首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of human promyelocytic leukemia cells U937 with phorbol 12-myristate 13-acetate (TPA) induces them to differentiate into monocytic cells [Harris, P., & Ralph, P. (1985) J. Leukocyte Biol. 37, 407-422]. Here we investigated the effects of TPA on interleukin 1 gene expression and the possible role of protein kinase C (PKC) in this process. Addition of TPA to serum-starved U937 cells induced the expression of the interleukin 1 beta (IL-1 beta) gene. This effect was apparent as early as 2 h and peaked at 24 h in the presence of 5 X 10(-8) M TPA. Higher concentrations of TPA, which partially or totally depleted protein kinase C levels in the cells (10(-9)-2 X 10(-5) M), had an inhibitory effect on IL-1 beta mRNA expression. Cell-permeable 1,2-dioctanoyl-sn-glycerol (diC8), a diacylglycerol that activates PKC in intact cells and cell-free systems, did not mimic the effect of TPA on the IL-1 beta mRNA induction. To determine the protein kinase C isozymes present in the control and TPA- (5 X 10(-8) M) treated U937 cells, we prepared antipeptide antibodies that specifically recognize the alpha, beta, and gamma isoforms of protein kinase C in rat brain cytosol and U937 cell extracts. In "control" U937 cells, 30% of PKC alpha was particulate, and PKC beta was cytosolic, while there was no detectable PKC gamma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We analysed the signaling pathways involved in myogenic differentiation of primary cultures of rat satellite cells using substances targeting the protein kinase C (PKC) and the cAMP protein kinase (PKA) pathways. We have previously shown that iso-H7, which putatively inhibits both PKC and PKA, strongly stimulates satellite cell differentiation, as well as the PKA inhibitor HA 1004. In the study reported here, the effects of iso-H7 on satellite cell differentation were compared to those observed in the presence of agents which reduce PKC activity. It was shown that treatments with the highly specific PKC inhibitor GF109203X or with 12-O-tetradecanoylphorbol 13-acetate (TPA) which induced a partial PKC downregulation, did not significantly alter myogenic differentiation. Northern blot analyses showed that iso-H7 activated the expression of myogenin but not that of MyoD mRNA. Concurrently, iso-H7 increased myosin light-chain mRNA expression. In contrast, TPA had no effect on these syntheses. Taken together, these results showed that iso-H7 did not act intracellularly as a PKC inhibitor but rather as a PKA inhibitor as previously suggested. Our results are compatible with the hypothesis that a reduction in PKA activity controls satellite cell myogenesis through an increased myogenin mRNA expression.Abbreviations PKC protein kinase C - PKA cAMP-dependent protein kinase - CK creatine kinase - iso-H7 1-(5-isoquinolinesulfonyl)-3-methylpiperazine - H7 1-(5-isoquinolinesulfonyl)-2-methylpiperazine - HA 1004 N-(3-hydroxyethyl)-1-piperazine ethanesulfonate - TPA 12-O-tetradecanoyl phorbol 13-acetate - MLC myosin light chain - GAPDH glyceraldehyde 3-phosphate deshydrogenase  相似文献   

