐stage soon after egg hatching for E. aenea, the start of the larval overwintering period for O. tuberculatus and L. volkmari, and mature adults during the mating season for all three species. Drift density for E. parallelepipedus was too low to identify a key life‐stage. These key life‐stages corresponded with critical periods for survival in the life cycle, as identified in an earlier study in the same stream. Mortality was high during these critical periods, hence the strong relationship between drift density and benthic losses. The latter relationship was very consistent for different life‐stages within each species, and partially supported the rarely‐tested hypothesis that drift represents surplus production in the benthos.  相似文献   

13.
Mass bedload movement is thought to play a key role in initiating stream invertebrate drift during extreme flood events. However, little is known of the importance of the shear of invertebrates from stone surfaces relative to their entrainment along with bed material at different discharges. In particular, it is unclear whether so-called catastrophic drift only occurs once mass bedload movement, and hence entrainment of invertebrates, occurs. We investigated the relationship between the mobilisation and transport of bed sediments and the entry of Baetis mayflies into the water column in a laboratory flume. Experiments quantified the percentage of Baetis drifting at a range of discharges that mobilised between 0 and 95% of the flume-bed sediments. Control experiments quantified drift losses from sediment fixed to the bed of the flume, such that sediments were immobile even at the highest discharges. Drift losses increased with increasing discharge and velocity in the flume. Sediment mobility contributed significantly to drift (ANCOVA, p < 0.001), with consistently greater drift losses in mobile sediment experiments than in those with fixed sediment. The discharge which resulted in a loss of 100% of Baetis from the mobile sediment bed (discharge 30 l s–1) resulted in a loss of approximately 50% of individuals from the fixed bed. Results indicate that once bed sediments are mobilised, entry of Baetis into the drift is greater than expected from the shear of animals from stone surfaces alone. Thus, entrainment of animals along with sediment contributes significantly to drift at high flows. This implies that differences in bed stability between sites or streams, or temporal changes in sediment characteristics within a site, could influence patterns of drift.  相似文献   

14.
The lower portion of Upper Three Runs, a woodland stream in central Pennsylvania, receives acid drainage from a strip mine. In 1974, the effect of this input on pH and benthic invertebrates was studied by Tomkiewicz & Dunson (1977). We sampled the same stations in 1986 and then treated the mine drainage with sodium carbonate for seven days in an effort to evaluate the short term colonization response of brook trout (Salvelinus fontinalis) and invertebrates. No differences in the pattern of pH and invertebrate distribution was found between the 1974 and 1986 results, although pH values and invertebrate densities were higher in 1986. Total number of invertebrates and number of taxa colonizing bricks during three pre-treatment time periods (8, 10, 18 days) did not differ from the single treatment period (7 days). However, two species of Baetis (Ephemeroptera: Baetidae) did increase in the treatment section during sodium carbonate application. The number of brook trout also increased in the treatment section, as compared to one pre-treatment estimate. These results indicate that motile species are able to respond within seven days, whereas, longer treatment may be required to produce community wide responses.Author to whom correspondence should be addressed  相似文献   

15.
1. A knowledge of how individual behaviour affects populations in nature is needed to understand many ecologically important processes, such as the dispersal of larval insects in streams. The influence of chemical cues from drift‐feeding fish on the drift dispersal of mayflies has been documented in small experimental channels (i.e. < 3 m), but their influence on dispersal in natural systems (e.g. 30 m stream reaches) is unclear. 2. Using surveys in 10 Rocky Mountain streams in Western Colorado we examined whether the effects of predatory brook trout (Salvelinus fontinalis) on mayfly drift, that were apparent in stream‐side channels, could also be detected in natural streams. 3. In channel experiments, the drift of Baetis bicaudatus (Baetidae) was more responsive to variation in the concentration of chemical cues from brook trout than that of another mayfly, Epeorus deceptivus (Heptageniidae). The rate of brook trout predation on drifting mayflies of both species in a 2‐m long observation tank was higher during the day (60–75%) but still measurable at night (5–10%). Epeorus individuals released into the water column were more vulnerable to trout predation by both day and night than were Baetis larvae treated similarly. 4. Drift of all mayfly taxa in five fishless streams was aperiodic, whereas their drift was nocturnal in five trout streams. The propensity of mayflies to drift was decreased during the day and increased during the night in trout streams compared with fishless streams. In contrast to the channel experiments, fish biomass and density did not alter the nocturnal nature nor magnitude of mayfly drift in natural streams. 5. In combination, these results indicate that mayflies respond to subtle differences in concentration of fish cues in experimental channels. However, temporal and spatial variation in fish cues available to mayflies in natural streams may have obscured our ability to detect responses at larger scales.  相似文献   

