首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A number of genes encoding developmentally regulated mRNAs in the cellular slime mold, Dictyostelium discoideum, have been described. Many of these are regulated by cAMP. Analysis of the earliest time at which elevated levels of cAMP can induce the expression of these mRNAs reveals a more complex pattern of regulation in which genes change in their ability to be induced in response to cAMP with developmental stage. A prestalk mRNA (C1/D11) previously thought not be regulated by elevated levels of cAMP is inducible by cAMP between aggregation and loose mound stage; later in development its expression becomes independent of elevated cAMP. The early prespore genes (prespore class I) also show two modes of regulation; early in development they are induced independently of continuous elevated levels of cAMP, while later in development their expression is dependent upon elevated cAMP. The period during development when the prestalk genes are cAMP inducible precedes by 2 hr the first time at which either the early prespore class I or late prespore class II mRNAs are inducible by continuous elevated levels of cAMP. Previous analysis of these mRNAs has been carried out using Dictyostelium cells grown axenically. In this report we have studied the developmental expression of these mRNAs in cells grown on bacteria. A substantial shutoff of the class I prestalk and early prespore (class I) mRNAs not seen in axenically grown cells is observed when bacterially grown cells are plated for development. Less than 10% of the maximal level of these mRNAs remains in the cells at the time of mature spore and stalk differentiation. Additionally, in the bacterially grown cells two distinct patterns of developmental regulation are observed for mRNAs which in axenically growing cells appear to be constitutively expressed throughout growth and development.  相似文献   

3.
Indole acetic acid (IAA/auxin) profoundly affects wood formation but the molecular mechanism of auxin action in this process remains poorly understood. We have cloned cDNAs for eight members of the Aux/IAA gene family from hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) that encode potential mediators of the auxin signal transduction pathway. These genes designated as PttIAA1-PttIAA8 are auxin inducible but differ in their requirement of de novo protein synthesis for auxin induction. The auxin induction of the PttIAA genes is also developmentally controlled as evidenced by the loss of their auxin inducibility during leaf maturation. The PttIAA genes are differentially expressed in the cell types of a developmental gradient comprising the wood-forming tissues. Interestingly, the expression of the PttIAA genes is downregulated during transition of the active cambium into dormancy, a process in which meristematic cells of the cambium lose their sensitivity to auxin. Auxin-regulated developmental reprogramming of wood formation during the induction of tension wood is accompanied by changes in the expression of PttIAA genes. The distinct tissue-specific expression patterns of the auxin inducible PttIAA genes in the cambial region together with the change in expression during dormancy transition and tension wood formation suggest a role for these genes in mediating cambial responses to auxin and xylem development.  相似文献   

4.
Z H Ye  J E Varner 《Plant physiology》1993,103(3):805-813
Tracheary element formation from isolated Zinnia leaf mesophyll cells is an excellent system for the dissection of patterned secondary cell wall thickening and lignification. We used mRNAs from cells cultured for 48 h in the induction medium to isolate differentially regulated genes. Thirteen unique cDNA clones were isolated using a subtractive hybridization method. These clones can be divided into three distinct groups according to their characteristic gene expression in different media. The first group includes those genes whose expression is induced in the basal medium without 1-naphthaleneacetic acid (NAA) and benzyladenine; this indicates that the expression of these genes is regulated by chemical and physical factors other than these hormones. Three of these clones, p48h-229, p48h-114, and p48h-102, show significant homology to a pathogenesis-related protein II, a serine proteinase inhibitor, and a sunflower anther-specific proline-rich protein, respectively. The second group includes those genes whose expression is mainly NAA induced. One of these clones, p48h-10, shows high protein sequence homology to a barley aleurone-specific cDNA, B11E. The p48h-10-encoded protein shares some common characteristics of plant nonspecific lipid transfer proteins (low molecular weight, the secretion signal peptide, eight conserved cysteine residues, and a basic protein), although no significant protein sequence homology is found between p48-10 and other plant nonspecific lipid transfer proteins. The third group includes those genes whose expression is induced primarily in the induction medium; this indicates that the expression of these genes is closely associated with the process of tracheary element formation. Two of these clones, p48h-107 and p48h-17, show high homology to adenylate kinase and papaya proteinase I, respectively. The possible roles of these differentiation-specific genes during tracheary element formation are discussed.  相似文献   