3.
A detergent extract isolated from the enriched fraction of integral membrane proteins of Jurkat cells showed an enhanced tyrosine phosphate level when phosphorylated in the presence of phorbol 12-myristate 13-acetate (TPA) and phorbol 12,13-dibutyrate (PDBu). The enhanced tyrosine phosphorylation was observed when the reaction time exceeded 6 min; at shorter incubation times, however, TPA inhibited tyrosine phosphorylation. When the reaction proceeded for a constant time period longer than 6 min and phorbol esters were added at different times after the start of the reaction, two phases of an enhanced tyrosine phosphorylation of a 50 kDa protein were observed. An increased phosphorylation of the 50 kDa protein was correlated with an enhanced phosphorylation of poly(Glu4,Tyr1). The two phases of enhanced phosphorylation differed in their TPA and PDBu requirement and in the proteins that were tyrosine phosphorylated. Studies with protein kinase C (PKC) inhibitors showed a negatively correlated effect on the enhanced tyrosine phosphorylation in phase I; tyrosine phosphorylation was further augmented. In phase II the regulation of tyrosine phosphorylation correlated with the efficiency of the PKC inhibitors on the alpha-isoform of PKC which was found in the cell extract. Separation of the proteins present in the investigated cell extract by gel filtration revealed a co-migration of the alpha-PKC and the 50 kDa protein. The metabolic labeling of intact Jurkat cells with 32Pi indicated that phorbol esters are also able to induce tyrosine phosphorylation of the 50 kDa protein underin vivo conditions. These data suggest an activation of two different tyrosine phosphorylation pathways by phorbol esters involving tyrosine phosphorylation/autophosphorylation of a 50 kDa kinase, as confirmed by 5'-p-fluorosulfonylbenzoyladenosine (FSBA) labeling, that are accurately regulated by alpha-PKC.  相似文献   

4.
We have shown previously (Villalonga, P., López- Alcalá, C., Bosch, M., Chiloeches, A., Rocamora, N., Gil, J., Marais, R., Marshall, C. J., Bachs, O., and Agell, N. (2001) Mol. Cell. Biol. 21, 7345-7354) that calmodulin negatively regulates Ras activation in fibroblasts. Hence, anti-calmodulin drugs (such as W13, trifluoroperazine, or W7) are able to induce Ras/ERK pathway activation under low levels of growth factors. We show here that cell treatment with protein kinase C (PKC) inhibitors abolishes W13-induced activation of Ras, Raf-1, and ERK. Consequently, PKC activity is essential for achieving the synergism between calmodulin inhibition and growth factors to activate Ras. Furthermore, whereas the activation of PKC by 12-O-tetradecanoylphorbol-13-acetate (TPA) does not induce Ras activation in 3T3 cells, activation is observed if calmodulin is simultaneously inhibited. This indicates that calmodulin is preventing Ras activation by PKC. Treatment of cells with epidermal growth factor receptor or platelet-derived growth factor receptor tyrosine kinase inhibitors does not abrogate the activation of Ras by calmodulin inhibition. This implies that epidermal growth factor receptor and platelet-derived growth factor receptor tyrosine kinase activities are dispensable for the activation of Ras by TPA plus W13, and, therefore, Ras activation is not a consequence of the transactivation of those receptors by the combination of the anti-calmodulin drug plus TPA. Furthermore, K-Ras, the isoform previously shown to bind to calmodulin, is the only one activated by TPA when calmodulin is inhibited. These data suggest that direct interaction between K-Ras and calmodulin may account for the inability of PKC to activate Ras in 3T3 fibroblasts. In vitro experiments showed that the phosphorylation of K-Ras by PKC was inhibited by calmodulin, suggesting that calmodulin-dependent modulation of K-Ras phosphorylation by PKC could be the mechanism underlying K-Ras activation in fibroblasts treated with TPA plus W13.  相似文献   

5.
Downregulation of protein kinase C delta (PKC delta) by treatment with the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) transforms cells that overexpress the non-receptor class tyrosine kinase c-Src (Z. Lu et al., Mol. Cell. Biol. 17:3418-3428, 1997). We extended these studies to cells overexpressing a receptor class tyrosine kinase, the epidermal growth factor (EGF) receptor (EGFR cells); like c-Src, the EGF receptor is overexpressed in several human tumors. In contrast with expectations, downregulation of PKC isoforms with TPA did not transform the EGFR cells; however, treatment with EGF did transform these cells. Since TPA downregulates all phorbol ester-responsive PKC isoforms, we examined the effects of PKC delta- and PKC alpha-specific inhibitors and the expression of dominant negative mutants for both PKC delta and alpha. Consistent with a tumor-suppressing function for PKC delta, the PKC delta-specific inhibitor rottlerin and a dominant negative PKC delta mutant transformed the EGFR cells in the absence of EGF. In contrast, the PKC alpha-specific inhibitor Go6976 and expression of a dominant negative PKC alpha mutant blocked the transformed phenotype induced by both EGF and PKC delta inhibition. Interestingly, both rottlerin and EGF induced substantial increases in phospholipase D (PLD) activity, which is commonly elevated in response to mitogenic stimuli. The elevation of PLD activity in response to inhibiting PKC delta, like transformation, was dependent upon PKC alpha and restricted to the EGFR cells. These data demonstrate that PKC isoforms alpha and delta have antagonistic effects on both transformation and PLD activity and further support a tumor suppressor role for PKC delta that may be mediated by suppression of tyrosine kinase-dependent increases in PLD activity.  相似文献   

