首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S P Batra  R F Colman 《Biochemistry》1984,23(21):4940-4946
Bovine liver glutamate dehydrogenase reacts covalently with the new adenosine analogue 6-[(4-bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5'-diphosphate with incorporation of about 1 mol of reagent/mol of enzyme subunit. Modified enzyme completely loses its normal ability to be inhibited by high concentrations of reduced diphosphopyridine nucleotide (DPNH) (greater than 100 microM), which binds at a regulatory site distinct from the catalytic site; however, the modified enzyme retains its full activity when assayed at 100 microM DPNH in the absence of allosteric compounds. The enzyme is still activated by ADP, is inhibited by GTP (albeit at higher concentrations), and binds 1.5-2 mol of [14C]GTP/subunit. A plot of initial velocity vs. DPNH concentration for the modified enzyme, in contrast to the native enzyme, followed Michaelis-Menten kinetics. The rate constant (k) for loss of DPNH inhibition (as measured at 0.6 mM DPNH) exhibits a nonlinear dependence on reagent concentration, suggesting a reversible binding of reagent (Kd = 0.19 mM) prior to irreversible modification. At 0.1 mM 6-[(4-bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5'-diphosphate, k = 0.036 min-1 and is not affected by alpha-ketoglutarate, 100 microM DPNH, or GTP alone but is decreased to 0.0094 min-1 by 5 mM DPNH and essentially to zero by 5 mM DPNH plus 100 microM GTP. Incorporation after incubation with 0.25 mM 6-[(4-bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5'-diphosphate for 2 h at pH 7.1 is 1.14 mol/mol of subunit in the absence but only 0.24 mol/mol of subunit in the presence of DPNH plus GTP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Song ES  Cady C  Fried MG  Hersh LB 《Biochemistry》2006,45(50):15085-15091
Treatment of an N-terminal-containing His6-tagged insulysin (His6-IDE) with proteinase K led to the initial cleavage of the His tag and linker region. This was followed by C-terminal cleavages resulting in intermediate fragments of approximately 95 and approximately 76 kDa and finally a relatively stable approximately 56 kDa fragment. The approximately 76 and approximately 56 kDa fragments exhibited a low level of catalytic activity but retained the ability to bind the substrate with a similar affinity as the native enzyme. The kinetics of the reaction of the IDE approximately 76 and approximately 56 kDa proteolytic fragments with a synthetic fluorogenic substrate produced hyperbolic substrate versus velocity curves, rather than the sigmoidal curve obtained with His6-IDE. The approximately 76 and approximately 56 kDa IDE proteolytic fragments were active toward the physiological peptides beta-endorphin, insulin, and amyloid beta peptide 1-40. Although activity was reduced by a factor of approximately 103-104 with these substrates, the relative activity and the cleavage sites were unchanged. Both the approximately 76 and approximately 56 kDa fragments retained the regulatory cationic binding site that binds ATP. Thus, the two proteinase K cleavage fragments of IDE retain the substrate- and ATP-binding sites but have low catalytic activity and lose the allosteric kinetic behavior of IDE. These data suggest a role of the C-terminal region of IDE in allosteric regulation.  相似文献   

3.
Yeast phosphoglycerate kinase is irreversibly inactivated upon incubation with 5'-[p-(fluorosulfonyl)-benzoyl]-1-N6-ethenoadenosine (5'-FSB epsilon A), an analogue to the nucleotide substrate. Marked protection against inactivation occurs with MgATP, ATP, MgADP, ADP, and 3-phosphoglycerate, suggesting that a part of the catalytic center is modified. The time dependence of the inactivation is characterized by a nonlinear kinetic profile. Curve fitting of various models for ligand binding to the enzyme suggested a two-site model. Modification of one of the sites appears to protect the catalytically essential site from modification. Stoichiometric studies show that the relationship between moles of 5'-FSB epsilon A incorporated per mole of enzyme and the residual enzymatic activity also shows nonlinear behavior. An extrapolated value of 1.5 mol of bound label/mol of enzyme corresponds to complete inactivation. The apparent overall pseudo first-order rate constant for the reaction between phosphoglycerate kinase and 5'-FSB epsilon A, as well as the separate rate constants for the modification, exhibit saturation behavior with respect to the concentration of 5'-FSB epsilon A, indicative of a rapid reversible binding of the reagent to the enzyme prior to modification.  相似文献   

