首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In current views, translation-coupled ribosome binding to the endoplasmic reticulum (ER) membrane is transient, with association occurring via the signal recognition particle pathway and dissociation occurring upon the termination of protein synthesis. Recent studies indicate, however, that ribosomal subunits remain membrane-bound following the termination of protein synthesis. To define the mechanism of post-termination ribosome association with the ER membrane, membrane-bound ribosomes were detergent-solubilized from tissue culture cells at different stages of the protein synthesis cycle, and the composition of the ribosome-associated membrane protein fraction was determined. We report that ribosomes reside in stable association with the Sec61alpha-translocon following the termination stage of protein synthesis. Additionally, in vitro experiments revealed that solubilized, gradient-purified ribosome-translocon complexes were able to initiate the translation of secretory and cytosolic proteins and were functional in assays of signal sequence recognition. Using this experimental system, synthesis of signal sequence-bearing polypeptides yielded a tight ribosome-translocon junction; synthesis of nascent polypeptides lacking a signal sequence resulted in a disruption of this junction. On the basis of these data, we propose that in situ, ribosomes reside in association with the translocon throughout the cycle of protein synthesis, with membrane release occurring upon translation of proteins lacking topogenic signals.  相似文献   

2.
Folding of many cellular proteins is facilitated by molecular chaperones. Analysis of both prokaryotic and lower eukaryotic model systems has revealed the presence of ribosome-associated molecular chaperones, thought to be the first line of defense against protein aggregation as translating polypeptides emerge from the ribosome. However, structurally unrelated chaperones have evolved to carry out these functions in different microbes. In the yeast Saccharomyces cerevisiae, an unusual complex of Hsp70 and J-type chaperones associates with ribosome-bound nascent chains, whereas in Escherichia coli the ribosome-associated peptidyl-prolyl-cis-trans isomerase, trigger factor, plays a predominant role.  相似文献   

3.
Trigger factor (TF) is a ribosome-associated protein that interacts with a wide variety of nascent polypeptides in Escherichia coli. Previous studies have indicated that TF cooperates with DnaK to facilitate protein folding, but the basis of this cooperation is unclear. In this study we monitored protein export in E. coli that lack or overproduce TF to obtain further insights into its function. Whereas inactivation of genes encoding most molecular chaperones (including dnaK) impairs protein export, inactivation of the TF gene accelerated protein export and suppressed the need for targeting factors to maintain the translocation competence of presecretory proteins. Furthermore, overproduction of TF (but not DnaK) markedly retarded protein export. Manipulation of TF levels produced similar effects on the export of a cytosolic enzyme fused to a signal peptide. The data strongly suggest that TF has a unique ability to sequester nascent polypeptides for a relatively prolonged period. Based on our results, we propose that TF and DnaK promote protein folding by distinct (but complementary) mechanisms.  相似文献   

4.
Hepatitis C virus proteins are synthesized as a polyprotein cleaved by a signal peptidase and viral proteases. The behaviour of internal signal sequences at the C-terminus of the transmembrane domains of hepatitis C virus envelope proteins E1 and E2 is essential for the topology of downstream polypeptides. We determined the topology of these transmembrane domains before and after signal sequence cleavage by tagging E1 and E2 with epitopes and by analysing their accessibility in selectively permeabilized cells. We showed that, after cleavage by signal peptidase in the endoplasmic reticulum, the C-terminal orientation of these transmembrane domains changed from luminal to cytosolic. The dynamic behaviour of these transmembrane domains is unique and it is linked to their multifunctionality. By reorienting their C-terminus toward the cytosol and being part of a transmembrane domain, the signal sequences at the C-terminus of E1 and E2 contribute to new functions: (i) membrane anchoring; (ii) E1E2 heterodimerization; and (iii) endoplasmic reticulum retention.  相似文献   