6.
Previously we have shown that protein kinase C (PKC)-mediated reorganization of the actin cytoskeleton in smooth muscle cells is transmitted by the non-receptor tyrosine kinase, Src. Several authors have described how 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulation of cells results in an increase of Src activity, but the mechanism of the PKC-mediated Src activation is unknown. Using PKC isozymes purified from Spodoptera frugiperda insect cells, we show here that PKC is not able to activate Src directly. Our data reveal that the PKC-dependent Src activation occurs via the activation of the protein tyrosine phosphatase (PTP) PTP alpha. PTP alpha becomes activated in vivo after TPA stimulation. Further, we show that PKC delta phosphorylates and activates only PTP alpha in vitro but not any other of the TPA-responsive PKC isozymes that are expressed in A7r5 rat aortic smooth muscle cells. To further substantiate our data, we show that cells lacking PKC delta have a markedly reduced PTP alpha and Src activity after 12-O-tetradecanoylphorbol-13-acetate stimulation. These data support a model in which the main mechanism of 12-O-tetradecanoylphorbol-13-acetate-induced Src activation is the direct phosphorylation and activation of PTP alpha by PKC delta, which in turn dephosphorylates and activates Src.  相似文献   

7.
X Li  J W Lee  L M Graves    H S Earp 《The EMBO journal》1998,17(9):2574-2583
In GN4 rat liver epithelial cells, angiotensin II (Ang II) produces intracellular calcium and protein kinase C (PKC) signals and stimulates ERK and JNK activity. JNK activation appears to be mediated by a calcium-dependent tyrosine kinase (CADTK). To define the ERK pathway, we established GN4 cells expressing an inhibitory Ras(N17). Induction of Ras(N17) blocked EGF- but not Ang II- or phorbol ester (TPA)-dependent ERK activation. In control cells, Ang II and TPA produced minimal increases in Ras-GTP level and Raf kinase activity. PKC depletion by chronic TPA exposure abolished TPA-dependent ERK activation but failed to diminish the effect of Ang II. In PKC-depleted cells, Ang II increased Ras-GTP level and activated Raf and ERK in a Ras-dependent manner. In PKC depleted cells, Ang II stimulated Shc and Cbl tyrosine phosphorylation, suggesting that without PKC, Ang II activates another tyrosine kinase. PKC-depletion did not alter Ang II-dependent tyrosine phosphorylation or activity of p125(FAK), CADTK, Fyn or Src, but PKC depletion or incubation with GF109203X resulted in Ang II-dependent EGF receptor tyrosine phosphorylation. In PKC-depleted cells, EGF receptor-specific tyrosine kinase inhibitors blocked Ang II-dependent EGF receptor and Cbl tyrosine phosphorylation, and ERK activation. In summary, Ang II can activate ERK via two pathways; the latent EGF receptor, Ras-dependent pathway is equipotent to the Ras-independent pathway, but is masked by PKC action. The prominence of this G-protein coupled receptor to EGF receptor pathway may vary between cell types depending upon modifiers such as PKC.  相似文献   