4.
Biotransformation of benzaldehyde and pyruvate into (R)-phenylacetylcarbinol (PAC) catalysed by Candida utilis pyruvate decarboxylase (PDC) at low buffer concentration (20 mM MOPS) was enhanced by maintenance of neutral pH through acetic acid addition. PDC was very stable in this buffer (half-life 138 h at 6 degrees C), however a benzaldehyde emulsion (400 mM) caused rapid deactivation. The inclusion of 2M glycerol did not protect PDC from inactivation by benzaldehyde but initial rates were increased by 50% and the final PAC level was enhanced from 40 to 51 g l(-1). Low levels of by-products acetaldehyde (0.1-0.15 g l(-1)) and acetoin (1.1-1.3 g l(-1)) were formed in both the presence and absence of 2 M glycerol. Interestingly PDC was more stable towards benzaldehyde when pyruvate was present: no activity was lost during the first hour of biotransformation (2 M glycerol, benzaldehyde concentration decreased from 400 to 345 mM, pyruvate from 480 to 420 mM) but PDC was completely inactivated in less than 30 min when exposed to the same concentrations of benzaldehyde in the absence of pyruvate. Thus the enzyme in catalytic action was more stable than the resting enzyme.  相似文献   

5.
R F Colman  Y C Huang  M M King  M Erb 《Biochemistry》1984,23(14):3281-3286
Two new adenine nucleotide analogues have been synthesized and characterized: 6-[(4-bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5'-monophosphate and 5'-diphosphate. The bromoketo and dioxobutyl moieties have the ability to react with the nucleophilic side chains of several amino acids, as well as with arginine. 6-[(4-Bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5'-monophosphate reacts irreversibly with rabbit muscle pyruvate kinase, causing inactivation. Addition of ADP to the reaction mixture (in the presence of Mg2+) markedly decreases the rate of inactivation. Pig heart NAD-dependent isocitrate dehydrogenase is allosterically activated by ADP, which reduces the Km for isocitrate. 6-[(4-Bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5'-diphosphate reacts irreversibly with isocitrate dehydrogenase, causing, rapidly, a loss of the ability of ADP to increase the initial velocity of assays conducted at low isocitrate concentrations and, more slowly, inactivation. Addition of ADP to the reaction mixture (in the presence of Mn2+) protects this enzyme against the loss of allosteric activation. It is proposed that the 6-[(4-bromo-2,3-dioxobutyl)thio]-6-deaminoadenine nucleotides react at the active site of pyruvate kinase and at the ADP activating site of isocitrate dehydrogenase and that these compounds may have general applicability as affinity labels of catalytic and regulatory adenine nucleotide sites in proteins.  相似文献   

