首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative study of the transport of pyruvate in liver mitochondria from normal and diabetic rats has been carried out. TheK m for net pyruvate uptake in diabetic, ketotic mitochondria is practically equal to that measured in normal mitochondria, while theV max is significantly lower. The lower activity of the pyruvate translocator in diabetic mitochondria compared to normal mitochondria is also shown by swelling experiments as well as by following the rate of pyruvate-supported respiration. Pre-exposure of mitochondria from normal rats to the ketone body acetoacetate and to 2-oxobutyrate results in a decrease of theK m for pyruvate uptake. This effect is impaired in mitochondria from diabetic animals. The results indicate that the activity and the properties of the mitochondrial pyruvate translocator are modified in the diabetic, ketotic condition.Supported by a joint grant from Consiglio Nazionale delle Ricerche, Rome, Italy, and the Polish Academy of Sciences, Warsaw, Poland.  相似文献   

2.
Summary.  The manganese superoxide dismutase (Mn-SOD) converts superoxide anions to hydrogen peroxide plus oxygen, providing the first line of defense against oxidative stress in mitochondria. Heart mitochondria exhibited higher Mn-SOD activity than liver mitochondria. In mitochondria from both tissues Mn-SOD activity decreased after incubation at low oxygen concentration (hypoxic mitochondria). The effects of free Ca2+ ([Ca2+]f) and free Mg2+ ([Mg2+]f) on normoxic and hypoxic mitochondria from either organ were tested. In normoxic mitochondria from either tissue, both [Ca2+]f and [Mg2+]f activated the enzyme, although [Mg2+]f was less efficient as an activator and the effect was lower in heart than in liver mitochondria. When added simultaneously, high [Ca2+]f and [Mg2+]f exhibited additive effects which were more pronounced in heart mitochondria and were observed regardless of whether mitochondria had been incubated under normal or low oxygen. The data suggest that [Ca2+]f plays a role in regulating Mn-SOD in concert with the activation of aerobic metabolism. Received April 2, 2001 Accepted August 16, 2001  相似文献   

3.
Available data indicate that superoxide anion (O2•− ) is released from mitochondria, but apart from VDAC (voltage dependent anion channel), the proteins involved in its transport across the mitochondrial outer membrane still remain elusive. Using mitochondria of the yeast Saccharomyces cerevisiae mutant depleted of VDAC (Δpor1 mutant) and the isogenic wild type, we studied the role of the TOM complex (translocase of the outer membrane) in the efflux of O2•− from the mitochondria. We found that blocking the TOM complex with the fusion protein pb2-DHFR decreased O2•− release, particularly in the case of Δpor1 mitochondria. We also observed that the effect of the TOM complex blockage on O2•− release from mitochondria coincided with the levels of O2•− release as well as with levels of Tom40 expression in the mitochondria. Thus, we conclude that the TOM complex participates in O2•− release from mitochondria.  相似文献   

4.
《Plant science》1987,50(1):3-11
Soybean nodule mitochondria have been separated from cotnaminating organella on discontinuous Percoll gradients. The preparations appeared highly purified and at least 80% of the mitochondria were estimated to be derived from infected cells. Percoll-purified mitochondria showed important respiratory activity; in the case of succinate, the rate of O2 consumption was 185 nmol O2 min−1 mg−1 and the respiratory control and ADP/O ratio reached 2.72 and 1.16, respectively. These organelles also exhibited an active manganese containing superoxide dismutase (9.7 U mg−1), whose purification is reported. These results are consistent with a significant O2 consumption by host cell mitochondria in vivo and the possibility of a competition for O2 supply with the bacteroids is discussed.  相似文献   

5.
The mitochondria from livers of normal and vitamin B12-deprived animals were compared. The rate of oxygen uptake (states 3 and 4) of mitochondria from vitamin B12-deprived livers was higher than that of normal mitochondria while the respiratory control index of B12-deprived mitochondria was lower than normal. Most Krebs cycle enzyme activities were increased in the hepatic mitochondria from B12-deprived animals. Two-dimensional gel electrophoresis of mitochondrial matrix proteins also indicated that an increase in Krebs cycle enzyme quantities occurred but the increase was not general for all mitochondrial proteins.  相似文献   