8.
Skin keratinocytes are subject to frequent chemical and physical injury and have developed elaborate cell survival mechanisms to compensate. Among these, the Akt/protein kinase B (PKB) pathway protects keratinocytes from the toxic effects of ultraviolet light (UV). In contrast, the protein kinase C (PKC) family is involved in several keratinocyte death pathways. During an examination of potential interactions among these two pathways, we found that the insulin-like growth factor (IGF-1) activates both the PKC and the Akt signaling pathways in cultured primary mouse keratinocytes as indicated by increased phospho-PKC and phospho-Ser-473-Akt. IGF-1 also selectively induced translocation of PKCdelta and PKCepsilon from soluble to particulate fractions in mouse keratinocytes. Furthermore, the PKC-specific inhibitor, GF109203X, increased IGF-1-induced phospho-Ser-473-Akt and Akt kinase activity and enhanced IGF-1 protection from UVC-induced apoptosis. Selective activation of PKC by 12-O-tetradecanoylphorbol-13-acetate (TPA) reduced phospho-Ser-473-Akt, suggesting that activation of PKC inhibits Akt activity. TPA also attenuated IGF-1 and epidermal growth factor-induced phospho-Ser-473-Akt, reduced Akt kinase activity, and blocked IGF-1 protection from UVC-induced apoptosis. The inhibition of Akt activity by TPA was reduced by inhibitors of protein phosphatase 2A, and TPA stimulated the association of phosphatase 2A with Akt. Individual PKC isoforms were overexpressed in cultured keratinocytes by transduction with adenoviral vectors or inhibited with PKC-selective inhibitors. These studies indicated that PKCdelta and PKCepsilon were selectively potent at causing dephosphorylation of Akt and modifying cell survival, whereas PKCalpha enhanced phosphorylation of Akt on Ser-473. Our results suggested that activation of PKCdelta and PKCepsilon provide a negative regulation for Akt phosphorylation and kinase activity in mouse keratinocytes and serve as modulators of cell survival pathways in response to external stimuli.  相似文献   

9.
10.
The signaling pathway involved in tumor necrosis factor-alpha (TNF-alpha)-induced intercellular adhesion molecule-1 (ICAM-1) expression was further studied in human A549 epithelial cells. TNF-alpha- or 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ICAM-1 promoter activity was inhibited by a protein kinase C (PKC) inhibitor (staurosporine), tyrosine kinase inhibitors (genistein and herbimycin A), or an Src-specific tyrosine kinase inhibitor (PP2). TNF-alpha- or TPA-induced IkappaBalpha kinase (IKK) activation was also blocked by these inhibitors, which slightly reversed TNF-alpha-induced but completely reversed TPA-induced IkappaBalpha degradation. c-Src and Lyn, two members of the Src kinase family, were abundantly expressed in A549 cells, and their activation by TNF-alpha or TPA was inhibited by the same inhibitors. Furthermore, the dominant-negative c-Src (KM) mutant inhibited induction of ICAM-1 promoter activity by TNF-alpha or TPA. Overexpression of the constitutively active PKC or wild-type c-Src plasmids induced ICAM-1 promoter activity, this effect being inhibited by the dominant-negative c-Src (KM) or IKKbeta (KM) mutant but not by the nuclear factor-kappaB-inducing kinase (NIK) (KA) mutant. The c-Src (KM) mutant failed to block induction of ICAM-1 promoter activity caused by overexpression of wild-type NIK. In co-immunoprecipitation and immunoblot experiments, IKK was found to be associated with c-Src and to be phosphorylated on tyrosine residues after TNF-alpha or TPA treatment. Two tyrosine residues, Tyr188 and Tyr199, near the activation loop of IKKbeta, were identified as being important for NF-kappaB activation. Substitution of these residues with phenylalanines abolished ICAM-1 promoter activity and c-Src-dependent phosphorylation of IKKbeta induced by TNF-alpha or TPA. These data suggest that, in addition to activating NIK, TNF-alpha also activates PKC-dependent c-Src. These two pathways converge at IKKbeta and go on to activate NF-kappaB, via serine phosphorylation and degradation of IkappaB-alpha, and, finally, to initiate ICAM-1 expression.  相似文献   