5.
In bacteria, Trigger factor (TF) is the first chaperone that interacts with nascent polypeptides as soon as they emerge from the exit tunnel of the ribosome. TF binds to the ribosomal protein L23 located next to the tunnel exit of the large subunit, with which it forms a cradle-like space embracing the polypeptide exit region. It cooperates with the DnaK Hsp70 chaperone system to ensure correct folding of a number of newly translated cytosolic proteins in Escherichia coli. Whereas TF is exclusively found in prokaryotes and chloroplasts, Saccharomyces cerevisiae, a eukaryotic microorganism, has a three-member Hsp70-J protein complex, Ssb-Ssz-Zuo, which could act as a ribosome-associated folding facilitator. In the work reported in this volume of Molecular Microbiology, Rauch et al. (2005, Mol Microbiol, doi:10.1111/j.1365-2958.2005.04690.x) examined the functional similarity of the ribosome-associated chaperones in prokaryotes and eukaryotes. In spite of the fact that TF and the Hsp70-based triad are structurally unrelated, TF can bind to the yeast ribosome via Rpl25 (the L23 counterpart) and can substitute for some, but not all, of the functions assigned to Ssb-Ssz-Zuo in yeast. The functional conservation of the ribosome-associated chaperones without structural similarity is remarkable and suggests that during evolution nature has employed a common design but divergent components to facilitate folding of polypeptides as they emerge from the ribosomal exit, a fundamental process required for the efficient expression of genetic information.  相似文献   

6.
Proteins bearing an endoplasmic reticulum (ER) leader are inserted into the ER followed by cleavage of the signal peptide. Major histocompatibility complex class I-restricted T-cell epitopes can be generated from these proteins by the proteasome after retrotranslocation into the cytosol. Here, we show that an HLA-A(*)0201-restricted epitope from prostate stem cell antigen contains the cleavage site of the ER signal peptidase. The resulting cleavage products fail to bind to HLA-A(*)0201 and are not recognized by T lymphocytes. As processing of prostate stem cell antigen by signal peptidase occurs immediately after co-translational insertion, the epitope must be processed from polypeptides that have never reached the ER. The processing of this epitope depends on the proteasome and the transporter associated with antigen processing and shows a novel pathway of class I processing that relies on the failure of ER-targeted proteins to reach their target compartment.  相似文献   

7.
T P Wallace  C Robinson  C J Howe 《FEBS letters》1990,272(1-2):141-144
The thylakoid processing peptidase from the cyanobacterium Phormidium laminosum has been extracted from thylakoid membranes by solubilization with Triton X-100. Its reaction specificity has been compared with the analogous pea peptidase by processing in vitro of radiolabelled wheat and P. laminosum thylakoid lumenal precursor polypeptides. The cyanobacterial polypeptide is processed to the mature size through an intermediate by the P. laminosum peptidase, but to a polypeptide that has a slightly greater apparent molecular weight than the intermediate by the pea peptidase. Both peptidases correctly process the wheat polypeptide. This suggests that the reaction specificities of the two peptidases are similar, but not identical.  相似文献   

8.
J-proteins are obligate partners of Hsp70s, forming a ubiquitous class of molecular chaperone machinery. The ribosome-associated Hsp70 of yeast Ssb binds nascent polypeptides as they exit the ribosome. Here we report that the ribosome-associated J-protein Zuo1 is the partner of Ssb. However, Zuo1 efficiently stimulates the ATPase activity of Ssb only when in complex with another Hsp70, Ssz1. Ssz1 binds ATP, but none of the 11 different amino acid substitutions in the ATP-binding cleft affected Ssz1 function in vivo, suggesting that neither nucleotide binding nor hydrolysis is required. We propose that Ssz1's predominant function in the cell is to facilitate Zuo1's ability to function as a J-protein partner of Ssb on the ribosome, serving as an example of an Hsp70 family member that has evolved to carry out functions distinct from that of a chaperone.  相似文献   

9.
Coccidioides immitis is the causative agent of coccidioidomycosis, a systemic mycosis that attacks humans and a wide variety of animals. In the present study, we showed that the C. immitis mycelial form is able to release proteolytic enzyme into the extracellular environment. Under chemically defined growth conditions, mycelia secreted seven distinct polypeptides ranging from 15 to 65 kDa and an extracellular peptidase of 25 kDa. This enzyme had its activity fully inhibited by phenylmethylsulphonyl fluoride, a serine peptidase inhibitor. Conversely, metallo, cysteine, and aspartyl peptidase inhibitors did not alter the 25-kDa enzyme behavior. This extracellular serine peptidase was able to degrade keratin, a fibrous protein that composes human epidermis. Additionally, this peptidase cleaved different protein substrates, including gelatin, casein, hemoglobin, and albumin. Curiously, an 18-kDa serine peptidase activity was evidenced solely when casein was used as the co-polymerized protein substrate into the gel. The existence of different secreted peptidases could be advantageous for the adaptation of C. immitis to distinct environments during its complex life cycle.  相似文献   

