首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to analyse genetic relationships between functional strain Xhhh previously constructed through protoplast fusion for pharmaceutical wastewater treatment and its parents, random amplification polymorphic DNA (RAPD) and polymerase chain reaction (PCR) were used to investigate genetic similarities among the strains based on genome and functional genes analyses. A total of 739 clear and consistent bands were produced in the RAPD fingerprint analysis with 40 primers. The genetic similarity indices between Xhhh and parental strains PC (Phanerochaete chrysosporium), SC (Saccharomyces cerevisiae) and XZ (native bacterium Bacillus sp.) were 36.21%, 37.73% and 37.48%, respectively. With PCR amplification and DNA sequencing, Xhhh was found containing functional genes of mnp and lip from PC, FLO1 from SC and 16S rDNA fragments from XZ. Experimental results of genetic analyses were in accordance with Xhhh biochemical and phenotypic characteristics, and protoplast fusion technique is considered as a promising technique in environmental pollution control.  相似文献   

2.
Xhhh是由真核、原核两界生物3个亲株PC、SC、XZ的原生质体跨界融合而成的基因工程茵。本研究以Xhhh及其三亲株(PC、SC、XZ)的基因组DNA为扩增模板,筛选出的38条引物,应用随机扩增多态性DNA(R虹,D)技术扩增出739条清晰条带,平均每条引物扩增出了7条清晰可重复的条带。通过聚类分析,结果显示Xhhh与PC、SC与XZ的遗传相似指数S1分别为36.21%、37.73%和37.48%,提示Xhhh与三亲株间存在明显的亲缘关系。研究同时根据已公布的mnp、zip以及FLO1核酸序列设计了相应的功能基因引物,并从Xhhh及其亲株中扩增出了mnp、lip以及FL01功能基因片段,表明RAPD结合功能基因PCR扩增技术可以快速、经济、准确的用于跨界原生质体融合茵株的分子鉴定,以及其它融合子的鉴定。  相似文献   

3.
Protoplast fusion was carried out between a saké brewer’s yeast strain, Saccharomyces cerevisiae Kyokai 7, and a lactose utilizing yeast strain, Kluyveromyces lactis T396. A stable hybrid, PN 13, which was selected from the many resultant fusants, showed physiologically complemented traits with respect to sugar utilization, vitamin requirements and so on. Biochemical investigations also revealed that fusant PN 13 was an intermediate hybrid between the parental strains. In glucose and lactose media, moreover, the fusant grew and produced ethanol at higher rates than K. lactis T396.  相似文献   

4.
To overcome the drawbacks of protoplast fusion in industrial breeding, strain-specific molecular markers were applied to select hybrids of industrial Saccharomyces cerevisiae strains. Random Amplified Polymorphic DNA (RAPD) analysis was used to generate strain-specific RAPD markers for two industrial yeast strains, Z8 and Z9. For industrial and technical controls, two RAPD markers with non-coding regions were converted into stable Sequence Characterized Amplified Region (SCAR) markers. Hybrids of Z8 and Z9 were obtained by protoplast fusion in combination with SCAR markers and were found to increase ethanol production by 4.3–8.1%. Results suggested that protoplast fusion could be combined with RAPD-SCAR molecular markers and applied in industrial breeding instead of auxotrophic markers.  相似文献   

5.
To increase thermotolerance and ethanol tolerance in Saccharomyces cerevisiae strain YZ1, the strategies of high-energy pulse electron beam (HEPE) and three rounds of protoplast fusion were explored. The YF31 strain had the characteristics of resistant to high-temperature, high-ethanol tolerance, rapid growth and high yield. The YF31 could grow on plate cultures up to 47?°C, containing 237.5?g?L?1 of ethanol. In particular, the mutant strain YF31 generated 94.2?±?4.8?g?L?1 ethanol from 200?g glucose L?1 at 42?°C, which was 2.48 times the production of the wild strain YZ1. Results demonstrated that the variant phenotypes from the strains screening by HEPE irradiation could be used as parent stock for yeast regeneration and the protoplast fusion technology is sufficiently powerful in combining suitable characteristics in a single strain for ethanol fermentation.  相似文献   