11.
It has recently been shown that the activation of protein kinase C (PKC) induces protein tyrosine phosphorylation in osteoblast-like MC3T3-E1 cells. We previously reported that the activation of PKC stimulates phosphatidylcholine-hydrolyzing phospholipase D in these cells. In this study, we examined whether protein tyrosine kinase is involved in the PKC-induced activation of phospholipase D in MC3T3-E1 cells. Genistein, an inhibitor of protein tyrosine kinases, which by itself had little effect on choline formation, significantly suppressed the formation of choline induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of PKC, in a dose-dependent manner. Tyrphostin, an inhibitor of protein tyrosine kinases chemically distinct from genistein, also dose-dependently suppressed the TPA-induced formation of choline. Sodium orthovandate, an inhibitor of protein tyrosine phosphatases, significantly enhanced the TPA-induced formation of choline in a dose-dependent manner. These results strongly suggest that protein tyrosine kinase regulates phospholipase D activity at a point downstream from PKC in osteoblast-like cells.  相似文献   

12.
In 3T3-L1 and human preadipocytes, insulin results in the isolated rise in phosphatidylinositol (PI)-3,4,5-P3, whereas PDGF produces PI(3,4)P2 in addition to PI(3,4,5)P3. SH2 domain-containing inositol 5-phosphatase 2 (SHIP2) converts PI(3,4,5)P3 into PI(3,4)P2. PDGF, but not insulin, stimulates SHIP2 tyrosine phosphorylation and its association with Shc in human and 3T3-L1 preadipocytes. We now demonstrate that SHIP2 tyrosine phosphorylation and association with Shc in PDGF-treated 3T3-L1 preadipocytes was reduced by bisindolylmaleimide I (BisI), an inhibitor of conventional/novel protein kinase C (PKC). However, the production of PI(3,4)P2 and PI(3,4,5)P3 by PDGF was unaffected by BisI. Activation of PKC by 12-O-tetradecanoylphorbol-13-acetate (TPA) was not sufficient to induce SHIP2 tyrosine phosphorylation. Furthermore, we identified threonine 958 (T958) as a novel PDGF-responsive SHIP2 phosphorylation site. Mutation of T958 to alanine reduced PDGF-stimulated SHIP2 tyrosine phosphorylation and association with Shc, but did not alter its anti-proliferative effect on preadipocytes. This study demonstrates that SHIP2 tyrosine phosphorylation and Shc association can be regulated by serine/threonine signaling pathways, either indirectly (via PKC), or directly (via T958). Interestingly, the anti-proliferative effect of SHIP2 T958A, as well as another SHIP2 mutant (Y986F, Y987F) that also displays defective tyrosine phosphorylation and Shc association, does not depend on these molecular events.  相似文献   

13.
Human myeloid leukemia cells respond to 12-O-tetradecanoylphorbol-13-acetate (TPA) and other activators of protein kinase C (PKC) with induction of monocytic differentiation. The present studies demonstrated that treatment of U-937 and HL-60 myeloid leukemia cells with TPA, phorbol-12,13-dibutyrate, or bryostatin 1 was associated with the induction of stress-activated protein kinase (SAPK). In contrast, TPA-resistant TUR and HL-525 cell variants deficient in PKCβ failed to respond to activators of PKC with the induction of SAPK. A direct role for PKCβ in TPA-induced SAPK activity in TUR and HL-525 cells that stably express PKCβ was confirmed. We showed that TPA induced the association of PKCβ with MEK kinase 1 (MEKK-1), an upstream effector of the SAPK/ERK kinase 1 (SEK1)→SAPK cascade. The results also demonstrated that PKCβ phosphorylated and activated MEKK-1 in vitro. The functional role of MEKK-1 in TPA-induced SAPK activity was further supported by the demonstration that the expression of a dominant negative MEKK-1 mutant abrogated this response. These findings indicate that PKCβ activation is necessary for activation of the MEKK-1→SEK1→SAPK cascade in the TPA response of myeloid leukemia cells.  相似文献   