16.
SUMMARY. 1. Based on in situ gutter trials we related the drift of caddis flies to their benthic densities and to various abiotic factors in streams in the Ivory Coast (West Africa). Members of the families Hydropsychidae, Philopotamidae. Hydroptilidae and Leptoceridae were considered in detail.
2. The drift of larvae peaked at night in both early and late larval instars.
3. Drift of a larval group (a certain instar, species or higher taxon) was more often related to the benthic density of other larval groups than to its own benthic density.
4. Self-regulation of an upper benthic density of a larval group by emigration through drift was not statistically evident.
5. There was no straightforward relationship between drift and abiotic factors.
6. Drift rates differed between taxa as well as between larval instars (size groups) within a taxon. Newly hatched larvae had very high drift rates, whereas the last larval instar usually had the lowest drift rate.
7. We related these results to the violently fluctuating discharge of the streams in the study area and the consequent variability of space for lotic insects.
8. Drift estimates, made at the same time as a monitoring programme on possible side-effects of insecticides (Onchocerciasis Control Programme), failed to reflect benthic densities except in the night drift of Hydropsychidae.  相似文献   

17.
In this study we quantified invertebrate drift and related it to the structure of the benthic community, over a 6–8 month period, in a 4th-order tropical stream in Costa Rica. Relative to reports from similar-sized temperate and tropical streams, drift densities were high (2-fold greater: mean 11.2 m−3; range 2.5–25 m−3), and benthic insect densities were relatively low (>3-fold lower: mean 890 m−2; range 228–1504 m−2). Drift was dominated by larval shrimps that represented more than 70% of total drift on any given date; the remaining 30% was composed of 54 insect taxa. Among insects, Simuliidae and Chironomidae (Diptera) and Baetidae, Leptohyphes and Tricorythodes (Ephemeroptera) comprised 24% of total drift. Drift periodicity was strongly nocturnal, with peaks at 18:00 h (sunset) and 03:00 h. Our results, and those of previous experiments in the study stream, suggest that nighttime drift is driven by the presence of predatory diurnal drift-feeding fishes and nocturnal adult shrimps. There were no clear seasonal patterns over both ‘dry’ and wet seasons, suggesting that benthic communities are subject to similar stresses throughout the year, and that populations grow and reproduce continuously. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
A three month experimental acidification was carried out on lotic bottom communities. Experiments were conducted under semi-natural conditions in plasticized wooden channels. Acidified communities (pH 4.0), with or without added aluminum, were compared with a reference community (pH 6.3–6.9). Added aluminum concentrations were respectively 0.2 and 0.4 mg 1–1 in experiments performed in 1982 and 1983. Water chemistry and taxonomic composition of the macroinvertebrate communities were monitored. Under acidified conditions, results were similar, with or without added aluminum. Mean abundances of all groups of organisms were lowered. Mayflies nearly completely disappeared from the acidified channels. The only organism not affected by the acidification was Microtendipes sp. Differences in the organism response were observed: Orthocladiinae (Rheocricotopus, Parametriocnemus, Corynoneura, Thienemanniella, Nanocladius, Cricotopus) and Ephemeroptera (Baetis, Habrophlebia, Habrophlebiodes, Paraleptophlebia, Ephemerella), especially early instars, were very sensitive to low pH, Chironomini and Tanypodinae were much less sensitive, while Tanytarsini were intermediate; Oligochaeta and Nematoda were difficult to classify, their response being different from one year to another. Organisms inhabiting the surface of artificial substrates disappeared very rapidly from the system, while those buried inside had a delayed reaction to acidification. Aluminum which was mainly in the monomeric form was not responsible for community modifications. Direct action of hydrogen ions through a physiological stress seems a more credible explanation. These results, induced by a continuous experimental acidification, suggest that if this small headwater stream undergoes acidification, the resulting invertebrate community will be very simplified, with only resistant species able to cope with the acid conditions.  相似文献   

19.
A survey was carried out to establish the nature and composition of the benthos along the Naro Moru, a tropical river in central Kenya using artificial substrate baskets, from November 1986 to October 1987. A clear longitudinal zonation existed for Diptera and Ephemeroptera which were the major benthic taxa. Maximum colonization took place after ten days of exposure. Seasonal variations in abundance were also observed. All taxa collected from the bottom samples were also collected in the drift samples, but the percentage composition of the benthos showed variations with that of the drift. Simulium sp. dominated the benthos whilst Baetis spp. dominated the drift. There was a positive correlation between drift rate and benthic fauna density.  相似文献   

20.
SUMMARY. 1. Quantitative variations in downstream movements of benthic macroinvertebrates were studied in a large European river, the Rhône, upstream from Lyon. Artificial substrates were suspended at three depths in the water column, both near a bunk and in mid-channel, monthly from December 1978 to March 1980. Drift nets were used to determine the diurnal rhythm in drift and to investigate the efficiency of our suspended artificial substrates in capturing the drifting macrofauna. 2. Drift densities (number and biomass) reached a maximum during summer, especially near the river bank, and at night. Mean individual weight of organisms was higher close to the bottom and at night. 3. Artificial substrates were reliable, but underestimated drift by about a quarter in number and a sixth in biomass. compared with drift nets. Two detailed analyses of the drift distribution across the width of the river revealed similar densities along both banks, and uniformity in the channel as a whole. 4. Mean annual drift densities estimated for the section of river were 100 individuals, per 100 m3 and 60 mg dry weight per 100 m3. These densities are similar to those obtained from other temperate rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号