6.
A fusant strain F14 with high biodegradation capability of phenanthrene was obtained by protoplast fusion between Sphingomonas sp. GY2B (GenBank DQ139343) and Pseudomonas sp. GP3A (GenBank EU233280). F14 was screened and identified from 39 random fusants by antibiotic tests, scanning electron microscope (SEM) and randomly amplified polymorphic DNA (RAPD). The result of SEM analysis demonstrated that the cell shape of fusant F14 different from parental strains. RAPD analysis of 5 primers generated a total of 70 bands. The genetic similarity indices between F14 and parental strains GY2B and GP3A were 27.9 and 34.6 %, respectively. F14 could rapidly degrade phenanthrene within 24 h, and the degradation efficiency was much better than GY2B and GP3A. GC–MS analysis of metabolites of phenanthrene degradation indicated F14 had a different degradation pathway from GY2B. Furthermore, the fusant strain F14 had a wider adaptation of temperatures (25–36 °C) and pH values (6.5–9.0) than GY2B. The present study indicated that fusant strain F14 could be an effective and environment-friendly bacterial strain for PAHs bioremediation.  相似文献   

7.
Due to its high content of lactose and abundant availability, cheese whey powder (CWP) has received much attention for ethanol production in fermentation processes. However, lactose‐fermenting yeast strains including Kluyveromyces marxianus can only produce alcohol at a relatively low level, while the most commonly used distiller yeast strain Saccharomyces cerevisiae cannot ferment lactose since it lacks both β‐galactosidase and the lactose permease system. To combine the unique aspects of these two yeast strains, hybrids of K. marxianus TY‐22 and S. cerevisiae AY‐5 were constructed by protoplast fusion. The fusants were screened and characterized by DNA content, β‐galactosidase activity, ethanol tolerance, and ethanol productivity. Among the genetically stable fusants, the DNA content of strain R‐1 was 6.94%, close to the sum of the DNA contents of TY‐22 (3.99%) and AY‐5 (3.51%). The results obtained by random‐amplified polymorphic DNA analysis suggested that R‐1 was a fusant between AY‐5 and TY‐22. During the fermentation process with CWP, the hybrid strain R‐1 produced 3.8% v/v ethanol in 72 h, while the parental strain TY‐22 only produced 3.1% v/v ethanol in 84 h under the same conditions.  相似文献   

8.
Zhang Y  Lin SM  Zhu YJ  Liu CJ  Dong Y  Li FF  Wu GF  Wang HY  Zhang JH 《Biotechnology letters》2006,28(17):1351-1359
Lignin impedes the digestion of corn stover when used as an animal feed. Phanerochaete chrysosporium is an efficient lignindegrader. Geotrichum candidum can be used to produce single-cell protein. In this study, protoplasts of the two fungi were prepared and fused. After screening, one of the fusants, Fusant R1, was selected for corn stover fermentation. It decreased lignin from 109 to 54 g/kg and increased protein from 48 to 67 g/kg in corn stover. Comparison with their parental strains indicated that the fusant obtained the lignin-degrading ability from P. chrysosporium and the protein-accumulating ability from G. candidium.  相似文献   

9.
The fungal strains Graphium putredinis and Trichoderma harzianum were selected as parents for fusant development. Protoplasts were isolated using the combination of lysing enzymes Novozym 234 and cellulase with 0.6 M KCl as osmotic stabilizer. The optimum conditions for release of viable protoplasts from the fungal mycelium viz. age of the mycelium, lytic enzymes, osmotic stabilizers, pH, incubation period and regeneration medium were determined. Intergeneric protoplast fusion was carried out using 50% polyethylene glycol with calcium chloride (CaCl2) and glycine buffer and the conditions for effective protoplast fusion, viz. fusogen, osmotic stabilizer, pH, incubation period and regeneration medium were optimized. At optimum conditions, the regeneration frequency of the fused protoplasts on potato dextrose agar (PDA) medium and fusion frequency were calculated. The regeneration frequency on non-selective (PDA) and selective media (PDA amended with starch) was determined for the parental and fusant strains in which, fusant showed a higher rate of regeneration. Fusant formation was confirmed by morphological markers (colony morphology and spore size and shape) and genetical markers like, mycelial protein pattern, restriction digestion pattern and random amplified polymorphic DNA (RAPD) analysis. The efficiency of these parental strains and their intergeneric fusant in the production of hydrolytic enzymes – amylases (treatment plant for sago factory effluent), cellulases (bioethanol), xylanases (bleaching agents for waste paper pulp) and proteases (additives in commercial detergents) – have probable applications in various industrial processes.  相似文献   