14.
In our previous study (A. Balogh et al, Cell. Signalling 5 (6), 795-802, 1993.), we have shown that epidermal growth factor (EGF) increased protein kinase C (PKC) activities in colon carcinoma cell line (HT29), possibly through the increased 1,2-diacylglycerol (1,2-DAG) production via phosphatidylcholine (PC). Here we investigate the effect of the well-known PKC activator 12-O-tetradecanoyl-2 phorbol-13-acetate (TPA), on the levels of 32P incorporation into EGF induced phosphatidylinositols (PI, PI4P, PI4, 5P2) and different phospholipids (PC, PA, PS) as well as on induced tyrosine kinase activity. TPA significantly decreased the effects of EGF and it had the biggest inhibitory effect on EGF induced PC level. These data support our contention that PC plays an important role in the activation of PKC via 1,2-DAG production in the EGF stimulated pathway.  相似文献   

15.
The signaling pathway involved in TNF-alpha-induced cyclooxygenase-2 (COX-2) expression was further studied in human NCI-H292 epithelial cells. A protein kinase C (PKC) inhibitor (staurosporine), tyrosine kinase inhibitors (genistein and herbimycin A), or a Src kinase inhibitor (PP2) attenuated TNF-alpha- or 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced COX-2 promoter activity. TNF-alpha- or TPA-induced I-kappaB kinase (IKK) activation was also blocked by these inhibitors, which reversed I-kappaBalpha degradation. Activation of c-Src and Lyn kinases, two Src family members, was inhibited by the PKC, tyrosine kinase, or Src kinase inhibitors. The dominant-negative c-Src (KM) mutant inhibited induction of COX-2 promoter activity by TNF-alpha or TPA. Overexpression of the constitutively active PKCalpha (PKCalpha A/E) or wild-type c-Src plasmids induced COX-2 promoter activity, and these effects were inhibited by the dominant-negative c-Src (KM), NF-kappaB-inducing kinase (NIK) (KA), or IKKbeta (KM) mutant. The dominant-negative PKCalpha (K/R) or c-Src (KM) mutant failed to block induction of COX-2 promoter activity caused by wild-type NIK overexpression. In coimmunoprecipitation experiments, IKKalpha/beta was found to be associated with c-Src and to be phosphorylated on its tyrosine residues after TNF-alpha or TPA treatment. Two tyrosine residues, Tyr(188) and Tyr(199), near the activation loop of IKKbeta, were identified to be crucial for NF-kappaB activation. Substitution of these residues with phenylalanines attenuated COX-2 promoter activity and c-Src-dependent phosphorylation of IKKbeta induced by TNF-alpha or TPA. These data suggest that, in addition to activating NIK, TNF-alpha also activates PKC-dependent c-Src. These two pathways cross-link between c-Src and NIK and converge at IKKalpha/beta, and go on to activate NF-kappaB, via serine phosphorylation and degradation of IkappaB-alpha, and, finally, to initiate COX-2 expression.  相似文献   

16.
The muscarinic agonist carbachol stimulated phospholipase D (PLD) in rat submandibular gland (RSMG) ductal cells in a time and concentration-dependent manner. This effect was inhibited by chelation of extracellular calcium with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). PLD could also be activated by epinephrine and AlF(4)(-), two polyphosphoinositide-specific phospholipase C (PPI-PLC) activators, and by the phorbol ester o-tetradecanoylphorbol 13-acetate (TPA) which activates protein kinase C (PKC). Ionomycin and thapsigargin only slightly increased PLD activity. Ortho-vanadate, a tyrosine phosphatase inhibitor, also stimulated PLD activity. Both carbachol and o-vanadate increased the formation of inositol phosphates and the tyrosine phosphorylation of at least two proteins (55-60 and 120 kDa). Calphostin C (a PKC inhibitor), U73122 (a PPI-PLC inhibitor) and genistein (a tyrosine kinase inhibitor) blocked the activation of PLD, of PLC and the phosphorylation of tyrosyl residues in response to carbachol and vanadate. Taken together, these results suggest that rat submandibular gland ductal cells express a calcium-dependent PLD activity. This enzyme is regulated by carbachol via a PLC-PKC-tyrosine kinase pathway.  相似文献   