6.
Ca2+ transport and respiratory characteristics of two preparations of cardiac mitochondria (Palmer, J.W., Tandler, B. and Hoppel, C.L. (1977) J. Biol. Chem. 252, 8731–8739) isolated using polytron homogenization (subsarcolemmal mitochondria) and limited Nagarse exposure (intermyofibrillar mitochondria) are described.The Nagarse procedure yields mitochondria with 50% higher rates of oxidative phosphorylation than the polytron-prepared mitochondria in both rat and dog. Rat hear intermyofibrillar mitochondria contain 50% more cytochrome aa3 than the polytron preparation, whereas in the dog, cytochrome aa3 content is not significantly different. Cytochrome oxidase activities and cytochrome c, c1 and b contents were comparable in both populations of rat and dog heart mitochondria.The V of succinate-supported Ca2+ accumulation for Nagarse-prepared mitochondria from rat heart was 1.8-fold higher than the polytron-prepared mitochondria. In dog heart, the Nagarse preparation showed a 3.0-fold higher V for Ca2+ uptake compared to the polytron preparation. A lower apparent affinity for Ca2+ was demonstrated in the intermyofibrillar mitochondria for both species (Km is 2–2.5-fold higher). The Hill coefficient was 1 both mitochondrial types. Subsarcolemmal mitochondria from both species were treated with Nagarse to determine the role of this treatment on the observed differences. Nagarse did not alter any kinetic parameter of Ca2+ uptake.The properties of these mitochondria with reference to their presumed intracellular location may pertain to the role of mitochondria as an intracellular Ca2+ buffering mechanism in contractile tissue.  相似文献   

7.
Kinetics of inhibition of cyanide-insensitive O2 uptake by n-propyl gallate (PG) and salicylhydroxamic acid (SHAM) were determined in fresh slices from ethylene-treated tubers of Solanum tuberosum `Norchip' and with mitochondria and lipoxygenase (EC 1.13.11.12) isolated from these tubers. PG and SHAM appeared to be inhibiting at identical sites in mitochondria but at disparate sites in slices. The apparent KI for SHAM was similar in mitochondria and slices. However, the apparent KI for PG in mitochondria was about 40-fold lower than the KI for PG inhibition of lipoxygenase activity. The amount of lipoxygenase associated with mitochondria increased when tubers were treated with ethylene. PG, but not SHAM, inhibited aging-induced development of cyanide-insensitive respiration. The latter two phenomena are in accord with the hypothesis that lipid metabolism is required for the development of the alternative pathway.  相似文献   

8.
The respiration of potato tubers (Solanum tuberosum var. Russet Burbank) which have been kept at room temperature for 10 days is stimulated upon subsequent treatment with C2H4 (10 microliters per liter) and O2. The respiratory rise reaches a peak in 24 to 30 hours and thereafter declines. Coincident with the rise in tuber respiration is an increase in the respiratory rates of fresh slices and isolated mitochondria. Slices and mitochondria from C2H4- and O2-treated tubers also display substantial resistance to CN, and the resistant respiration is inhibited by hydroxamates.

The longer the tubers are stored after harvest, the less effective is C2H4 in causing CN resistance in slices and mitochondria from treated tubers. Addition of 10% CO2 to the C2H4-O2 mixture, however, causes extensive CN resistance to develop, even in slices and mitochondria from old tubers. The results show that C2H4, O2, and CO2 act synergistically to induce alternative path development in potatoes.

  相似文献   

9.
Among other mitochondrial functions, energy production and Ca2+ uptake are crucial for maintaining neuronal viability. Both of these functions are critically dependent on mitochondrial membrane potential (ΔΨm). Mitochondrial Ca2+ overload causing a dissipation of ΔΨm is a key component of several neuronal pathologies. However, the mechanism of Ca2+-induced depolarization in neuronal mitochondria remains unclear. Typically, ΔΨm has been evaluated as a single overall estimate from all mitochondria present in a given cell or tissue. However, recent data showed that the population of mitochondria isolated from tissues is not homogeneous, and averaged parameters from the whole population do not necessarily reflect the processes taking place in a single organelle. This review summarizes our recent studies of Ca2+-induced depolarization in individual mitochondria isolated from rat forebrain and immobilized to coverslips. Fluorescence imaging techniques and potentiometric fluorescent dyes were effectively used to study ΔΨm changes. The data have shown that Ca2+ triggers ΔΨm oscillations in brain mitochondria followed by a complete depolarization. Further investigation of this phenomenon led us to suggest that Ca2+-induced ΔΨm oscillations can represent an intermediate unstable state that may lead to irreversible mitochondrial dysfunction. Therefore, further study of this phenomenon would help to understand what causes the irreversible damage of mitochondria during cytosolic/mitochondrial Ca2+ overload. Here we discuss the effects of different modulators of the mitochondrial permeability transition pore on Ca2+-induced depolarization in brain mitochondria and in liver mitochondria, where the mechanism of Ca2+-depolarization is better understood. A comparison of these effects in brain and liver mitochondria led us to conclude that Ca2+ can induce reversible “low conductance” permeability transition in brain mitochondria, the phenomenon which requires a transient conformational change of the adenine nucleotide translocator from a specific transporter to a non-specific pore. The article is published in the original.  相似文献   

