共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibodies were prepared against glutathione peroxidase, superoxide dismutase, and catalase. Inhibition of the enzyme activity was obtained with anti-Gpx and anti-SOD antibodies but not with anti-CAT antibodies. The antibodies were then injected into human fibroblasts and bovine chondrocytes in culture either under normal conditions or under 1 atm of oxygen. The injected anti-Gpx and anti-SOD antibodies increased the mortality rate of the fibroblasts incubated under 1 atm of oxygen. However, when cells were incubated under normal atmosphere, anti-Gpx antibodies inhibited the division while anti-SOD antibodies increased this capacity. Anti-Gpx antibodies injected into chondrocytes decreased their viability. Injection of control antiserum had no effect. These data stress the primary importance of Gpx as antioxidant under all conditions and the relative efficiency of SOD according to the balance between the radical production and the activity of the other antioxidant systems. 相似文献
2.
Yan F Yang WK Li XY Lin TT Lun YN Lin F Lv SW Yan GL Liu JQ Shen JC Mu Y Luo GM 《Biochimica et biophysica acta》2008,1780(6):869-872
Superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione S-transferase (GST) and glutathione reductase (GR) play crucial roles in balancing the production and decomposition of reactive oxygen species (ROS) in living organisms. These enzymes act cooperatively and synergistically to scavenge ROS, as not one of them can singlehandedly clear all forms of ROS. In order to imitate the synergy of the enzymes, we designed and generated a recombinant protein, which comprises of a Schistosoma japonicum GST (SjGST) and a bifunctional 35-mer peptide with SOD and GPX activities. The engineered protein demonstrated SOD, GPX and GST activities simultaneously. This trifunctional enzyme with SOD, GPX and GST activities is expected to be the best ROS scavenger. 相似文献
3.
The enzymatic antioxidant defences of mammalian cells include copper-zinc superoxide dismutase (SOD)(Cu Zn-SOD; EC 1.15.1.1) which catalyses the dismutation of superoxide anions (O2.-) to hydrogen peroxide(H2, O2)and a seleno-dependent glutathione peroxidase (GSH-px) (GSH-px; EC 1.11.1.9) which catalyses the degradation of H2O2 to H2O and O2. The measurement of these enzyme activities is often used as a possible biological index of oxidative stress in various clinical conditions. Complete understanding of such information requires knowledge of the random biological fluctuation of the enzyme activity which occurs in each individual. In the present investigation we examined this normal variability in 12 healthy volunteers (four women and eight men) aged 23–45 years, over 6 months. The intra-individual coefficients of variation (estimated using analysis of variance techniques) were 15% (SOD) and 13% (GSH-px). The analytical goal for imprecision was achieved for both enzymes, i.e. it was less than one half of the measured intra-individual variation. Both enzymes showed marked individuality, indicating that an individual's reference values are more useful than population-based data. The critical difference required for significant changes in serial results is 45% for SOD and 40% for GSH-px. 相似文献
4.
CuZn superoxide dismutase, Mn superoxide dismutase, catalase and glutathione peroxidase in glutathione-deficient human fibroblasts 总被引:1,自引:0,他引:1
The effect of genetically determined glutathione deficiency on the fibroblast content of CuZn superoxide dismutase, Mn superoxide dismutase, catalase and glutathione peroxidase was investigated. No significant differences between glutathione-deficient and -proficient human fibroblasts were revealed. There was a large variation in the content of the investigated enzymes in fibroblasts grown and analysed on different occasions. Whereas the contents of CuZn superoxide dismutase, catalase and glutathione peroxidase did not deviate much from what has been found in other human cell-lines and tissues, the fibroblasts were found to contain exceptional amounts of Mn superoxide dismutase. 相似文献
5.
A supramolecular bifunctional artificial enzyme with superoxide dismutase and glutathione peroxidase activities 总被引:1,自引:0,他引:1
Shuangjiang Yu 《Bioorganic chemistry》2010,38(4):159-827
For constructing a bifunctional antioxidative enzyme with both superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, a supramolecular artificial enzyme was successfully constructed by the self-assembly of the Mn(III)meso-tetra[1-(1-adamantyl methyl ketone)-4-pyridyl] porphyrin (MnTPyP-M-Ad) and cyclodextrin-based telluronic acid (2-CD-TeO3H) through host-guest interaction in aqueous solution. The self-assembly of the adamantyl moieties of Mn(III) porphyrin and the β-CD cavities of 2-CD-TeO3H was demonstrated by the NMR spectra. In this supramolecular enzyme model, the Mn(III) porphyrin center acted as an efficient active site of SOD and tellurol moiety endowed GPx activity. The SOD-like activity (IC50) of the new catalyst was found to be 0.116 μM and equals to 2.56% of the activity of the native SOD. Besides this, supramolecular enzyme model also showed a high GPx activity, and a remarkable rate enhancement of 27-fold compared to the well-known GPx mimic ebselen was observed. More importantly, the supramolecular artificial enzyme showed good thermal stability. 相似文献
6.