10.
11.
A simple and accurate assay for prolipoprotein signal peptidase activity has been described that is based on the solubility of the signal peptide in 80% acetone. The unprocessed precursor and the mature form of the lipoprotein are quantitatively recovered in the precipitate. The signal peptide, from the acetone supernatant utilizing the purified signal peptidase, contains labeled methionine at its NH2 terminus and has Mr = 2200 (S.E. = 69). A specific signal peptidase that processes the modified form of Braun's prolipoprotein to its correct mature form has been purified. This enzyme is globomycin sensitive and has been purified 35,000-fold from the membranes of Escherichia coli by extraction at pH 4.0 with 2% Triton X-100 and heating, followed by conventional column chromatography at room temperature. This prolipoprotein signal peptidase has a pH optimum at 6.0, is not inhibited by EDTA, and requires 1 mM dithiothreitol for stability. The monomer molecular weight of this specific signal peptidase is 17,800 (S.E. = 900) as determined by sodium dodecyl sulfate-gel electrophoresis.  相似文献   

12.
Zuotin, a ribosome-associated DnaJ molecular chaperone.   总被引:14,自引:0,他引:14       下载免费PDF全文
W Yan  B Schilke  C Pfund  W Walter  S Kim    E A Craig 《The EMBO journal》1998,17(16):4809-4817
Correct folding of newly synthesized polypeptides is thought to be facilitated by Hsp70 molecular chaperones in conjunction with DnaJ cohort proteins. In Saccharomyces cerevisiae, SSB proteins are ribosome-associated Hsp70s which interact with the newly synthesized nascent polypeptide chain. Here we report that the phenotypes of an S.cerevisiae strain lacking the DnaJ-related protein Zuotin (Zuo1) are very similar to those of a strain lacking Ssb, including sensitivities to low temperatures, certain protein synthesis inhibitors and high osmolarity. Zuo1, which has been shown previously to be a nucleic acid-binding protein, is also a ribosome-associated protein localized predominantly in the cytosol. Analysis of zuo1 deletion and truncation mutants revealed a positive correlation between the ribosome association of Zuo1 and its ability to bind RNA. We propose that Zuo1 binds to ribosomes, in part, by interaction with ribosomal RNA and that Zuo1 functions with Ssb as a chaperone on the ribosome.  相似文献   

13.
Mitochondrial processing peptidases   总被引:11,自引:0,他引:11  
Three peptidases are responsible for the proteolytic processing of both nuclearly and mitochondrially encoded precursor polypeptides targeted to the various subcompartments of the mitochondria. Mitochondrial processing peptidase (MPP) cleaves the vast majority of mitochondrial proteins, while inner membrane peptidase (IMP) and mitochondrial intermediate peptidase (MIP) process specific subsets of precursor polypeptides. All three enzymes are structurally and functionally conserved across species, and their human homologues begin to be recognized as potential players in mitochondrial disease.  相似文献   

14.
15.
Site-directed mutagenesis was used to construct three mutant derivatives of the extracellular, cell surface lipoprotein pullulanase (PulA) in which the normally fatty acylated cysteine of the signal peptide-bearing precursor was replaced by other amino acids. When produced in Escherichia coli expressing all genes required for pullulanase secretion, approximately 90% of the PulA derivatives persisted as cell-associated precursors, indicating inefficient signal peptide processing. Processed (intermediate-sized) forms of the two derivatives that were studied in detail were found to result from proteolytic cleavage at different sites within the signal peptide. Both were further processed to smaller polypeptides by cleavage at an undetermined site that is presumably close to their C termini. The intermediate-sized pullulanase derived from prepullulanase in which Cys+1 had been replaced by Leu and Gly-1 by Glu (PulA:C1L/G-1E) appeared rapidly, was apparently entirely extracellular, and accounted for approximately 10% of synthesized PulA. Prolonged incubation did not result in further conversion of the precursor to the intermediate form, and the precursor remained anchored to the cytoplasmic membrane. The smaller processed form was also found extracellularly. The active form of the extracellular enzyme was monomeric, which is again in contrast to the fatty acylated, wild-type enzyme. Taken together, these results indicate that replacement of Cys+1 of prePulA eliminates processing by lipoprotein signal peptidase and does not permit processing by leader peptidase, but allows inefficient, aberrant processing by an unknown peptidase and immediate secretion of the resulting polypeptide, which retains most of its signal peptide. Processing and secretion only occur when the pullulanase secretion functions are expressed.  相似文献   