10.
《BBA》2020,1861(12):148290
We hypothesized that NO is generated in isolated cardiac mitochondria as the source for ONOO production during oxidative stress. We monitored generation of ONOO from guinea pig isolated cardiac mitochondria subjected to excess Ca2+ uptake before adding succinate and determined if ONOO production was dependent on a nitric oxide synthase (NOS) located in cardiac mitochondria (mtNOS). Mitochondria were suspended in experimental buffer at pH 7.15, and treated with CaCl2 and then the complex II substrate Na-succinate, followed by menadione, a quinone redox cycler, to generate O2•−. L-tyrosine was added to the mitochondrial suspension where it is oxidized by ONOO to form dityrosine (diTyr) in proportion to the ONOO present. We found that exposing mitochondria to excess CaCl2 before succinate resulted in an increase in diTyr and amplex red fluorescence (H2O2) signals, indicating that mitochondrial oxidant stress, induced by elevated mtCa2+ and succinate, increased mitochondrial ONOO production via NO and O2•−. Changes in mitochondrial ONOO production dependent on NOS were evidenced by using NOS inhibitors L-NAME/L-NNA, TEMPOL, a superoxide dismutase (SOD) mimetic, and PTIO, a potent global NO scavenger. L-NAME and L-NNA decreased succinate and menadione-mediated ONOO production, PTIO decreased production of ONOO, and TEMPOL decreased ONOO levels by converting more O2•− to H2O2. Electron microscopy showed immuno-gold labeled iNOS and nNOS in mitochondria isolated from cardiomyocytes and heart tissue. Western blots demonstrated iNOS and nNOS bands in total heart tissue, bands for both iNOS and nNOS in β-tubulin-free non-purified (crude) mitochondrial preparations, and a prominent iNOS band, but no nNOS band, in purified (Golgi and ER-free) mitochondria. Prior treatment of guinea pigs with lipopolysacharride (LPS) enhanced expression of iNOS in liver mitochondria but not in heart mitochondria. Our results indicate that release of ONOO into the buffer is dependent both on O2•− released from mitochondria and NO derived from a mtCa2+-inducible nNOS isoform, possibly attached to mitochondria, and a mtNOS isoform like iNOS that is non-inducible.  相似文献   

11.
The maturation of Ca2+ transport in mitochondria isolated from rat liver was examined, from 5 days before birth. The mitochondria used were isolated from liver homogenates by centrifugation at 22000g-min. Ca2+ transport by mitochondria isolated from foetal liver is energy-dependent and Ruthenium Red-sensitive. The transmembrane pH gradient in these mitochondria is higher by about 7mV and the membrane potential lower by about 20mV than in adult mitochondria. The inclusion of 2mm-Pi in the incubation medium enhances the protonmotive force by approx. 30mV. The rate of Ca2+ influx in foetal mitochondria measured in buffered KCl plus succinate is low until about 2–3h after birth, when it increases to about 60% of adult values; approx. 24h later it has reached near-adult values. Higher rates of Ca2+ influx are observed in the presence of 2mm-Pi; 3–5 days before birth the rates are about one-third of adult values and decline slightly as birth approaches. By 2–3h post partum they have reached adult values. The inclusion of 12.5μm-MgATP with the Pi stimulates further the initial rate of Ca2+ influx in foetal mitochondria. The rates observed are constant over the prenatal period examined and are 50–60% of those observed in adult mitochondria. Mitochondria isolated from foetal livers 4–5 days before birth retain the accumulated Ca2+ for about 50min in the presence of 2mm-Pi. In the period 2 days before birth to birth, this ability is largely lost, but by 2–3h after birth Ca2+ retention is similar to that of adult mitochondria. The presence of 12.5μm-MgATP progressively enhances the Ca2+ retention time as development proceeds until 2–3h after birth, when it becomes less sensitive to added MgATP. Glucagon administration to older foetuses in utero enhances both the rate of mitochondrial Ca2+ influx assayed in the presence of 2mm-Pi and the time for which mitochondria retain accumulated Ca2+ in the presence of 12.5μm-MgATP and 2mm-Pi. Its administration to neonatal animals leads to an increase in mitochondrial Ca2+ retention similar to that seen in adult mitochondria. The data provide evidence that the Ruthenium Red-sensitive Ca2+ transporter is potentially as active in foetal mitochondria 5 days before birth as it is in adult mitochondria. They also show that foetal mitochondria have an ability to retain accumulated Ca2+ reminiscent of mitochondria from tumour cells and from hormone-challenged rat liver.  相似文献   