5.
Gro beta and IL-8 are two members of the small induced secreted (SIS) cytokine family (C-X-C subgroup) with proinflammatory activities on neutrophils. In order to assess whether or not the interaction with their receptors results in similar biological actions, we compared the two cytokines in five different bioassays. Gro beta showed similar biological activities as IL-8 in tests of chemotaxis, induction of the respiratory burst, and induction of interleukin 6 (IL-6) production. However, for two other biological activities: augmentation of the expression of CD11b on the cell surface and rapid elevation of the intracellular calcium concentration, maximal effects required 100 times more gro beta than IL-8. Taken together, these results suggest that the stimulation of the IL-8 or gro beta receptor evokes three similar responses, but that only the activation of the IL-8 receptor and not that of gro beta results in elevated CD11b expression and calcium mobilization in human neutrophils.  相似文献   

6.
7.
8.
In plants small heat shock proteins (sHsp) are abundantly expressed upon heat stress in vegetative tissue, however, sHsp expression is also developmentally induced in pollen. The developmental induction of sHsp has been related to the potential for stress-induced microspore embryogenesis. We investigated the polymorphism among sHsp and their expression during pollen development and after heat stress in tobacco. Real-time RT-PCR was used for quantification of mRNA of two known and nine newly isolated cDNAs representing cytosolic sHsp. At normal temperature most of these genes are not transcribed in vegetative tissues, however, all genes were expressed during pollen development. Low levels of mRNAs were found for sHsp-1A and -1B in early-unicellular stage, increasing four to sevenfold in mature pollen. Nine other genes are up-regulated in unicellular and down-regulated in bicellular pollen; three these genes show stage-specific expression. Western analysis revealed that cytosolic class I and II sHsp are developmentally expressed during all stages of pollen development. Different subsets of cytosolic sHsp genes are expressed in a stage-specific fashion suggesting that certain sHsp genes may play specific roles in early, others during later stages of pollen development. Heat stress results in a relatively weak and incomplete response in pollen: (i) the heat-induced levels of mRNA (excepting sHsp-2B, −3Cand -6) are much lower than in leaves, (ii) several sHsp are not detected after heat stress in pollen, although, they are heat-inducibly expressed in leaves. Application of heat stress, cold, and starvation, which induce microspore embryogenesis, modify mRNA levels and the patterns of 2-D-separated sHsp, but only heat stress enhances the expression of sHsp in microspores. There is no correlation of the expression of specific sHsp with the potential for microspore embryogenesis.Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

9.
Bailey-Shrode L  Ebbole DJ 《Genetics》2004,166(4):1741-1749
The fl (fluffy) gene of Neurospora crassa encodes a binuclear zinc cluster protein that regulates the production of asexual spores called macroconidia. Two other genes, acon-2 and acon-3, play major roles in controlling development. fl is induced specifically in differentiating tissue during conidiation and acon-2 plays a role in this induction. We examined the function of fl by manipulating its level of expression in wild-type and developmental mutant strains. Increasing expression of fl from a heterologous promoter in a wild-type genetic background is sufficient to induce conidiophore development. Elevated expression of fl leads to induction of development of the acon-2 mutant in nitrogen-starved cultures, but does not bypass the conidiation defect of the acon-3 mutant. These findings indicate that fl acts downstream of acon-2 and upstream of acon-3 in regulating gene expression during development. The eas, con-6, and con-10 genes are induced at different times during development. Morphological changes induced by artificially elevated fl expression in the absence of environmental cues were correlated with increased expression of eas, but not con-6 or con-10. Thus, although inappropriate expression of fl in vegetative hyphae is sufficient to induce conidial morphogenesis, complete reconstitution of development leading to the formation of mature conidia may require environmental signals to regulate fl activity and/or appropriate induction of fl expression in the developing conidiophore.  相似文献   

10.
Wu XQ  Li XG  Zhang XS 《Plant cell reports》2008,27(7):1169-1176
The petal is an important floral organ of higher plants. To study the mechanism of petal development, the in vitro regeneration system of petals was established in Petunia. High-frequency induction of petals occurred directly from explants on the media containing the combination of N6-benzyladenine (6-BA) and indole-3-acetic acid (IAA). Expression analysis of genes involved in flower development indicated that these genes were classified into three types. ABERRANT LEAF AND FLOWER (ALF) gene was induced during petal regeneration. Whereas, B-class and E-class genes, and genes involved in cell division were constitutively upregulated. In contrast, C-class and D-class genes were not expressed in explants and regenerated tissues. Further, in situ hybridization analysis showed that both ALF and GREEN PETAL (GP) expression were spatially regulated. The results suggest that differential regulation of gene expression occurs in the presence of hormones during petal regeneration, and hormone-regulated gene expression might be required for petal regeneration. This study provides the preliminary information to understand the mechanism of petal regeneration.  相似文献   