10.
Summary The protoplast fusion technique provides a useful method for improving industrial yeasts and agglutinant agents like polyethylene glycol (PEG) MW 4000 and Ca++ ions are widely used to stimulate the fusion process. Commercial Baker's yeast Saccharomyces cerevisiae and Saccharomyces diastaticus were selected as parental strains for somatic fusion. The Saccharomyces diastaticus carried a spontaneous petite mutation and could not metabolize starch unlike respiratory competent Saccharomyces diastaticus from which it was derived, that readily could.A medium containing soluble starch as a carbon source and 3 % agar was used as fusion products selection medium. Respiratory competent fusion products were capable of using dextrins and starch as carbon sources.  相似文献   

11.
An intergeneric osmotolerant hybrid yeast, PB2, was used together with the parental strains to study glycerol and arabitol production in batch culture. This fusion product was previously obtained by protoplast fusion between Torulaspora delbrueckii and Saccharomyces cerevisiae. Polyols and biomass production were determined in batch culture under aerobic conditions. Under the conditions tested, using PB2 hybrid and both parental strains, the best results were obtained with the hybrid. Arabitol reached a final concentration of 70 g/l and glycerol was increased to up to 50 g/l. Electronic Publication  相似文献   

12.
原生质体融合技术构建棕榈油酸高产酵母菌株   总被引:6,自引:0,他引:6  
采用原生质体融合技术进行产棕榈油酸酵母Saccharomy cescerevisiaeNo.12.926和产脂酵母RhodotorulaNo.12.908的融合研究,获得了棕榈油酸高产酵母工程菌株。实验结果表明,原生质体形成的最佳条件为:对数期酵母No.12.926和No.12.908用2%蜗牛酶于30℃分别酶解1.5和2h。在最佳条件下,酵母No.12.926和No.12.908原生质体形成率分别为94%和80%,再生率分别为75%和60%。原生质体融合由聚乙二醇诱导。将得到的融合子进行多次传代培养优选,获得了遗传性状稳定的融合菌株。融合子的生物量为亲株的两倍多,其细胞形态和菌落颜色与亲株有差别。产脂和产棕榈油酸分析表明,融合子的产脂量为菌体干重的48.53%,其中棕榈油酸占油脂总量的47.29%,为菌体干重的22.95%。  相似文献   

13.
Strain improvement was carried out to obtain higher chitinase and protein by inter-specific protoplast fusion between Trichoderma harzianum and Trichoderma viride. Fusant HF9 and parental strains of Trichoderma were compared for chitinase and protein production. 1% of glucose, sucrose and fungal cell wall (Rhizoctonia solani), were used as carbon source for cultivation of Trichoderma and fungal cell wall was the best to induce chitinase and protein. Usage of 0.5% colloidal chitin for the fungal growth under aerated conditions at pH 6.5 and 28°C led to higher chitinase and protein production. In these conditions fusant Trichoderma HF9 in comparison with parent strains had 3-, 2.5- and 1.5-fold increase of total chitinase, specific chitinase and protein, respectively. SDS-PAGE analysis revealed that it had 9 major protein bands with up-regulation compared to parent strains. Amino acid analysis showed that protein of culture filtrate of T. harzianum, T. viride and fusant Trichoderma HF9 had 8, 6 and 10 amino acids, respectively. The results obtained suggested that fusant HF9 could be an integration of T. harzianum and T. viride through protoplast fusion.  相似文献   

14.
通过PEG诱导碘乙酸灭活呼吸缺陷克鲁维酵母(Kluyveromycessp.Y034)原生质体与酿酒酵母(SaccharomycescerevisiaeA001)原生质体融合,获得45℃发酵产酒率高达8.7%的高温酵母菌株AY006。线粒体缺失和氯霉素抑制可显著降低高密度原生质体回复抑制效应。对融合子菌落形态、同工酶性质和高温发酵等方面分析,融合株表达了耐温和高产酒率双亲优良性状,证实其杂种特征。  相似文献   

15.
The construction of inulin-assimilating and sorbitol-producing fusants was achieved by intergeneric protoplast fusion between Kluyveromyces sp. Y-85 and Saccharomyces cerevisiae E-15. The cells of parental strains were pretreated with 0.1% EDTA (w/v) and 2-mercaptoethanol (0.1%, v/v) and then exposed to 2.0% (w/v) Zymolase at 30 °C for 30–40 min. The optimized fusion condition demonstrated that with the presence of 30% (w/v) polyethylene glycol 6000 (PEG-6000) and 10 mM CaCl2 for 30 min, the fusion frequency reached 2.64 fusants/106 parental cells. The fusants were screened by different characters between two parental strains and further identified by DNA contents, inulinase activity and sorbitol productivity. One of the genetically stable fusants, Strain F27, reached a maximal sorbitol production of 4.87 g/100 ml under optimal fermentation condition.  相似文献   