12.
Apoptosis-inducing factor (AIF)-deficient harlequin (Hq) mice undergo neurodegeneration associated with a 40–50% reduction in complex I level and activity. We tested the hypothesis that AIF and complex I regulate reactive oxygen species (ROS) production by brain mitochondria. Isolated Hq brain mitochondria oxidizing complex I substrates displayed no difference compared to wild type (WT) in basal ROS production, H2O2 removal, or ROS production stimulated by complex I inhibitors rotenone or 1-methyl-4-phenylpyridinium. In contrast, ROS production caused by reverse electron transfer to complex I was attenuated by ~50% in Hq mitochondria oxidizing the complex II substrate succinate. Basal and rotenone-stimulated rates of H2O2 release from in situ mitochondria did not differ between Hq and WT synaptosomes metabolizing glucose, nor did the level of in vivo oxidative protein carbonyl modifications detected in synaptosomes, brain mitochondria, or homogenates. Our results suggest that AIF does not directly modulate ROS release from brain mitochondria. In addition, they demonstrate that in contrast to ROS produced by mitochondria oxidizing succinate, ROS release from in situ synaptosomal mitochondria or from isolated brain mitochondria oxidizing complex I substrates is not proportional to the amount of complex I. These findings raise the important possibility that complex I contributes less to physiological ROS production by brain mitochondria than previously suggested.  相似文献   

13.
F. J. Bergersen 《Protoplasma》1994,183(1-4):49-61
Summary A simulation model is presented for the distribution and consumption of O2 in infected cells of soybean root nodule central tissue. It differs from earlier models in closer adherence to observed structure and embodies new morphometric data about the distribution of > 12,000 mitochondria per cell and about the geometry of the gas-filled intercellular spaces near which the mitochondria are located. The model cell is a rhombic dodecahedron and O2 enters only through interfaces (totalling 26% of the cell surface) with 24 gas-filled intercellular spaces. These spaces are located at the edges of each rhombic face of the cell, forming an interconnected network over the cell suface. Next, O2 is distributed through the cytoplasm by a leghaemoglobin-facilitated diffusive process, initially between the mitochondria and amyloplasts in the outer layers of the cell and then between > 6,000 symbiosomes (each containing 6 bacteroids) towards the central nucleus. The symbiosomes and mitochondria consume O2, but impede its diffusion; all O2 entering symbiosomes is considered to be consumed there. For the calculations, the cell is considered to consist of 24 structural units, each beneath one of the intercellular spaces, and each is divided into 126 layers, 0.2 m thick, in and through which O2 is consumed and diffused. Rates of consumption of O2 and of N2 fixation in each diffusion layer were calculated from previously-established kinetics of respiration by mitochondria and bacteroids isolated from soybean nodules and from established relationships between bacteroid respiration and N2 fixation. The effects of varying the O2-supply concentration and the concentration and type of energy-yielding substrates were included in the simulations. When the model cell was supplied with 0.5 mM malate, mitochondria accounted for a minimum of 50% of the respiration of the model cell and this percentage increased with increased concentration of the O2 supply. Gradients of concentrations of free O2 dissolved in the cytoplasm were steepest near the cell surface and in this location respiration by mitochondria appeared to exert a marked protective effect for nitrogen fixation in layers deeper within the cell. Estimates of N2 fixation per nodule, calculated from the model cell, were similar to those calculated from field measurements.Abbreviations Lb leghaemoglobin - LbO2 oxyleghaemoglobin - [O2] concentration of free, dissolved O2 - e.m. electron micrograph Dedicated to the memory of Professor John G. Torrey  相似文献   