11.
Phospholipase D is one of the crucial enzymes involved in lipid mediated signaling, triggered during various developmental and physiological processes. Different members of PLD gene family have been known to be induced under different abiotic stresses and during developmental processes in various plant species. In this report, we are presenting a detailed microarray based expression analysis and expression profiles of entire set of PLD genes in rice genome, under three abiotic stresses (salt, cold and drought) and different developmental stages (3-vegetative stages and 11-reproductive stages). Seven and nine PLD genes were identified, which were expressed differentially under abiotic stresses and during reproductive developmental stages, respectively. PLD genes, which were expressed significantly under abiotic stresses exhibited an overlapping expression pattern and were also differentially expressed during developmental stages. Moreover, expression pattern for a set of stress induced genes was validated by real time PCR and it supported the microarray expression data. These findings emphasize the role of PLDs in abiotic stress signaling and development in rice. In addition, expression profiling for duplicated PLD genes revealed a functional divergence between the duplicated genes and signify the role of gene duplication in the evolution of this gene family in rice. This expressional study will provide an important platform in future for the functional characterization of PLDs in crop plants.  相似文献   

12.
13.
The individual contributions of the three vertebrate GATA factors to endoderm formation have been unclear. Here we detail the early expression of GATA4, 5 and 6 in presumptive endoderm in Xenopus embryos and their induction of endodermal markers in presumptive ectoderm. Induction of HNF3beta by all three GATA factors was abolished when protein synthesis was inhibited, showing that these inductions are indirect. In contrast, whereas induction of Sox17alpha and HNF1beta by GATA4 and 5 was substantially reduced when protein synthesis was inhibited, induction by GATA6 was minimally affected, suggesting that GATA6 is a direct activator of these early endodermal genes. GATA4 induced GATA6 expression in the same assay and antisense morpholino oligonucleotides (MOs), designed to knock down translation of GATA6, blocked induction of Sox17alpha and HNF1beta by GATA4, suggesting that GATA4 induces these genes via GATA6 in this assay. All three GATA factors were induced by activin, although GATA4 and 6 required lower concentrations. GATA MOs inhibited Sox17alpha and HNF1beta induction by activin at low and high concentrations in the order: GATA6>GATA4>GATA5. Together with the timing of their expression and the effects of GATA MOs in vivo, these observations identify GATA6 as the predominant GATA factor in the maintenance of endodermal gene expression by TGFbeta signaling in gastrulating embryos. In addition, examination of gene expression and morphology in later embryos, revealed GATA5 and 6 as the most critical for the development of the gut and the liver.  相似文献   

14.
G S Stein  J B Lian  T A Owen 《FASEB journal》1990,4(13):3111-3123
The relationship of cell proliferation to the temporal expression of genes characterizing a developmental sequence associated with bone cell differentiation can be examined in primary diploid cultures of fetal calvarial-derived osteoblasts by the combination of molecular, biochemical, histochemical, and ultrastructural approaches. Modifications in gene expression define a developmental sequence that has 1) three principal periods: proliferation, extracellular matrix maturation, and mineralization; and 2) two restriction points to which the cells can progress but cannot pass without further signals. The first restriction point is when proliferation is down-regulated and gene expression associated with extracellular matrix maturation is induced, and the second when mineralization occurs. Initially, actively proliferating cells, expressing cell cycle and cell growth regulated genes, produce a fibronectin/type I collagen extracellular matrix. A reciprocal and functionally coupled relationship between the decline in proliferative activity and the subsequent induction of genes associated with matrix maturation and mineralization is supported by 1) a temporal sequence of events in which an enhanced expression of alkaline phosphatase occurs immediately after the proliferative period, and later an increased expression of osteocalcin and osteopontin at the onset of mineralization; 2) increased expression of a specific subset of osteoblast phenotype markers, alkaline phosphatase and osteopontin, when proliferation is inhibited; and 3) enhanced levels of expression of the osteoblast markers when collagen deposition is promoted, suggesting that the extracellular matrix contributes to both the shutdown of proliferation and development of the osteoblast phenotype. The loss of stringent growth control in transformed osteoblasts and in osteosarcoma cells is accompanied by a deregulation of the tightly coupled relationship between proliferation and progressive expression of genes associated with bone cell differentiation.  相似文献   

15.
WNTs are secreted signaling molecules which control cell differentiation and proliferation. They are known to play essential roles in various developmental processes. Wnt genes have been identified in a variety of animals, and it has been shown that their amino acid sequences are highly conserved throughout evolution. To investigate the role of wnt genes during fish development from the evolutionary viewpoint, six medaka wnt genes (wnt4, wnt5a, wnt6, wnt7b, wnt8b and wnt8-like) were isolated and their embryonic expression was examined. These wnt genes were expressed in various tissues during embryonic development, and most of their expression patterns were conserved or comparable to those of other vertebrates. Thus, these wnt genes may be useful as molecular markers to investigate development and organogenesis using the medaka. Focus was on wnt5a, which was expressed in the pectoral fin buds, because its expression pattern was particularly comparable to that in tetrapod limbs. Its detailed expression pattern was further examined during pectoral fin bud development. The conservation and diversification of Wnt5a expression through the evolutionary transition from fish fins to tetrapod limbs is discussed.  相似文献   