It is known that highly reactive oxygene species produced during normal cellular metabolism represent a powerful effector mechanism against parasites. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) belong to the main defense anti-oxidants that prevent the formation of new free radical species. The aim of this study was to assess the activities of SOD and GPx in cattle tissues infected with Taenia saginata. We observed a statistically significant increase in the SOD and GPx activities (p = 0.00003, 0.00008, respectively, Student’s t-test) in skeletal muscles infected with T. saginata in spectrophotometric analysis. With the use of western blot technique, SOD synthesis stimulation has appeared in the host tissues containing cysticerci in contrast with the control samples. There was no statistically significant increase in the GPx band intensity observed in the studied samples in comparison to controls (Gene Tools Version 4.01 program). These results support the significance of anti-oxidant processes in host defense mechanism during parasitic infections. 相似文献
7.
Fei Yan Wen-kui Yang Xin-yang Li Ting-ting Lin Yan-ni Lun Feng Lin Shao-wu Lv Gang-lin Yan Jun-qiu Liu Jia-cong Shen Ying Mu Gui-min Luo 《Biochimica et Biophysica Acta (BBA)/General Subjects》2008
Superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione S-transferase (GST) and glutathione reductase (GR) play crucial roles in balancing the production and decomposition of reactive oxygen species (ROS) in living organisms. These enzymes act cooperatively and synergistically to scavenge ROS, as not one of them can singlehandedly clear all forms of ROS. In order to imitate the synergy of the enzymes, we designed and generated a recombinant protein, which comprises of a Schistosoma japonicum GST (SjGST) and a bifunctional 35-mer peptide with SOD and GPX activities. The engineered protein demonstrated SOD, GPX and GST activities simultaneously. This trifunctional enzyme with SOD, GPX and GST activities is expected to be the best ROS scavenger. 相似文献
8.
Action of hypochlorous acid on the antioxidant protective enzymes superoxide dismutase, catalase and glutathione peroxidase. 总被引:4,自引:0,他引:4 下载免费PDF全文
The neutrophil enzyme myeloperoxidase generates hypochlorous acid (HOCl) at sites of inflammation. Glutathione peroxidase is very quickly inactivated by low concentration of HOCl. Inactivation of catalase is also rapid, but requires higher HOCl concentrations and the haem appears to be degraded. Inactivation of bovine CuZn superoxide dismutase is slower. Hence superoxide dismutase should not be easily inactivated by HOCl at sites of inflammation, which may contribute to its effectiveness as an anti-inflammatory agent and in minimizing reperfusion injury. 相似文献
9.
10.
Coisolation of glutathione peroxidase, catalase and superoxide dismutase from human erythrocytes 总被引:1,自引:0,他引:1
Glutathione peroxidase (GSH-Px; glutathione: hydrogen peroxide oxidoreductase; EC 1.11.1.9), catalase (H2O2: H2O2 oxidoreductase; EC 1.11.1.6) and superoxide dismutase (superoxide: superoxide oxidoreductase; EC 1.15.1.1) were coisolated from human erythrocyte lysate by chromatography on DEAE-cellulose. Glutathione peroxidase was separated from superoxide dismutase and catalase by thiol-disulfide exchange chromatography and then purified to approximately 90% homogeneity by gel permeation chromatography and dye-ligand affinity chromatography. Catalase and superoxide dismutase were separated from each other and purified further by gel permeation chromatography. Catalase was then purified to approximately 90% homogeneity by ammonium sulfate precipitation and superoxide dismutase was purified to apparent homogeneity by hydrophobic interaction chromatography. The results for glutathione peroxidase represent an improvement of approximately 10-fold in yield and 3-fold in specific activity compared with the established method for the purification of this enzyme. The yields for superoxide dismutase and catalase were high (45 mg and 232 mg, respectively, from 820 ml of washed packed cells), and the specific activities of both enzymes were comparable to values found in the literature. 相似文献
11.
12.
Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity 总被引:18,自引:0,他引:18
C R Wheeler J A Salzman N M Elsayed S T Omaye D W Korte 《Analytical biochemistry》1990,184(2):193-199
Automated assays for catalase, glutathione peroxidase, glutathione reductase, and superoxide dismutase are presented. The assay for catalase is based on the peroxidatic activity of the enzyme. The glutathione peroxidase and reductase assays measure the consumption of NADPH following the reduction of t-butyl hydroperoxide and oxidized glutathione, respectively. The assay for superoxide dismutase is based on the reduction of cytochrome c. All assays utilize the Cobas FARA clinical automated analyzer and provide considerable time savings over the manual assays. 相似文献
13.
Yawei Xu Yan Zhou Rui Yin Cheng Wang Haijiao Chu Junling Wang 《In vitro cellular & developmental biology. Animal》2018,54(5):335-345
The balance of oxidation and reduction in the body requires the synergistic effect of various antioxidant enzymes. Therefore, the construction of enzyme mimics with multiple antioxidant activities is important and beneficial for further research on the synergistic effects of antioxidant enzymes and their mechanism of action. To explore the synergistic effect of superoxide dismutase (SOD) and glutathione peroxidase (GPx), a 76-mer selenium-containing peptide (Se-76P) mimic containing the active SOD and GPx centers was designed. Moreover, a cell-penetrating peptide was introduced into Se-76P by structure modeling, and then, Se-76P was expressed by a single-protein production combined with the cysteine auxotrophic double-expression system of Escherichia coli. The results suggest that Se-76P exhibits SOD and GPx activities, following the GPx activity of 109 U/mg protein and the SOD activity of 1218 U/mg protein. The labeled Se-76P with FITC fluorescence was verified to enter the L02 cells successfully; it improved the antioxidant activity in cells and promoted the consumption of glucose and synthesis of glycogen. The injection of Se-76P subcutaneously decreased the levels of blood glucose and malondialdehyde of lipid peroxidation produced in mice, indicating that Se-76P had antioxidative properties and a certain regulatory role of glucose metabolism. The data analysis provides further clarification that Se-76P can regulate insulin signal transduction to play an insulin-like role, which not only has a greater significance for further elucidating the catalytic mechanism of the enzyme and their synergistic effects on each other but also has enormous medicinal potential. 相似文献
14.
McGill CR Green NR Meadows MC Gropper SS 《The Journal of nutritional biochemistry》2003,14(11):656-662
The effects of a 30 mg/day beta-carotene supplement for 60 days on blood cell and serum antioxidant enzymes and selenium concentrations were examined in healthy adults. Serum beta-carotene concentrations increased significantly (P < 0.05) in response to supplementation. Forty percent of subjects exhibited hypercarotenemia of the skin after 30 days. There were no changes in the activity of red blood cell or leukocyte catalase activity, red blood cell copper,zinc-dependent superoxide dismutase activity or serum myeloperoxidase concentration in response to beta-carotene supplementation. Leukocyte superoxide dismutase activity decreased significantly (P < 0.05) at 30 and 60 days compared to baseline. Serum glutathione peroxidase concentration decreased significantly (P < 0.05) between baseline and days 45 and 60 of supplementation. Serum selenium and blood hemoglobin concentrations did not change during the study. Supplemental beta-carotene may alter the antioxidant capacity of plasma and/or blood cells in vivo. 相似文献
15.
Muradian KhK Utko NA Mozzhukhina TG Pishel' IN Litoshenko AIa Bezrukov VV Fraĭfel'd VE 《Ukrainski? biokhimicheski? zhurnal》2003,75(1):33-37
Qualitative and quantitative differences in correlative and regressive links between superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase were assessed in the mice liver by two- and three-dimensional statistical methods. Paired linear correlation analysis indicated SOD-CAT tandem as the correlatively acting enzymatic pair. Three-dimensional analysis revealed uniform response surfaces which exhibited higher activities at disproportional values of the other two and lower activities at proportional activities of the other two enzymes. The direct effect of the enzymes on each other was positive [table: see text] while the effect of their product was always negative. 相似文献
16.