6.
Cytosolic uridine 5'-diphosphoglucuronic acid is the essential cosubstrate for all hepatic microsomal UDP-glucuronosyltransferase-mediated reactions. Uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc) has been implicated as an activator of UDP-glucuronosyltransferases in vivo, acting either as an allosteric effector or by enhancing access of uridine 5'-diphosphoglucuronic acid to the enzyme. To delineate the interaction of uridine 5'-diphosphoglucuronic acid with microsomal UDP-glucuronosyltransferase and the facilitating role of UDP-GlcNAc, we analyzed bilirubin UDP-glucuronosyltransferase kinetics in microsomes prepared from monkey liver (Macaca fascicularis). Initial rates of bilirubin glucuronide formation were determined by radiochemical assay over a range of uridine 5'-diphosphoglucuronic acid concentrations (0-60 mM), in native microsomes with or without UDP-GlcNAc, or in detergent (digitonin)-pretreated membranes with UDP-GlcNAc. For native microsomes in the absence of UDP-GlcNAc, fitting the data to each of two mathematical models yielded behavior consistent with a single-site model (Km 2.8 mM). In contrast, in the presence of a physiologic concentration (1 mM) of UDP-GlcNAc, analysis of the data excluded the single-site model and was indicative of a non-interactive, two-site (or process) model, characterized by a high-affinity site (Km 0.14 mM) in addition to the low-affinity site. Following detergent-treatment of microsomal membranes, the data were again most consistent with a single low-affinity site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A new reactive ADP analogue has been synthesized: 2-(4-bromo-2,3-dioxobutylthio)adenosine 5'-diphosphate (2-BDB-TADP). Reaction of ADP with m-chloroperoxybenzoic acid gave ADP 1-oxide, which was treated with NaOH, followed by reaction with carbon disulfide to yield 2-thioadenosine 5'-diphosphate. The final product was synthesized by condensation of 2-thioadenosine 5'-diphosphate with 1,4-dibromobutanedione. Reaction of pig heart NAD-specific isocitrate dehydrogenase with this nucleotide analogue (0.4 mM) causes a time-dependent loss of activity to a limiting value of 75% inactivation. The rate constant for inactivation exhibits a nonlinear dependence on the concentration of 2-BDB-TADP, with kmax = 0.021 min-1 and KI = 0.067 mM. Complete protection against inactivation by 0.2 mM 2-BDB-TADP is provided by ADP + Mn2+, but not by Mn2+ alone, isocitrate, alpha-ketoglutarate, or NAD. Incorporation of 2-BDB-TADP is proportional to the extent of inactivation, reaching 1 mol of reagent/mol of enzyme subunit when the enzyme is maximally inactivated. However, when inactivation is totally prevented by incubation with 2-BDB-TADP in the presence of ADP and Mn2+, 0.5 mol of reagent/mol of subunit is still incorporated, suggesting that inactivation may be attributed to 0.5 mol of reagent/mol of average subunit. In the native enzyme, the Km for total isocitrate is 1.8 mM and is decreased 6-fold to 0.3 mM in the presence of 1 mM ADP, whereas in the modified enzyme, with 25% residual activity, the Km for total isocitrate is about the same in the absence (2.0 mM) or presence (1.8 mM) of ADP. These results indicate that 2-BDB-TADP acts as an affinity label of the ADP allosteric site of NAD-dependent isocitrate dehydrogenase.  相似文献   

8.
The nucleotide analogue 5'-p-fluorosulfonylbenzoyladenosine (FSBA) reacts irreversibly with rat liver cytosolic 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase kinase, causing a rapid loss of the AMP activation capacity and a slower inactivation of the catalytic activity. The rate constant for loss of AMP activation is about 10 times higher (kappa 1 = 0.112 min-1) than the rate constant of inactivation (kappa 2 = 0.0106 min-1). There is a good correspondence between the time-dependent inactivation of reductase kinase and the time-dependent incorporation of 5'-p-sulfonylbenzoyl[14C]adenosine ([14C]SBA). An average of 1.65 mol of reagent/mol of enzyme subunit is bound when reductase kinase is completely inactivated. The time-dependent incorporation is consistent with the postulate that covalent reaction of 1 mol of SBA/mol of subunit causes complete loss of AMP activation, whereas reaction of another mole of SBA/mol of subunit would lead to total inactivation. Protection against inactivation by the reagent is provided by the addition of Mg2+, AMP, Mg-ATP, or Mg-AMP to the incubation mixtures. In contrast, addition of ATP, 2'-AMP, or 3'-AMP has no effect on the rate constants. Mg-ATP protects preferentially the catalytic site against inactivation, whereas Mg-AMP at low concentration protects preferentially the allosteric site. Mg-ADP affords less protection than Mg-AMP to the allosteric site when both nucleotides are present at a concentration of 50 microM with 7.5 mM Mg2+. Experiments done with [14C]FSBA in the presence of some protectants have shown that a close correlation exists between the pattern of protection observed and the binding of [14C]SBA. The postulate is that there exists a catalytic site and an allosteric site in the reductase kinase subunit and that Mg-AMP is the main allosteric activator of the enzyme.  相似文献   