16.
17.
Experimental evidence suggests that apicomplexan parasites possess bipartite promoters with basal and regulated cis -elements similar to other eukaryotes. Using a dual luciferase model adapted for recombinational cloning and use in Toxoplasma gondii , we show that genomic regions flanking 16 parasite genes, which encompass examples of constitutive and tachyzoite- and bradyzoite-specific genes, are able to reproduce the appropriate developmental stage expression in a transient luciferase assay. Mapping of cis -acting elements in several bradyzoite promoters led to the identification of short sequence spans that are involved in control of bradyzoite gene expression in multiple strains and under different bradyzoite induction conditions. Promoters that regulate the heat shock protein BAG1 and a novel bradyzoite-specific NTPase during bradyzoite development were fine mapped to a 6–8 bp resolution and these minimal cis -elements were capable of converting a constitutive promoter to one that is induced by bradyzoite conditions. Gel-shift experiments show that mapped cis -elements are bound by parasite protein factors with the appropriate functional sequence specificity. These studies are the first to identify the minimal sequence elements that are required and sufficient for bradyzoite gene expression and to show that bradyzoite promoters are maintained in a 'poised' chromatin state throughout the intermediate host life cycle in low passage strains. Together, these data demonstrate that conventional eukaryotic promoter mechanisms work with epigenetic processes to regulate developmental gene expression during tissue cyst formation.  相似文献   

18.
M C Mehdy  D Ratner  R A Firtel 《Cell》1983,32(3):763-771
We have identified genes that are expressed preferentially in either prestalk or prespore cells in Dictyostelium. The prestalk mRNAs are detectable at 7.5 hr prior to the completion of cell aggregation, while the prespore mRNAs are not detectable until approximately 15 hr of development. Exogenous cAMP in the absence of sustained cell contact is sufficient to induce prestalk-specific gene expression, while multicellularity is required for the induction of prespore-specific genes. A gene expressed equally in both cell types, which has the same developmental kinetics as the prestalk genes, is induced in shaking culture in the absence of either cAMP or stable cell associations. Dissociation of aggregates results in the rapid loss of prespore- and prestalk-specific mRNAs, and these can be induced to reaccumulate with the addition of cAMP. We conclude that there are substantial differences in the timing and requirements for tissue-specific gene expression in Dictyostelium.  相似文献   

19.
Segmentation is a developmental mechanism that subdivides a tissue into repeating functional units, which can then be further elaborated upon during development. In contrast to embryonic segmentation, Drosophila leg segmentation occurs in a tissue that is rapidly growing in size and thus segmentation must be coordinated with tissue growth. I demonstrate that segmentation of the Drosophila leg, as assayed by expression of the key regulators of segmentation, the Notch ligands and fringe, occurs progressively and I define the sequence in which the initial segmental subdivisions arise. I further demonstrate that the proximal-distal patterning genes homothorax and dachshund are positively required, while Distal-less is unexpectedly negatively required, to establish the segmental pattern of Notch ligand and fringe expression. Two Serrate enhancers that respond to regulation by dachshund are also identified. Together, these studies provide evidence that distinct combinations of the proximal-distal patterning genes independently regulate each segmental ring of Notch ligand and fringe expression and that this regulation occurs through distinct enhancers. These studies thus provide a molecular framework for understanding how segmentation during tissue growth is accomplished.  相似文献   

20.
Phenocopies are developmental defects induced by environmental treatments during differentiation. Because of their resemblance to mutant phenotypes it has been suggested that phenocopies are due to environmental effects on the expression of specific genes during development. In this paper we describe the heat shock (40.8 degrees C) induction of a multiple wing hair phenocopy in the mutant heterozygote (mwh/+). The mwh phenocopy is only induced in heterozygotes of the recessive mutant during a short sensitive period which appears to be the time of expression of the multiple wing hair gene. We suggest that this phenocopy is due to failure of mwh gene expression and that phenocopy sensitive periods may be useful in identifying expression periods for particular genes during development. Furthermore we have been able to demonstrate that a 35 degrees C pretreatment will prevent the induction of the multiple wing hair phenocopy. A similar 35 degrees C pretreatment prevents induction of several different phenocopies by heat in wild-type flies (N. S. Petersen and H. K. Mitchell (1985). In "Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. X, Biochemistry." Pergamon, New York). This indicates a common molecular mechanism for both the induction and the prevention of heat-induced phenocopies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号