17.
18.
Treatment of cultured human hepatoma HepG2 cells with the protein kinase C (PKC) activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), results in an increase in tyrosine phosphorylation of several proteins, including the focal adhesion kinase (FAK) and paxillin using anti-phosphotyrosine Western blotting and immunoprecipitation. However, when cells are in suspension or in the presence of cytochalasin D which disrupts the intracellular network of actin microfilaments, TPA loses its ability to stimulate tyrosine phosphorylation of FAK and paxillin but it still activates mitogen-activated protein kinase (MAPK) and induces PKC translocation from cytosol to the membrane in HepG2 cells. On the other hand, PD98059, a specific inhibitor of mitogen-activated protein kinase kinase, blocks TPA-induced MAPK activation but has no effect on TPA-induced tyrosine phosphorylation. Our findings suggest that TPA-induced tyrosine phosphorylation of FAK and paxillin in human hepatoma cells is PKC dependent and requires the integrity of the cell cytoskeleton but is uncoupled to the signal transduction pathway of PKC leading to the translocation of PKC and MAPK activation.  相似文献   

19.
When serum-starved A431 cells were treated with 200 nM phorbol ester TPA for 15 min, the cellular activity of protein kinase FA/glycogen synthase kinase-3α (kinase FA/GSK-3α) could be decreased to ~25% of control. Conversely, when treated with 1 μM TPA for 24 hr, the activity could be reversibly increased to ~200% of Control. The naturally occurring protein kinase C (PKC) inhibitor sphingosine at a concentration of 27 μM could also induce activation of kinase FA/GSK-3α to ~200% of control within 60 min. Further, when cells were chronically treated with 1 μM TPA for 24 hr and then with 27 μM sphingosine for 60 min, the activity of kinase FA/GSK-3α could only be increased to ~200% of control. Furthermore, when cells were pretreated with sphingosine and then acutely treated with TPA, the acute TPA effect on kinase FA/GSK-3α activity could be abolished by genistein or tyrosine phosphorylation, which could be blocked by genistein or tyrosine phosphatase, but could be reversed by orthovanadate. Taken together, the results demonstrate that TPA/sphingosine induce tyrosine phosphorylation and concurrent activation of kinase FA/GSK-3α in a common signalling pathway. Since TPA and sphingosine are potent PKC modulators, the results further suggest a potential role of PKC in modulating tyrosine phosphorylation/activation of kinase FA/GSK-3α. Kinetic studies on seven subtypes of PKC further demonstrate a specific involvement of PKC∈ in this tyrosine phosphorylation/activation process. This provides a new mode of signal transduction between these two important serine/threonine kinases in cells.  相似文献   

20.
Using the mouse Langendorff heart perfusion model, the signaling pathways that regulate cardiac CREB-S133 phosphorylation have been defined. In mouse hearts stimulated with isoproterenol (ISO) (10(-8) M), endothelin-1 (ET-1) (10(-8) M), and phorbol 12-myristate 13-acetate (TPA) (10(-7) M), CREB-S133 phosphorylation was attained only by TPA-treatment. Activation of protein kinase A (PKA) was achieved by ISO. ISO- and ET-1-stimulation activated Ca2+/calmodulin-dependent kinase II (CaMKII). Protein kinase C (PKC) and p90(RSK) were activated with all three stimuli. Inhibition of ERK1/2 with PD98059 (10(-5) M) completely inhibited the activation of p90(RSK), but did not block CREB-S133 phosphorylation in TPA-perfused heart, indicating that PKA, CaMKII, and p90(RSK) do not phosphorylate CREB-S133 in the murine heart. PKC activation is signal specific. Analyses of PKC isoforms suggest that CREB phosphorylation is mediated by PKC epsilon translocating into nucleus only with TPA stimulation. These results, unlike those reported in other tissues, demonstrate that cardiac CREB is not a multi-signal target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号