9.
The effect of the potential antidiabetic drug (-)(S)-3-isopropyl 4-(2-chlorophenyl)-1,4-dihydro-1-ethyl-2-methyl-pyridine-3,5,6-tricarbox ylate (W1807) on the catalytic and structural properties of glycogen phosphorylase a has been studied. Glycogen phosphorylase (GP) is an allosteric enzyme whose activity is primarily controlled by reversible phosphorylation of Ser14 of the dephosphorylated enzyme (GPb, less active, predominantly T-state) to form the phosphorylated enzyme (GPa, more active, predominantly R-state). Upon conversion of GPb to GPa, the N-terminal tail (residues 5-22), which carries the Ser14(P), changes its conformation into a distorted 3(10) helix and its contacts from intrasubunit to intersubunit. This alteration causes a series of tertiary and quaternary conformational changes that lead to activation of the enzyme through opening access to the catalytic site. As part of a screening process to identify compounds that might contribute to the regulation of glycogen metabolism in the noninsulin dependent diabetes diseased state, W1807 has been found as the most potent inhibitor of GPb (Ki = 1.6 nM) that binds at the allosteric site of T-state GPb and produces further conformational changes, characteristic of a T'-like state. Kinetics show W1807 is a potent competitive inhibitor of GPa (-AMP) (Ki = 10.8 nM) and of GPa (+1 mM AMP) (Ki = 19.4 microM) with respect to glucose 1-phosphate and acts in synergism with glucose. To elucidate the structural features that contribute to the binding, the structures of GPa in the T-state conformation in complex with glucose and in complex with both glucose and W1807 have been determined at 100 K to 2.0 A and 2.1 A resolution, and refined to crystallographic R-values of 0.179 (R(free) = 0.230) and 0.189 (R(free) = 0.263), respectively. W1807 binds tightly at the allosteric site and induces substantial conformational changes both in the vicinity of the allosteric site and the subunit interface. A disordering of the N-terminal tail occurs, while the loop of chain containing residues 192-196 and residues 43'-49' shift to accommodate the ligand. Structural comparisons show that the T-state GPa-glucose-W1807 structure is overall more similar to the T-state GPb-W1807 complex structure than to the GPa-glucose complex structure, indicating that W1807 is able to transform GPa to the T'-like state already observed with GPb. The structures provide a rational for the potency of the inhibitor and explain GPa allosteric inhibition of activity upon W1807 binding.  相似文献   

10.
(Z)- and (E)-4-amino-2-(trifluoromethyl)-2-butenoic acid (4 and 5, respectively) were synthesized and investigated as potential mechanism-based inactivators of gamma-aminobutyric acid aminotransferase (GABA-AT) in a continuing effort to map the active site of this enzyme. The core alpha-trifluoromethyl-alpha,beta-unsaturated ester moiety was prepared via a Reformatsky/reductive elimination coupling of the key intermediates tert-butyl 2,2-dichloro-3,3,3-trifluoropropionate and N,N-bis(tert-butoxy-carbonyl)glycinal. Both 4 and 5 inhibited GABA-AT in a time-dependent manner, but displayed non-pseudo-first-order inactivation kinetics; initially, the inactivation rate increased with time. Further investigation demonstrated that the actual inactivator is generated enzymatically from 4 or 5. This inactivating species is released from the active site prior to inactivation, and as a result, 4 and 5 cannot be defined as mechanism-based inactivators. Furthermore, 4 and 5 are alternate substrates for GABA-AT, transaminated by the enzyme with Km values of 0.74 and 20.5 mM, respectively. Transamination occurs approximately 276 and 305 times per inactivation event for 4 and 5, respectively. The enzyme also catalyzes the elimination of the fluoride ion from 4 and 5. A mechanism to account for these observations is proposed.  相似文献   