《Redox report : communications in free radical research》2013,18(5):181-186
AbstractObjectivesThe objective of this study was to investigate the effects of catechin and epicatechin on the activity of the endogenous antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) (as well as the total antioxidant capacity (TAC)) of rats after intra-peritoneal (i.p.) administration.MethodsTwenty-four Wistar rats were randomly divided into two groups: the experimental group which was administered daily with a 1:1 mixture of epicatechin and catechin at a concentration of 23 mg/kg body weight for 10 days and the control group which was injected daily with an equal amount of saline. Blood and urine samples were collected before and after the administration period, as well as 10 days after (follow-up).ResultsIntra-peritoneal administration of catechins led to a potent decrease in GPx levels and a significant increase in SOD levels. TAC was significantly increased in plasma and urine. Malonaldehyde levels in urine remained stable. In the animals treated with catechins, SOD activity showed a moderate negative correlation with GPx activity.DiscussionBoosting the activity of the antioxidant enzymes could be a potential adjuvant approach for the treatment of the oxidative stress-related diseases. 相似文献
17.
A. V. Vasil’ev V. I. Ivakhnenko S. A. Khotimchenko V. V. Korzh 《Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry》2008,2(3):306-310
Studies of Km for glutathione peroxidase (GPx) and activities of superoxide dismutase and GPx were carried out in liver and erythrocytes of rats kept on either the normal semisynthetic diet or a high-fat diet with increased content of Cu, Zn, Mn, and Se. The diet containing microelement additions caused the increase in TBH affinity of liver and erythrocyte GPx, as well as the decrease of liver SOD observed on the 14th day of the treatment of rats with the high-fat diet with additional increase of Cu, Zn, Mn, and Se. 相似文献
18.
Yan F Yan G Lv S Shen N Mu Y Chen T Gong P Xu Y Lv L Liu J Shen J Luo G 《The international journal of biochemistry & cell biology》2011,43(12):1802-1811
Reactive oxygen species (ROS) are involved in cell growth, differentiation, and death. Excessive amounts of ROS (e.g., O(2)(-), H(2)O(2), and HO) play a role in aging as well as in many human diseases. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) are critical antioxidant enzymes in living organisms. SOD catalyzes the dismutation of O(2)(-) to H(2)O(2), and GPx catalyzes the reduction of H(2)O(2) and other harmful peroxides by glutathione (GSH). They not only function in catalytic processes but also protect each other, resulting in more efficient removal of ROS, protection of cells against injury, and maintenance of the normal metabolism of ROS. To imitate the synergism of SOD and GPx, a 65-mer peptide (65P), containing sequences that form the domains of the active center of SOD and the catalytic triad of GPx upon the incorporation of some metals, was designed on the basis of native enzyme structural models; 65P was expressed in the cysteine auxotrophic expression system to obtain Se-65P. Se-65P was converted into Se-CuZn-65P by incorporating Cu(2+) and Zn(2+). Se-CuZn-65P exhibited high SOD and GPx activities because it has a delicate dual-activity center. The synergism of the enzyme mimic was evaluated by using an in vitro model and a xanthine/xanthine oxidase/Fe(2+)-induced mitochondrial damage model system. We anticipate that the peptide enzyme mimic with synergism is promising for the treatment of human diseases and has potential applications in medicine as a potent antioxidant. 相似文献
19.
F Mazeaud J Maral A M Michelson 《Biochemical and biophysical research communications》1979,86(4):1161-1168
A non copper containing superoxide dismutase (Cu-SOD), presumably manganese superoxide dismutase (Mn-SOD), has been identified in carp erythrocytes. Erythrocyte catalase is low, glutathione peroxidase (GPX) is extremely high, and superoxide dismutase (SOD) is relatively low. The distribution of Cu-SOD, Mn-SOD and glutathione peroxidase in various tissues is described. Highest activities of both enzymes are found in the liver and lowest in white muscle and the swim bladder. 相似文献
20.
Prabhu HR 《Indian journal of experimental biology》2002,40(3):258-261
Intraperitoneal injection of rats with diethyldithiocarbamate (1.2 g/kg body wt) led to maximum diminution of superoxide dismutase activity at 1 hr by 86 and 84% in liver and red blood cell respectively with a gradual return to the normal level at 48 hr after administration of injection. Significant inhibition of selenium-dependent glutathione peroxidase was also observed, which returned to normal at 48 hr after administration of injection. However, maximum decline in its activity was at 12 hr by 52 and 73% in liver and red blood cells respectively. No significant difference in tissue level of selenium-independent glutathione peroxidase was observed during time course study after diethyldithiocarbamate administration. It is possible that inhibition of superoxide dismutase by diethyldithiocarbamate leads to accumulation of superoxide anion which in turn inactivates selenium-dependent glutathione peroxidase by its reaction with selenium at the active site of the enzyme. 相似文献