16.
Summary A hybrid of Saccharomyces cerevisiae with the ability to utilize starch and to produce the killer toxin was constructed by the protoplast fusion technique. The hybrid was obtained in two steps. In the first, a wild killer strain was fused with a laboratory strain (S. cerevisiae STA2). A fusion product which carried the killer factor and the ability to grow on starch was selected. In the second step, this hybrid was fused with a baker's yeast.  相似文献   

17.
Double labeling of resistance markers and report genes can be used to breed engineered Saccharomyces cerevisiae strains that can assimilate xylose and glucose as a mixed carbon source for ethanol fermentation and increased ethanol production. In this study Saccharomyces cerevisiae W5 and Candida shehatae 20335 were used as parent strains to conduct protoplast fusion and the resulting fusants were screened by double labeling. High performance liquid chromatography (HPLC) was used to assess the ethanol yield following the fermentation of xylose and glucose, as both single and mixed carbon sources, by the fusants. Interestingly, one fusant (ZLYRHZ7) was demonstrated to have an excellent fermentation performance, with an ethanol yield using the mixed carbon source of 0.424 g g−1, which compares with 0.240 g g−1 (W5) and 0.353 g g−1 (20335) for the parent strains. This indicates an improvement in the ethanol yield of 43.4% and 16.7%, respectively.  相似文献   

18.
Summary Wild strains of Saccharomyces cerevisiae were isolated from dairy products, bakery goods, fresh fruit and vegetables, and tested for killer activity. Four isolates out of 238 strains possessed killer activity. The best of these was converted to the petite form and hybridized with an industrial strain of Saccharomyces cerevisiae by protoplast fusion. Thirty-eight out of 104 isolates had killer activity, and some of these had good dough-raising activity as well.  相似文献   

19.
Protoplasts from various strains of red-pigmented yeasts were generated at high frequency using improved procedures. The use of sulphur-containing amino acids and 2-deoxyglucose in growth media led to impaired cell wall synthesis and rendered cells very susceptible to treatment with mercapto-ethanol and various lytic enzymes. Use of individual lytic enzymes separately resulted in relatively low frequencies of protoplasts from most of the red yeasts examined, whilst use of -glucoronidase, Novozyme and Zymolyase in series markedly increased stable protoplast formation. The latter effects were shown to be strain specific. The ability to generate large numbers of red yeast protoplasts prompted the attempt to examine intergeneric fusion between auxotrophs of a strain of Saccharomyces cerevisiae and Rhodotorula rubra. Putative hybrids were selected as variously-pigmented prototrophic colonies growing on minimal medium and stabilised by subculturing on the latter medium. Unusual cream, orange and yellow hybrid colonies were generated, composed of cells of varying morphologies (chains, multibudded). The majority of stable hybrids contained one nucleus, although several heterokaryons were also observed. Some hybrids possessed the phenotypes of both parents: fusant wcat41 grew as rapidly as the S. cerevisiae parent but also contained an inducible phenylalanine ammonia-lyase (PAL) which appeared to be more active than that of the Rhodotorula parent.  相似文献   

20.
The dominating strains of most sugar-based natural and industrial fermentations either belong to Saccharomyces cerevisiae and Saccharomyces uvarum or are their chimeric derivatives. Osmotolerance is an essential trait of these strains for industrial applications in which typically high concentrations of sugars are used. As the ability of the cells to cope with the hyperosmotic stress is under polygenic control, significant improvement can be expected from concerted modification of the activity of multiple genes or from creating new genomes harbouring positive alleles of strains of two or more species. In this review, the application of the methods of intergeneric and interspecies hybridization to fitness improvement of strains used under high-sugar fermentation conditions is discussed. By protoplast fusion and heterospecific mating, hybrids can be obtained that outperform the parental strains in certain technological parameters including osmotolerance. Spontaneous postzygotic genome evolution during mitotic propagation (GARMi) and meiosis after the breakdown of the sterility barrier by loss of MAT heterozygosity (GARMe) can be exploited for further improvement. Both processes result in derivatives of chimeric genomes, some of which can be superior both to the parental strains and to the hybrid. Three-species hybridization represents further perspectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号