11.
Cyclophilin A (CypA) plays an important role in many physiology processes and its overexpression has been involved in many diseases including immune disease, viral infection, neuro-degenerative disease, and cancer. However, the actual role of CypA in the diseases is still far from clear, and a complete understanding of CypA is necessary in order to direct more specific and effective therapeutic strategies. Based on the screening of our in-house library through the isomer-specific proteolysis method, we find a CypA activator (1-(2,6-Dibenzyloxybenzoyl)-3-(9H-fluoren-9-yl)-urea), compound 1a, which can increase CypA’s PPIase activity and give allosteric behavior. The binding affinity of compound 1a to CypA has been confirmed by Fortebio’s Octet RED system and the increased phosphorylation of ERK in H446 cells is observed by treatment with both compound 1a and CsA. In order to further evaluate the binding mode between the activator and CypA, the allosteric binding site and allosteric mechanism of CypA are investigated by molecular dynamics (MD) simulations in combination with mutagenesis experiments. The results show that the allosteric binding site of CypA is 7 Å away from its catalytic site and is composed of Cys52, His70, His54, Lys151, Thr152 and Lys155. Compound 1a binds to the allosteric site of CypA, stabilizing the active conformation of catalytic residues, and finally promotes the catalytic efficiency of CypA. We believe our finding of the CypA allosteric activator will be used as an effective chemical tool for further studies of CypA mechanisms in diseases.  相似文献   

12.
The affinity alkylating progesterone analogue 17-(bromoacetoxy)progesterone has been used to label the active site of a microsomal cytochrome P-450 enzyme from neonatal pig testis. The enzyme causes removal of the C20 and C21 side chains from the substrates progesterone and pregnenolone by catalyzing both 17-hydroxylase and C17,20-lyase reactions, which produce the corresponding C19 steroidal precursors of testosterone. The progesterone analogue causes simultaneous inactivation of the two catalytic activities of the enzyme by a first-order kinetic process that obeys saturation kinetics. Progesterone and 17-hydroxyprogesterone each protect the enzyme against inactivation. The progesterone and analogue is a competitive inhibitor of the enzyme with Ki values of 8.4 microM and 7.8 microM for progesterone and 17-hydroxyprogesterone, respectively. The enzyme inactivation and kinetic data are consistent with a theory proposing that the analogue and the two substrates compete for the same active site. The radioactive analogue 17-[( 14C]bromoacetoxy)progesterone causes inactivation of the enzyme with incorporation of 1.5-2.2 mol of the analogue per mole of inactivated enzyme. When this experiment is carried out in the presence of a substrate, then 0.9-1.2 mol of radioactive analogue is incorporated per mole of inactivated enzyme. The data suggest that the analogue can bind to two different sites, one of which is related to the catalytic site. Radiolabeled enzyme samples, from reactions of the 14C-labeled analogue with the enzyme alone or with enzyme in the presence of a substrate, were subjected to amino acid analysis and also to tryptic digestion and peptide mapping.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Pig heart NAD-dependent isocitrate dehydrogenase is allosterically activated by ADP which reduces the Km of isocitrate. The new ADP analogue 6-(4-bromo-2,3-dioxobutyl)thioadenosine 5'-diphosphate (BDB-TADP) reacts irreversibly with the enzyme at pH 6.1 and 25 degrees C, causing a rapid loss of the ability of ADP to increase the initial velocity of assays conducted at low isocitrate concentrations and a slower inactivation measured using saturating isocitrate concentrations. The rate constant for loss of ADP activation exhibits a nonlinear dependence on BDB-TADP concentration; in the presence of 0.2 mM MnSO4, KI for the reversible enzyme-reagent complex is 0.069 mM with kmax at saturating reagent concentrations equal to 0.031 min-1. For reaction at the site causing overall inactivation, KI for the initial reversible enzyme-reagent complex is estimated to be 0.018 mM with kmax = 0.0083 min-1 in the presence of 0.2 mM MnSO4. Total protection against both reactions is provided by 1 mM ADP plus 0.2 mM MnSO4 or by 0.1 mM ADP plus 0.2 mM MnSO4 plus 0.2 mM isocitrate, but not by NAD, ATP, or ADP plus EDTA. The BDB-TADP thus appears to modify two distinct metal-dependent ADP-binding sites. Incubation of isocitrate dehydrogenase with 0.14 mM BDB-[beta-32P]TADP at pH 6.1 in the presence of 0.2 mM MnSO4 results in incorporation of 0.81 mol of reagent/mol of average subunit when the ADP activation is completely lost and the enzyme is 68% inactivated. The time-dependent incorporation is consistent with the postulate that covalent reaction of 0.5 mol of BDB-TADP/mol of average enzyme subunit causes complete loss of ADP activation, while reaction with another 0.5 mol of BDB-TADP would lead to total inactivation. The enzyme is composed of three distinct subunits in the approximate ratio 2 alpha:1 beta:1 gamma. The distribution of BDB-[beta-32P]TADP incorporated into modified enzyme is 63:30:7% for alpha:beta:gamma throughout the course of the reaction. These results indicate the 6-(4-bromo-2,3-dioxobutyl)thioadenosine 5'-diphosphate functions as an affinity label of two types of potential metal-dependent ADP sites of NAD-dependent isocitrate dehydrogenase and that these allosteric sites are present on two (alpha and beta) of the enzyme's three types of subunits.  相似文献   