16.
eEF1A, the eukaryotic homologue of bacterial elongation factor Tu, is a well characterized translation elongation factor responsible for delivering aminoacyl-tRNAs to the A-site at the ribosome. Here we show for the first time that eEF1A also associates with the nascent chain distal to the peptidyltransferase center. This is demonstrated for a variety of nascent chains of different lengths and sequences. Interestingly, unlike other ribosome-associated factors, eEF1A also interacts with polypeptides after their release from the ribosome. We demonstrate that eEF1A does not bind to correctly folded full-length proteins but interacts specifically with proteins that are unable to fold correctly in a cytosolic environment. This association was demonstrated both by photo-cross-linking and by a functional refolding assay.  相似文献   

17.
Canine microsomal signal peptidase activity has been shown previously to co-migrate as an apparent complex of six polypeptides with molecular masses of 25, 23, 22, 21, 18, and 12 kDa. The 22- and 23-kDa species are differentially glycosylated forms of the same protein, designated SPC 22/23. The amino acid sequence of SPC 22/23 was deduced from cDNA clones. The protein is synthesized without a cleavable amino-terminal signal sequence and contains a single site for N-linked glycosylation. SPC 22/23 appears to be anchored to the rough endoplasmic reticulum membrane by a single hydrophobic segment near its amino terminus, with the remainder of the protein positioned on the lumenal side of the membrane. The amino acid sequence of SPC 22/23 shares homology with tryptic peptides derived from the hen oviduct signal peptidase glycoprotein, one of two possible proteins required for signal peptide processing in the avian system (Baker, R.K., and Lively, M.O. (1987) Biochemistry 26, 8561-8567). Therefore, the complete amino acid sequence of SPC 22/23 presented in this report corresponds to one of two possible proteins required for signal peptide processing in higher eukaryotic cells.  相似文献   

18.
During export of the outer membrane lipoprotein across the cytoplasmic membrane, the signal peptide of the lipoprotein undergoes two successive proteolytic attacks, cleavage of the signal peptide by signal peptidase and digestion of the cleaved signal peptide by an enzyme called signal peptide peptidase(s) (Hussain, M., Ichihara, S., and Mizushima, S. (1982) J. Biol. Chem. 257, 5177-5182; Hussain, M., Ozawa, Y., Ichihara, S., and Mizushima, S. (1982) Eur. J. Biochem. 129, 233-239). Here we report that protease IV, a cytoplasmic membrane protease, exhibits the signal peptide peptidase activity. The signal peptide peptidase activity was cofractionated with protease IV throughout the entire process of purification of the latter enzyme. Only the signal peptide was digested by the peptidase among membrane proteins. Both the signal peptide peptidase activity and the protease IV activity were inhibited to similar degrees by antipain, leupeptin, chymostatin, and elastatinal that are known to inhibit the signal peptide peptidase activity in the cell envelope. From these results we conclude that protease IV is the signal peptide peptidase that is responsible for signal peptide digestion in the cytoplasmic membrane. The peptidase attacked the signal peptide only after its release from the precursor protein.  相似文献   

19.
Biofilms of microbial cells encased in an exopolymeric matrix can form on solid surfaces, but how bacteria sense a solid surface and upregulate biofilm genes is largely unknown. We investigated the role of the Bacillus subtilis signal peptidase, SipW, which has a unique role in forming biofilms on a solid surface and is not required at an air-liquid interface. Surprisingly, we found that the signal peptidase activity of SipW was not required for solid-surface biofilms. Furthermore, a SipW mutant protein was constructed that lacks the ability to form a solid-surface biofilm but still retains signal peptidase activity. Through genetic and gene expression tests, the non-signal peptidase role of SipW was found to activate biofilm matrix genes specifically when cells were on a solid surface. These data provide the first evidence that a signal peptidase is bifunctional and that SipW has a regulatory role in addition to its role as a signal peptidase.  相似文献   

20.
A role for DnaK, the major E. coli Hsp70, in chaperoning de novo protein folding has remained elusive. Here we show that under nonstress conditions DnaK transiently associates with a wide variety of nascent and newly synthesized polypeptides, with a preference for chains larger than 30 kDa. Deletion of the nonessential gene encoding trigger factor, a ribosome-associated chaperone, results in a doubling of the fraction of nascent polypeptides interacting with DnaK. Combined deletion of the trigger factor and DnaK genes is lethal under normal growth conditions. These findings indicate important, partially overlapping functions of DnaK and trigger factor in de novo protein folding and explain why the loss of either chaperone can be tolerated by E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号