14.
Ionophore A23187 produces rapid swelling of rat liver mitochondria suspended in isotonio KNO3 if an uncoupler and EDTA are also present. It also produces swelling of mitochondria in isotonic Mg(NO3)2 in the presence of an uncoupler. Washing with serum albumin removes the ionophore from mitochondria, as indicated by lack of swelling in magnesium nitrate (+ uncoupler). However, such treatment does not abolish rapid swelling in KNO3 (+ uncoupler). This finding is interpreted in the sense that depletion of mitochondrial magnesium mobilizes K+/H+ antiport in the inner mitochondrial membrane.  相似文献   

15.
The effect of ammonia and calcium on the activity of monoamine oxidase (MAO) was studied. The enzyme activity in nonsynaptic brain mitochondria isolated from the rats treated with ammonium acetate was estimated from the release of H2O2using spectrophotometry. The effect of calcium on MAO was assayed directly after adding Ca2+to the nonsynaptic mitochondria isolated from the forebrain of control rats. Both ammonium acetate injectionin vivoand Ca2+additionin vitrostimulated the activity of MAO A but not that of MAO B in mitochondria. This is the first evidence for ammonia and Ca2+regulation of MAO A in the forebrain nonsynaptic mitochondria and for their contribution to oxidative stress in the neurons via MAO A activation.  相似文献   

16.
In C3 plants, part of the CO2 fixed during photosynthesis in chloroplasts is released from mitochondria during photorespiration by decarboxylation of glycine via glycine decarboxylase (GDC), thereby reducing photosynthetic efficiency. The apparent positioning of most mitochondria in the interior (vacuole side of chloroplasts) of mesophyll cells in C3 grasses would increase the efficiency of refixation of CO2 released from mitochondria by ribulose 1,5-bisphosphate carboxylase/?oxygenase (Rubisco) in chloroplasts. Therefore, in mesophyll cells of C4 grasses, which lack both GDC and Rubisco, the mitochondria ought not to be positioned the same way as in C3 mesophyll cells. To test this hypothesis, we investigated the intracellular position of mitochondria in mesophyll cells of 14 C4 grasses of different C4 subtypes and subfamilies (Chloridoideae, Micrairoideae, and Panicoideae) and a C3–C4 intermediate grass, Steinchisma hians, under an electron microscope. In C4 mesophyll cells, most mitochondria were positioned adjacent to the cell wall, which clearly differs from the positioning in C3 mesophyll cells. In S. hians mesophyll cells, the positioning was similar to that in C3 cells. These results suggest that the mitochondrial positioning in C4 mesophyll cells reflects the absence of both GDC and Rubisco in the mesophyll cells and the high activity of phosphoenolpyruvate carboxylase. In contrast, the relationship between the mitochondrial positioning and enzyme distribution in S. hians is complex, but the positioning may be related to the capture of respiratory CO2 by Rubisco. Our study provides new possible insight into the physiological role of mitochondrial positioning in photosynthetic cells.  相似文献   

17.
1. Purified mitochondria have been prepared from wild type Paramecium tetraurelia and from the mutant Cl1 which lacks cytochrome aa3. Both mitochondrial preparations are characterized by cyanide insensitivity. Their spectral properties and their redox potentials have been studied.2. Difference spectra (dithionite reduced minus oxidized) of mitochondria from wild type P. tetraurelia at 77 K revealed the α peaks of b-type cytochrome(s) at 553 and 557 nm, of c-type cytochrome at 549 nm and a-type cytochrome at 608 nm. Two α peaks at 549 and 545 nm could be distinguished in the isolated cytochrome c at 77 K. After cytochrome c extraction from wild type mitochondria, a new peak at 551 nm was unmasked, probably belonging to cytochrome c1. The a-type cytochrome was characterized by a split Soret band with maxima at 441 and 450 nm. The mitochondria of the mutant Cl1 in exponential phase of growth differed from the wild type mitochondria in that cytochrome aa3 was absent while twice the quantity of cytochrome b was present. In stationary phase, mitochondria of the mutant were characterized by a new absorption peak at 590 nm.3. Cytochrome aa3 was present at a concentration of 0.3 nmol/mg protein in wild type mitochondria and ubiquinone at a concentration of 8 nmol/mg protein both in mitochondria of the wild type and the mutant Cl1. Cytochrome aa3 was more susceptible to heat than cytochromes b and c,c1.4. CO difference spectra at 77 K revealed two different Co-cytochrome complexes. The first, found only in wild type mitochondria, was a typical CO-cytochrome a3 complex characterized by peaks at 596 and 435 nm and troughs at 613 and 450 nm. The second, found both in mitochondria of the wild type and the mutant, was a CO-cytochrome b complex with peaks at 567, 539 and 420 nm and a trough at 558-549 nm. Both complexes are photo-dissociable.5. Spectral evidence was obtained for interaction of cyanide with the a-type cytochrome (shift of the α peak at 77 K from 608 to 605 nm), but not with the b-type cytochrome.6. The mid-point potentials of the different cytochromes at neutral pH are as follows: cytochrome aa3 235 and 395 mV, cytochrome c,c1 233 mV, cytochromes b 120 mV.  相似文献   