14.
The oxidant mitogen/tumor promoter, periodate, was used to selectively modify either the regulatory domain or the catalytic domain of protein kinase C (PKC) to induce oxidative activation or inactivation of PKC, respectively. Periodate, at micromolar concentrations, modified the regulatory domain of PKC as determined by the loss of ability to stimulate kinase activity by Ca2+/phospholipid, and also by the loss of phorbol ester binding. This modification resulted in an increase in Ca2+/phospholipid-independent kinase activity (oxidative activation). However, at higher concentrations (greater than 100 microM) periodate also modified the catalytic domain, resulting in complete inactivation of PKC. The oxidative modification induced by low periodate concentrations (less than 0.5 mM) was completely reversed by a brief treatment with 2 mM dithiothreitol. In this aspect, the modification induced by periodate was different from that of the previously reported irreversible modification of PKC induced by H2O2. However, the inactivation of PKC induced by periodate at concentrations greater than 1 mM was not reversed by dithiothreitol. Among the phospholipids and ligands of the regulatory domain tested, only phosphatidylserine protected the regulatory domain from oxidative modification. In the presence of phosphatidylserine, the catalytic site was selectively modified by periodate, resulting in formation of a form of PKC that exhibited phorbol ester binding but not kinase activity. Both reversible and irreversible oxidative activation and inactivation of PKC also were observed in intact cells treated with periodate. Taken together these results suggest that periodate, by virtue of having a tetrahedral structure, binds to the phosphate-binding regions present within the phosphatidylserine-binding site of the regulatory domain and the ATP-binding site of the catalytic domain, and modifies the vicinal thiols present within these sites. This results in the formation of intramolecular disulfide bridge(s) within the regulatory domain or catalytic domain leading to either reversible activation or inactivation of PKC, respectively. Thus, oxidant mitogen/tumor promoters such as periodate may be able to bypass normal transmembrane signalling systems to directly activate pathways involved in cellular regulation.  相似文献   

15.
The kinetic mechanism of homoserine kinase, purified to homogeneity from Escherichia coli, was examined by initial velocity techniques at pH 7.6. Whereas ATP displayed normal Michaelis-Menten saturation kinetics (Km = 0.2 mM), L-homoserine showed hyperbolic saturation kinetics only up to a concentration of 0.75 mM (Km = 0.15 mM). Above this concentration, L-homoserine caused marked but partial inhibition (Ki approximately 2 mM). The kinetic data indicated that the addition of substrates to homoserine kinase occurs by a preferred order random mechanism, with ATP preferentially binding before L-homoserine. When the ATP concentration was varied at several fixed inhibitory concentrations of L-homoserine, the resulting inhibition pattern indicated hyperbolic mixed inhibition. This suggested a second binding site for L-homoserine. L-Aspartate semialdehyde, an amino acid analog of L-homoserine, proved to be an alternative substrate of homoserine kinase (Km = 0.68 mM), and was subsequently used as a probe of its kinetic mechanism. In aqueous solution, at pH 7.5, this analog was found to exist predominantly (ca 85%) as its hydrated species. When examined as an inhibitor of the physiological reaction, L-aspartate semialdehyde showed mixed inhibition versus both L-homoserine and ATP. Although the pH profiles for the binding of L-homoserine as a substrate (Km) and as an inhibitor (Ki) were identical, the kinetic data were best fit to a two-site model, with separate catalytic and inhibitory sites for L-homoserine.  相似文献   

16.
3-(2-Carboxyethyl)-4,6-dichloro-1H-indole-2-carboxylic acid (MDL-29951), an antagonist of the glycine site of the NMDA receptor, has been found to be an allosteric inhibitor of the enzyme fructose 1,6-bisphosphatase. The compound binds at the AMP regulatory site by X-ray crystallography. This represents a new approach to inhibition of fructose 1,6-bisphosphatase and serves as a lead for further drug design.  相似文献   

17.
Catecholase and cresolase activities of mushroom tyrosinase (MT) were studied in presence of some n-alkyl carboxylic acid derivatives. Catecholase activity of MT achieved its optimal activity in presence of 1.0, 1.25, 2.0, 2.2 and 3.2?mM of pyruvic acid, acrylic acid, propanoic acid, 2-oxo-butanoic acid, and 2-oxo-octanoic acid, respectively. Contrarily, the cresolase activity of MT was inhibited by all type of the above acids. Propanoic acid caused an uncompetitive mode of inhibition (Ki=0.14?mM), however, the pyruvic, acrylic, 2-oxo-butanoic and 2-oxo-octanoic acids showed a competitive manner of inhibition with the inhibition constants (Ki) of 0.36, 0.6, 3.6 and 4.5?mM, respectively. So, it seems that, there is a physical difference in the docking of mono- and o-diphenols to the tyrosinase active site. This difference could be an essential determinant for the course of the catalytic cycle. Monophenols are proposed to bind only the oxyform of the tyrosinase. It is likely that the binding of acids occurs through their carboxylate group with one copper ion of the binuclear site. Thus, they could completely block the cresolase reaction, by preventing monophenol binding to the enzyme. From an allosteric point of view, n-alkyl acids may be involved in activation of MT catecholase reactions.  相似文献   