18.
Short-term effects of 3,5-L-diiodothyronine (T2) administration to hypothyroid rats on FoF1-ATP synthase activity were investigated in liver mitochondria. One hour after T2 injection, state 4 and state 3 respiration rates were noticeably stimulated in mitochondria subsequently isolated. FoF1-ATP synthase activity, which was reduced in mitochondria from hypothyroid rats as compared to mitochondria from euthyroid rats, was significantly increased by T2 administration in both the ATP-synthesis and hydrolysis direction. No change in β-subunit mRNA accumulation and protein amount of the α-β subunit of FoF1-ATP synthase was found, ruling out a T2 genomic effect. In T2-treated rats, changes in the composition of mitochondrial phospholipids were observed, cardiolipin (CL) showing the greatest alteration. In mitochondria isolated from hypothyroid rats the decrease in the amount of CL was accompanied by an increase in the level of peroxidised CL. T2 administration to hypothyroid rats enhanced the level of CL and decreased the amount of peroxidised CL in subsequently isolated mitochondria, tending to restore the CL value to the euthyroid level. Minor T2-induced changes in mitochondrial fatty acid composition were detected. Overall, the enhanced FoF1-ATP synthase activity observed following injection of T2 to hypothyroid rats may be ascribed, at least in part, to an increased level of mitochondrial CL associated with decreased peroxidation of CL.  相似文献   

19.
  • 1.1. The biochemical characteristics of homogenates and mitochondria isolated from the outer and inner layers of the ventricular myocardium of carp were studied.
  • 2.2. The homogenate prepared from the inner layer exhibited higher activity of cytochrome oxidase than that from the outer layer. No difference was found in the activity of cytochrome oxidase between mitochondria from the inner and outer layers. Difference spectra of cytochromes also showed that their content in mitochondria of both layers is similar and that the higher oxidative capacity of the spongious layer is due to a higher content of mitochondria.
  • 3.3. In comparison with rat heart a higher content of cyt aa3 and a lower content of Cyt b and cyt cc1 were found in carp heart mitochondria.
  • 4.4. In comparison with rat heart, carp heart mitochondrial enzymes were more sensitive to freezing-thawing and to detergent action.
  相似文献   

20.
One group of C4, species utilize a NAD-malic enzyme to decarboxylate C4 acids. This enzyme, together with a major isoenzyme of aspartate aminotransferase and a NAD-malate dehydrogenase, is localized in the mitochondria of the bundle sheath cells and the following pathway for C4, acid decarboxylation has been proposed: aspartate → oxaloacetate → malate → CO2 + pyruvate. The present study reports that mitochondria isolated from the bundle sheath cells of one of these species, Atriplex spongiosa, are capable of decarboxylating C4, acids at rates between 5 and 8 μmol/min/mg chlorophyll. For maximum decarboxylating activities, these particles required aspartate, 2-oxoglutarate and phosphate as well as malate; in the absence of any one of these compounds, activity was reduced to 0.3–0.8 μmol/min/mg chlorophyll. Rates for C4 acid decarboxylation were much greater than the respiratory activities of these particles, including the capacity to form citrate or to oxidize malate, succinate, pyruvate or 2-oxoglutarate (0.03–0.6 μmol/min/mg chlorophyll). A comparison of mitochondria prepared from leaves of various C4, and C3, species showed that only the mitochondria from the bundle sheath cells of plants with high NAD-malic enzyme have capacities for rapid C4 acid decarboxylation. The effects of a variety of experimental conditions on C4 acid decarboxylating activities are also reported. The role of these mitochondria in C4 photosynthesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号