18.
In the present study, the effects of 4-hydroxy-2-nonenal (HNE) on highly purified pyruvate dehydrogenase complex (PDC) and its catalytic components in vitro and on PDC, alpha-ketoglutarate dehydrogenase complex (KGDC), and the branched-chain alpha-keto acid dehydrogenase complex (BCKDC) activities in cultured human HepG2 cells were investigated. Among the PDC components, the activity of the dihydrolipoamide acetyltransferase-E3-binding protein subcomplex (E2-E3BP) only was decreased by HNE. Dihydrolipoamide dehydrogenase (E3) protected the E2-E3BP subcomplex from HNE inactivation in the absence of the substrates. In the presence of E3 and NADH, when lipoyl groups were reduced, higher inactivation of the E2-E3BP subcomplex by HNE was observed. Purified PDC was protected from HNE-induced inactivation by several thiol compounds including lipoic acid plus [LA-plus; 2-(N,N-dimethylamine)ethylamidolipoate(.)HCl]. Treatment of cultured HepG2 cells with HNE resulted in a significant reduction of PDC and KGDC activities, whereas BCKDC activity decreased to a lesser extent. Lipoyl compounds afforded protection from HNE-induced inhibition of PDC. This protection was higher in the presence of cysteine and reduced glutathione. Cysteine was able to restore PDC activity to some extent after HNE treatment. These findings show that thiols, including lipoic acid, provide protection against HNE-induced inactivation of lipoyl-containing complexes in the mitochondria.  相似文献   

19.
C Kleanthous  P M Cullis  W V Shaw 《Biochemistry》1985,24(20):5307-5313
Bacterial resistance to the antibiotic chloramphenicol is normally mediated by chloramphenicol acetyltransferase (CAT), which utilizes acetyl coenzyme A as the acyl donor in the inactivation reaction. 3-(Bromoacetyl)chloramphenicol, an analogue of the acetylated product of the forward reaction catalyzed by CAT, was synthesized as a probe for accessible and reactive nucleophilic groups within the active site. Extremely potent covalent inhibition was observed. Affinity labeling was demonstrated by the protection afforded by chloramphenicol at concentrations approaching Km for the substrate. Inactivation was stoichiometric, 1 mol of the inhibitor covalently bound per mole of enzyme monomer, with complete loss of both the acetylation and hydrolytic activities associated with CAT. N3-(Carboxymethyl)histidine was identified as the only alkylated amino acid, implicating the presence of a unique tautomeric form of a reactive imidazole group at the catalytic center. The proteolytic digestion of CAT modified with 3-(bromo[14C]-acetyl)chloramphenicol yielded three labeled peptide fractions separable by reverse-phase high-pressure liquid chromatography. Each peptide fraction was sequenced by fast atom bombardment mass spectrometry; the labeled peptide in each case was found to span the highly conserved region in the primary structure of CAT, which had been tentatively assigned as the active site. The rapid, stoichiometric, and specific alkylation of His-189, taken together with the high degree of conservation of the adjacent amino acid residues, strongly suggests a central role for His-189 in the catalytic mechanism of CAT.  相似文献   

20.
Serine palmitoyltransferase (EC 2.3.1.50) catalyzes the condensation of L-serine and palmitoyl-CoA to yield 3-ketosphinganine in the first unique reaction of long-chain (sphingoid) base biosynthesis. The kinetic effects of changing the extracellular concentrations of the precursors for this pathway were studied with LM cells by following the incorporation of L-[3-14C]serine into the long-chain base (i.e., sphinganine and sphingenine) backbones of complex sphingolipids. [14C]Serine was taken up by the cells and rapidly reached steady-state concentrations similar to those of the medium. From the cellular [14C]serine concentrations and specific activities, the apparent Vmax [14 pmol min-1 (10(6) cells)-1] and Km (0.23 mM) values for long-chain base synthesis were determined and found to be essentially identical with those for serine palmitoyltransferase assayed in vitro [i.e., 13 pmol min-1 (10(6) cells)-1 and 0.27 mM, respectively]. The other precursor, palmitic acid, was also taken up rapidly and increased long-chain base biosynthesis in a concentration-dependent manner. This effect was limited to palmitic acid and matched the known specificity of serine palmitoyltransferase for saturated fatty acyl-CoA's of 16 +/- 1 carbon atoms. These studies delineate the influence of extracellular precursors on the formation of the sphingolipid backbone and suggest that the kinetic properties of serine palmitoyltransferase govern this behavior of long-chain base synthesis in intact cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号